MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ercgrg Structured version   Visualization version   GIF version

Theorem ercgrg 28540
Description: The shape congruence relation is an equivalence relation. Statement 4.4 of [Schwabhauser] p. 35. (Contributed by Thierry Arnoux, 9-Apr-2019.)
Hypothesis
Ref Expression
ercgrg.p 𝑃 = (Base‘𝐺)
Assertion
Ref Expression
ercgrg (𝐺 ∈ TarskiG → (cgrG‘𝐺) Er (𝑃pm ℝ))

Proof of Theorem ercgrg
Dummy variables 𝑎 𝑏 𝑔 𝑖 𝑗 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cgrg 28534 . . . 4 cgrG = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ((Base‘𝑔) ↑pm ℝ) ∧ 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))))})
21relmptopab 7683 . . 3 Rel (cgrG‘𝐺)
32a1i 11 . 2 (𝐺 ∈ TarskiG → Rel (cgrG‘𝐺))
4 ercgrg.p . . . . . . 7 𝑃 = (Base‘𝐺)
5 eqid 2735 . . . . . . 7 (dist‘𝐺) = (dist‘𝐺)
6 eqid 2735 . . . . . . 7 (cgrG‘𝐺) = (cgrG‘𝐺)
74, 5, 6iscgrg 28535 . . . . . 6 (𝐺 ∈ TarskiG → (𝑥(cgrG‘𝐺)𝑦 ↔ ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑦 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑦 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗))))))
87biimpa 476 . . . . 5 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑦 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑦 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))))
98simpld 494 . . . 4 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → (𝑥 ∈ (𝑃pm ℝ) ∧ 𝑦 ∈ (𝑃pm ℝ)))
109ancomd 461 . . 3 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → (𝑦 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)))
118simprd 495 . . . . . 6 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → (dom 𝑥 = dom 𝑦 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗))))
1211simpld 494 . . . . 5 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → dom 𝑥 = dom 𝑦)
1312eqcomd 2741 . . . 4 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → dom 𝑦 = dom 𝑥)
14 simpl 482 . . . . . . 7 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → (𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦))
15 simprl 771 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → 𝑖 ∈ dom 𝑦)
1612adantr 480 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → dom 𝑥 = dom 𝑦)
1715, 16eleqtrrd 2842 . . . . . . 7 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → 𝑖 ∈ dom 𝑥)
18 simprr 773 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → 𝑗 ∈ dom 𝑦)
1918, 16eleqtrrd 2842 . . . . . . 7 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → 𝑗 ∈ dom 𝑥)
2011simprd 495 . . . . . . . . 9 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
2120r19.21bi 3249 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ 𝑖 ∈ dom 𝑥) → ∀𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
2221r19.21bi 3249 . . . . . . 7 ((((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ 𝑖 ∈ dom 𝑥) ∧ 𝑗 ∈ dom 𝑥) → ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
2314, 17, 19, 22syl21anc 838 . . . . . 6 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
2423eqcomd 2741 . . . . 5 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)))
2524ralrimivva 3200 . . . 4 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)))
2613, 25jca 511 . . 3 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → (dom 𝑦 = dom 𝑥 ∧ ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗))))
274, 5, 6iscgrg 28535 . . . 4 (𝐺 ∈ TarskiG → (𝑦(cgrG‘𝐺)𝑥 ↔ ((𝑦 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)) ∧ (dom 𝑦 = dom 𝑥 ∧ ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗))))))
2827adantr 480 . . 3 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → (𝑦(cgrG‘𝐺)𝑥 ↔ ((𝑦 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)) ∧ (dom 𝑦 = dom 𝑥 ∧ ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗))))))
2910, 26, 28mpbir2and 713 . 2 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → 𝑦(cgrG‘𝐺)𝑥)
309simpld 494 . . . . 5 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → 𝑥 ∈ (𝑃pm ℝ))
3130adantrr 717 . . . 4 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → 𝑥 ∈ (𝑃pm ℝ))
324, 5, 6iscgrg 28535 . . . . . . . 8 (𝐺 ∈ TarskiG → (𝑦(cgrG‘𝐺)𝑧 ↔ ((𝑦 ∈ (𝑃pm ℝ) ∧ 𝑧 ∈ (𝑃pm ℝ)) ∧ (dom 𝑦 = dom 𝑧 ∧ ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗))))))
3332biimpa 476 . . . . . . 7 ((𝐺 ∈ TarskiG ∧ 𝑦(cgrG‘𝐺)𝑧) → ((𝑦 ∈ (𝑃pm ℝ) ∧ 𝑧 ∈ (𝑃pm ℝ)) ∧ (dom 𝑦 = dom 𝑧 ∧ ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))))
3433adantrl 716 . . . . . 6 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → ((𝑦 ∈ (𝑃pm ℝ) ∧ 𝑧 ∈ (𝑃pm ℝ)) ∧ (dom 𝑦 = dom 𝑧 ∧ ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))))
3534simpld 494 . . . . 5 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → (𝑦 ∈ (𝑃pm ℝ) ∧ 𝑧 ∈ (𝑃pm ℝ)))
3635simprd 495 . . . 4 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → 𝑧 ∈ (𝑃pm ℝ))
3731, 36jca 511 . . 3 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → (𝑥 ∈ (𝑃pm ℝ) ∧ 𝑧 ∈ (𝑃pm ℝ)))
388adantrr 717 . . . . . . 7 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑦 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑦 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))))
3938simprd 495 . . . . . 6 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → (dom 𝑥 = dom 𝑦 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗))))
4039simpld 494 . . . . 5 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → dom 𝑥 = dom 𝑦)
4134simprd 495 . . . . . 6 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → (dom 𝑦 = dom 𝑧 ∧ ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗))))
4241simpld 494 . . . . 5 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → dom 𝑦 = dom 𝑧)
4340, 42eqtrd 2775 . . . 4 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → dom 𝑥 = dom 𝑧)
4439simprd 495 . . . . . . . . 9 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
4544r19.21bi 3249 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ 𝑖 ∈ dom 𝑥) → ∀𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
4645r19.21bi 3249 . . . . . . 7 ((((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ 𝑖 ∈ dom 𝑥) ∧ 𝑗 ∈ dom 𝑥) → ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
4746anasss 466 . . . . . 6 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
48 simpl 482 . . . . . . 7 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → (𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)))
49 simprl 771 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → 𝑖 ∈ dom 𝑥)
5040adantr 480 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → dom 𝑥 = dom 𝑦)
5149, 50eleqtrd 2841 . . . . . . 7 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → 𝑖 ∈ dom 𝑦)
52 simprr 773 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → 𝑗 ∈ dom 𝑥)
5352, 50eleqtrd 2841 . . . . . . 7 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → 𝑗 ∈ dom 𝑦)
5441simprd 495 . . . . . . . . 9 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))
5554r19.21bi 3249 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ 𝑖 ∈ dom 𝑦) → ∀𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))
5655r19.21bi 3249 . . . . . . 7 ((((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ 𝑖 ∈ dom 𝑦) ∧ 𝑗 ∈ dom 𝑦) → ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))
5748, 51, 53, 56syl21anc 838 . . . . . 6 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))
5847, 57eqtrd 2775 . . . . 5 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))
5958ralrimivva 3200 . . . 4 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))
6043, 59jca 511 . . 3 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → (dom 𝑥 = dom 𝑧 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗))))
614, 5, 6iscgrg 28535 . . . 4 (𝐺 ∈ TarskiG → (𝑥(cgrG‘𝐺)𝑧 ↔ ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑧 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑧 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗))))))
6261adantr 480 . . 3 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → (𝑥(cgrG‘𝐺)𝑧 ↔ ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑧 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑧 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗))))))
6337, 60, 62mpbir2and 713 . 2 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → 𝑥(cgrG‘𝐺)𝑧)
64 pm4.24 563 . . . 4 (𝑥 ∈ (𝑃pm ℝ) ↔ (𝑥 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)))
65 eqid 2735 . . . . . 6 dom 𝑥 = dom 𝑥
66 eqidd 2736 . . . . . . 7 ((𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥) → ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)))
6766rgen2 3197 . . . . . 6 𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗))
6865, 67pm3.2i 470 . . . . 5 (dom 𝑥 = dom 𝑥 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)))
6968biantru 529 . . . 4 ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)) ↔ ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑥 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)))))
7064, 69bitri 275 . . 3 (𝑥 ∈ (𝑃pm ℝ) ↔ ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑥 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)))))
714, 5, 6iscgrg 28535 . . 3 (𝐺 ∈ TarskiG → (𝑥(cgrG‘𝐺)𝑥 ↔ ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑥 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗))))))
7270, 71bitr4id 290 . 2 (𝐺 ∈ TarskiG → (𝑥 ∈ (𝑃pm ℝ) ↔ 𝑥(cgrG‘𝐺)𝑥))
733, 29, 63, 72iserd 8770 1 (𝐺 ∈ TarskiG → (cgrG‘𝐺) Er (𝑃pm ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478   class class class wbr 5148  dom cdm 5689  Rel wrel 5694  cfv 6563  (class class class)co 7431   Er wer 8741  pm cpm 8866  cr 11152  Basecbs 17245  distcds 17307  TarskiGcstrkg 28450  cgrGccgrg 28533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-er 8744  df-cgrg 28534
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator