MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscgrg Structured version   Visualization version   GIF version

Theorem iscgrg 28485
Description: The congruence property for sequences of points. (Contributed by Thierry Arnoux, 3-Apr-2019.)
Hypotheses
Ref Expression
iscgrg.p 𝑃 = (Base‘𝐺)
iscgrg.m = (dist‘𝐺)
iscgrg.e = (cgrG‘𝐺)
Assertion
Ref Expression
iscgrg (𝐺𝑉 → (𝐴 𝐵 ↔ ((𝐴 ∈ (𝑃pm ℝ) ∧ 𝐵 ∈ (𝑃pm ℝ)) ∧ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗))))))
Distinct variable groups:   𝑖,𝑗,𝐺   𝐴,𝑖,𝑗   𝐵,𝑖,𝑗
Allowed substitution hints:   𝑃(𝑖,𝑗)   (𝑖,𝑗)   (𝑖,𝑗)   𝑉(𝑖,𝑗)

Proof of Theorem iscgrg
Dummy variables 𝑎 𝑏 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscgrg.e . . . 4 = (cgrG‘𝐺)
2 elex 3457 . . . . 5 (𝐺𝑉𝐺 ∈ V)
3 fveq2 6817 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
4 iscgrg.p . . . . . . . . . . . 12 𝑃 = (Base‘𝐺)
53, 4eqtr4di 2784 . . . . . . . . . . 11 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃)
65oveq1d 7356 . . . . . . . . . 10 (𝑔 = 𝐺 → ((Base‘𝑔) ↑pm ℝ) = (𝑃pm ℝ))
76eleq2d 2817 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑎 ∈ ((Base‘𝑔) ↑pm ℝ) ↔ 𝑎 ∈ (𝑃pm ℝ)))
86eleq2d 2817 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑏 ∈ ((Base‘𝑔) ↑pm ℝ) ↔ 𝑏 ∈ (𝑃pm ℝ)))
97, 8anbi12d 632 . . . . . . . 8 (𝑔 = 𝐺 → ((𝑎 ∈ ((Base‘𝑔) ↑pm ℝ) ∧ 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ)) ↔ (𝑎 ∈ (𝑃pm ℝ) ∧ 𝑏 ∈ (𝑃pm ℝ))))
10 fveq2 6817 . . . . . . . . . . . . 13 (𝑔 = 𝐺 → (dist‘𝑔) = (dist‘𝐺))
11 iscgrg.m . . . . . . . . . . . . 13 = (dist‘𝐺)
1210, 11eqtr4di 2784 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (dist‘𝑔) = )
1312oveqd 7358 . . . . . . . . . . 11 (𝑔 = 𝐺 → ((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑎𝑖) (𝑎𝑗)))
1412oveqd 7358 . . . . . . . . . . 11 (𝑔 = 𝐺 → ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗)) = ((𝑏𝑖) (𝑏𝑗)))
1513, 14eqeq12d 2747 . . . . . . . . . 10 (𝑔 = 𝐺 → (((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗)) ↔ ((𝑎𝑖) (𝑎𝑗)) = ((𝑏𝑖) (𝑏𝑗))))
16152ralbidv 3196 . . . . . . . . 9 (𝑔 = 𝐺 → (∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗)) ↔ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖) (𝑎𝑗)) = ((𝑏𝑖) (𝑏𝑗))))
1716anbi2d 630 . . . . . . . 8 (𝑔 = 𝐺 → ((dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))) ↔ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖) (𝑎𝑗)) = ((𝑏𝑖) (𝑏𝑗)))))
189, 17anbi12d 632 . . . . . . 7 (𝑔 = 𝐺 → (((𝑎 ∈ ((Base‘𝑔) ↑pm ℝ) ∧ 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗)))) ↔ ((𝑎 ∈ (𝑃pm ℝ) ∧ 𝑏 ∈ (𝑃pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖) (𝑎𝑗)) = ((𝑏𝑖) (𝑏𝑗))))))
1918opabbidv 5152 . . . . . 6 (𝑔 = 𝐺 → {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ((Base‘𝑔) ↑pm ℝ) ∧ 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃pm ℝ) ∧ 𝑏 ∈ (𝑃pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖) (𝑎𝑗)) = ((𝑏𝑖) (𝑏𝑗))))})
20 df-cgrg 28484 . . . . . 6 cgrG = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ((Base‘𝑔) ↑pm ℝ) ∧ 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))))})
21 df-xp 5617 . . . . . . . 8 ((𝑃pm ℝ) × (𝑃pm ℝ)) = {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ (𝑃pm ℝ) ∧ 𝑏 ∈ (𝑃pm ℝ))}
22 ovex 7374 . . . . . . . . 9 (𝑃pm ℝ) ∈ V
2322, 22xpex 7681 . . . . . . . 8 ((𝑃pm ℝ) × (𝑃pm ℝ)) ∈ V
2421, 23eqeltrri 2828 . . . . . . 7 {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ (𝑃pm ℝ) ∧ 𝑏 ∈ (𝑃pm ℝ))} ∈ V
25 simpl 482 . . . . . . . 8 (((𝑎 ∈ (𝑃pm ℝ) ∧ 𝑏 ∈ (𝑃pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖) (𝑎𝑗)) = ((𝑏𝑖) (𝑏𝑗)))) → (𝑎 ∈ (𝑃pm ℝ) ∧ 𝑏 ∈ (𝑃pm ℝ)))
2625ssopab2i 5485 . . . . . . 7 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃pm ℝ) ∧ 𝑏 ∈ (𝑃pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖) (𝑎𝑗)) = ((𝑏𝑖) (𝑏𝑗))))} ⊆ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ (𝑃pm ℝ) ∧ 𝑏 ∈ (𝑃pm ℝ))}
2724, 26ssexi 5255 . . . . . 6 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃pm ℝ) ∧ 𝑏 ∈ (𝑃pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖) (𝑎𝑗)) = ((𝑏𝑖) (𝑏𝑗))))} ∈ V
2819, 20, 27fvmpt 6924 . . . . 5 (𝐺 ∈ V → (cgrG‘𝐺) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃pm ℝ) ∧ 𝑏 ∈ (𝑃pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖) (𝑎𝑗)) = ((𝑏𝑖) (𝑏𝑗))))})
292, 28syl 17 . . . 4 (𝐺𝑉 → (cgrG‘𝐺) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃pm ℝ) ∧ 𝑏 ∈ (𝑃pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖) (𝑎𝑗)) = ((𝑏𝑖) (𝑏𝑗))))})
301, 29eqtrid 2778 . . 3 (𝐺𝑉 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃pm ℝ) ∧ 𝑏 ∈ (𝑃pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖) (𝑎𝑗)) = ((𝑏𝑖) (𝑏𝑗))))})
3130breqd 5097 . 2 (𝐺𝑉 → (𝐴 𝐵𝐴{⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃pm ℝ) ∧ 𝑏 ∈ (𝑃pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖) (𝑎𝑗)) = ((𝑏𝑖) (𝑏𝑗))))}𝐵))
32 dmeq 5838 . . . . . 6 (𝑎 = 𝐴 → dom 𝑎 = dom 𝐴)
3332eqeq1d 2733 . . . . 5 (𝑎 = 𝐴 → (dom 𝑎 = dom 𝑏 ↔ dom 𝐴 = dom 𝑏))
3432adantr 480 . . . . . . 7 ((𝑎 = 𝐴𝑖 ∈ dom 𝑎) → dom 𝑎 = dom 𝐴)
35 simpll 766 . . . . . . . . . 10 (((𝑎 = 𝐴𝑖 ∈ dom 𝑎) ∧ 𝑗 ∈ dom 𝑎) → 𝑎 = 𝐴)
3635fveq1d 6819 . . . . . . . . 9 (((𝑎 = 𝐴𝑖 ∈ dom 𝑎) ∧ 𝑗 ∈ dom 𝑎) → (𝑎𝑖) = (𝐴𝑖))
3735fveq1d 6819 . . . . . . . . 9 (((𝑎 = 𝐴𝑖 ∈ dom 𝑎) ∧ 𝑗 ∈ dom 𝑎) → (𝑎𝑗) = (𝐴𝑗))
3836, 37oveq12d 7359 . . . . . . . 8 (((𝑎 = 𝐴𝑖 ∈ dom 𝑎) ∧ 𝑗 ∈ dom 𝑎) → ((𝑎𝑖) (𝑎𝑗)) = ((𝐴𝑖) (𝐴𝑗)))
3938eqeq1d 2733 . . . . . . 7 (((𝑎 = 𝐴𝑖 ∈ dom 𝑎) ∧ 𝑗 ∈ dom 𝑎) → (((𝑎𝑖) (𝑎𝑗)) = ((𝑏𝑖) (𝑏𝑗)) ↔ ((𝐴𝑖) (𝐴𝑗)) = ((𝑏𝑖) (𝑏𝑗))))
4034, 39raleqbidva 3298 . . . . . 6 ((𝑎 = 𝐴𝑖 ∈ dom 𝑎) → (∀𝑗 ∈ dom 𝑎((𝑎𝑖) (𝑎𝑗)) = ((𝑏𝑖) (𝑏𝑗)) ↔ ∀𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝑏𝑖) (𝑏𝑗))))
4132, 40raleqbidva 3298 . . . . 5 (𝑎 = 𝐴 → (∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖) (𝑎𝑗)) = ((𝑏𝑖) (𝑏𝑗)) ↔ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝑏𝑖) (𝑏𝑗))))
4233, 41anbi12d 632 . . . 4 (𝑎 = 𝐴 → ((dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖) (𝑎𝑗)) = ((𝑏𝑖) (𝑏𝑗))) ↔ (dom 𝐴 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝑏𝑖) (𝑏𝑗)))))
43 dmeq 5838 . . . . . 6 (𝑏 = 𝐵 → dom 𝑏 = dom 𝐵)
4443eqeq2d 2742 . . . . 5 (𝑏 = 𝐵 → (dom 𝐴 = dom 𝑏 ↔ dom 𝐴 = dom 𝐵))
45 fveq1 6816 . . . . . . . 8 (𝑏 = 𝐵 → (𝑏𝑖) = (𝐵𝑖))
46 fveq1 6816 . . . . . . . 8 (𝑏 = 𝐵 → (𝑏𝑗) = (𝐵𝑗))
4745, 46oveq12d 7359 . . . . . . 7 (𝑏 = 𝐵 → ((𝑏𝑖) (𝑏𝑗)) = ((𝐵𝑖) (𝐵𝑗)))
4847eqeq2d 2742 . . . . . 6 (𝑏 = 𝐵 → (((𝐴𝑖) (𝐴𝑗)) = ((𝑏𝑖) (𝑏𝑗)) ↔ ((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗))))
49482ralbidv 3196 . . . . 5 (𝑏 = 𝐵 → (∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝑏𝑖) (𝑏𝑗)) ↔ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗))))
5044, 49anbi12d 632 . . . 4 (𝑏 = 𝐵 → ((dom 𝐴 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝑏𝑖) (𝑏𝑗))) ↔ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗)))))
5142, 50sylan9bb 509 . . 3 ((𝑎 = 𝐴𝑏 = 𝐵) → ((dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖) (𝑎𝑗)) = ((𝑏𝑖) (𝑏𝑗))) ↔ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗)))))
52 eqid 2731 . . 3 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃pm ℝ) ∧ 𝑏 ∈ (𝑃pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖) (𝑎𝑗)) = ((𝑏𝑖) (𝑏𝑗))))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃pm ℝ) ∧ 𝑏 ∈ (𝑃pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖) (𝑎𝑗)) = ((𝑏𝑖) (𝑏𝑗))))}
5351, 52brab2a 5704 . 2 (𝐴{⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃pm ℝ) ∧ 𝑏 ∈ (𝑃pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖) (𝑎𝑗)) = ((𝑏𝑖) (𝑏𝑗))))}𝐵 ↔ ((𝐴 ∈ (𝑃pm ℝ) ∧ 𝐵 ∈ (𝑃pm ℝ)) ∧ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗)))))
5431, 53bitrdi 287 1 (𝐺𝑉 → (𝐴 𝐵 ↔ ((𝐴 ∈ (𝑃pm ℝ) ∧ 𝐵 ∈ (𝑃pm ℝ)) ∧ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436   class class class wbr 5086  {copab 5148   × cxp 5609  dom cdm 5611  cfv 6476  (class class class)co 7341  pm cpm 8746  cr 11000  Basecbs 17115  distcds 17165  cgrGccgrg 28483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-iota 6432  df-fun 6478  df-fv 6484  df-ov 7344  df-cgrg 28484
This theorem is referenced by:  iscgrgd  28486  ercgrg  28490
  Copyright terms: Public domain W3C validator