MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ercgrg Structured version   Visualization version   GIF version

Theorem ercgrg 28488
Description: The shape congruence relation is an equivalence relation. Statement 4.4 of [Schwabhauser] p. 35. (Contributed by Thierry Arnoux, 9-Apr-2019.)
Hypothesis
Ref Expression
ercgrg.p 𝑃 = (Base‘𝐺)
Assertion
Ref Expression
ercgrg (𝐺 ∈ TarskiG → (cgrG‘𝐺) Er (𝑃pm ℝ))

Proof of Theorem ercgrg
Dummy variables 𝑎 𝑏 𝑔 𝑖 𝑗 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cgrg 28482 . . . 4 cgrG = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ((Base‘𝑔) ↑pm ℝ) ∧ 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))))})
21relmptopab 7591 . . 3 Rel (cgrG‘𝐺)
32a1i 11 . 2 (𝐺 ∈ TarskiG → Rel (cgrG‘𝐺))
4 ercgrg.p . . . . . . 7 𝑃 = (Base‘𝐺)
5 eqid 2730 . . . . . . 7 (dist‘𝐺) = (dist‘𝐺)
6 eqid 2730 . . . . . . 7 (cgrG‘𝐺) = (cgrG‘𝐺)
74, 5, 6iscgrg 28483 . . . . . 6 (𝐺 ∈ TarskiG → (𝑥(cgrG‘𝐺)𝑦 ↔ ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑦 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑦 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗))))))
87biimpa 476 . . . . 5 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑦 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑦 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))))
98simpld 494 . . . 4 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → (𝑥 ∈ (𝑃pm ℝ) ∧ 𝑦 ∈ (𝑃pm ℝ)))
109ancomd 461 . . 3 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → (𝑦 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)))
118simprd 495 . . . . . 6 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → (dom 𝑥 = dom 𝑦 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗))))
1211simpld 494 . . . . 5 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → dom 𝑥 = dom 𝑦)
1312eqcomd 2736 . . . 4 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → dom 𝑦 = dom 𝑥)
14 simpl 482 . . . . . . 7 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → (𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦))
15 simprl 770 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → 𝑖 ∈ dom 𝑦)
1612adantr 480 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → dom 𝑥 = dom 𝑦)
1715, 16eleqtrrd 2832 . . . . . . 7 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → 𝑖 ∈ dom 𝑥)
18 simprr 772 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → 𝑗 ∈ dom 𝑦)
1918, 16eleqtrrd 2832 . . . . . . 7 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → 𝑗 ∈ dom 𝑥)
2011simprd 495 . . . . . . . . 9 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
2120r19.21bi 3222 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ 𝑖 ∈ dom 𝑥) → ∀𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
2221r19.21bi 3222 . . . . . . 7 ((((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ 𝑖 ∈ dom 𝑥) ∧ 𝑗 ∈ dom 𝑥) → ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
2314, 17, 19, 22syl21anc 837 . . . . . 6 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
2423eqcomd 2736 . . . . 5 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)))
2524ralrimivva 3173 . . . 4 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)))
2613, 25jca 511 . . 3 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → (dom 𝑦 = dom 𝑥 ∧ ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗))))
274, 5, 6iscgrg 28483 . . . 4 (𝐺 ∈ TarskiG → (𝑦(cgrG‘𝐺)𝑥 ↔ ((𝑦 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)) ∧ (dom 𝑦 = dom 𝑥 ∧ ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗))))))
2827adantr 480 . . 3 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → (𝑦(cgrG‘𝐺)𝑥 ↔ ((𝑦 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)) ∧ (dom 𝑦 = dom 𝑥 ∧ ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗))))))
2910, 26, 28mpbir2and 713 . 2 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → 𝑦(cgrG‘𝐺)𝑥)
309simpld 494 . . . . 5 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → 𝑥 ∈ (𝑃pm ℝ))
3130adantrr 717 . . . 4 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → 𝑥 ∈ (𝑃pm ℝ))
324, 5, 6iscgrg 28483 . . . . . . . 8 (𝐺 ∈ TarskiG → (𝑦(cgrG‘𝐺)𝑧 ↔ ((𝑦 ∈ (𝑃pm ℝ) ∧ 𝑧 ∈ (𝑃pm ℝ)) ∧ (dom 𝑦 = dom 𝑧 ∧ ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗))))))
3332biimpa 476 . . . . . . 7 ((𝐺 ∈ TarskiG ∧ 𝑦(cgrG‘𝐺)𝑧) → ((𝑦 ∈ (𝑃pm ℝ) ∧ 𝑧 ∈ (𝑃pm ℝ)) ∧ (dom 𝑦 = dom 𝑧 ∧ ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))))
3433adantrl 716 . . . . . 6 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → ((𝑦 ∈ (𝑃pm ℝ) ∧ 𝑧 ∈ (𝑃pm ℝ)) ∧ (dom 𝑦 = dom 𝑧 ∧ ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))))
3534simpld 494 . . . . 5 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → (𝑦 ∈ (𝑃pm ℝ) ∧ 𝑧 ∈ (𝑃pm ℝ)))
3635simprd 495 . . . 4 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → 𝑧 ∈ (𝑃pm ℝ))
3731, 36jca 511 . . 3 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → (𝑥 ∈ (𝑃pm ℝ) ∧ 𝑧 ∈ (𝑃pm ℝ)))
388adantrr 717 . . . . . . 7 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑦 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑦 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))))
3938simprd 495 . . . . . 6 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → (dom 𝑥 = dom 𝑦 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗))))
4039simpld 494 . . . . 5 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → dom 𝑥 = dom 𝑦)
4134simprd 495 . . . . . 6 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → (dom 𝑦 = dom 𝑧 ∧ ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗))))
4241simpld 494 . . . . 5 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → dom 𝑦 = dom 𝑧)
4340, 42eqtrd 2765 . . . 4 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → dom 𝑥 = dom 𝑧)
4439simprd 495 . . . . . . . . 9 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
4544r19.21bi 3222 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ 𝑖 ∈ dom 𝑥) → ∀𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
4645r19.21bi 3222 . . . . . . 7 ((((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ 𝑖 ∈ dom 𝑥) ∧ 𝑗 ∈ dom 𝑥) → ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
4746anasss 466 . . . . . 6 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
48 simpl 482 . . . . . . 7 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → (𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)))
49 simprl 770 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → 𝑖 ∈ dom 𝑥)
5040adantr 480 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → dom 𝑥 = dom 𝑦)
5149, 50eleqtrd 2831 . . . . . . 7 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → 𝑖 ∈ dom 𝑦)
52 simprr 772 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → 𝑗 ∈ dom 𝑥)
5352, 50eleqtrd 2831 . . . . . . 7 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → 𝑗 ∈ dom 𝑦)
5441simprd 495 . . . . . . . . 9 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))
5554r19.21bi 3222 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ 𝑖 ∈ dom 𝑦) → ∀𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))
5655r19.21bi 3222 . . . . . . 7 ((((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ 𝑖 ∈ dom 𝑦) ∧ 𝑗 ∈ dom 𝑦) → ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))
5748, 51, 53, 56syl21anc 837 . . . . . 6 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))
5847, 57eqtrd 2765 . . . . 5 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))
5958ralrimivva 3173 . . . 4 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))
6043, 59jca 511 . . 3 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → (dom 𝑥 = dom 𝑧 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗))))
614, 5, 6iscgrg 28483 . . . 4 (𝐺 ∈ TarskiG → (𝑥(cgrG‘𝐺)𝑧 ↔ ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑧 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑧 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗))))))
6261adantr 480 . . 3 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → (𝑥(cgrG‘𝐺)𝑧 ↔ ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑧 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑧 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗))))))
6337, 60, 62mpbir2and 713 . 2 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → 𝑥(cgrG‘𝐺)𝑧)
64 pm4.24 563 . . . 4 (𝑥 ∈ (𝑃pm ℝ) ↔ (𝑥 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)))
65 eqid 2730 . . . . . 6 dom 𝑥 = dom 𝑥
66 eqidd 2731 . . . . . . 7 ((𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥) → ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)))
6766rgen2 3170 . . . . . 6 𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗))
6865, 67pm3.2i 470 . . . . 5 (dom 𝑥 = dom 𝑥 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)))
6968biantru 529 . . . 4 ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)) ↔ ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑥 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)))))
7064, 69bitri 275 . . 3 (𝑥 ∈ (𝑃pm ℝ) ↔ ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑥 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)))))
714, 5, 6iscgrg 28483 . . 3 (𝐺 ∈ TarskiG → (𝑥(cgrG‘𝐺)𝑥 ↔ ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑥 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗))))))
7270, 71bitr4id 290 . 2 (𝐺 ∈ TarskiG → (𝑥 ∈ (𝑃pm ℝ) ↔ 𝑥(cgrG‘𝐺)𝑥))
733, 29, 63, 72iserd 8643 1 (𝐺 ∈ TarskiG → (cgrG‘𝐺) Er (𝑃pm ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wral 3045  Vcvv 3434   class class class wbr 5089  dom cdm 5614  Rel wrel 5619  cfv 6477  (class class class)co 7341   Er wer 8614  pm cpm 8746  cr 10997  Basecbs 17112  distcds 17162  TarskiGcstrkg 28398  cgrGccgrg 28481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fv 6485  df-ov 7344  df-er 8617  df-cgrg 28482
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator