Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cgrcgra | Structured version Visualization version GIF version |
Description: Triangle congruence implies angle congruence. This is a portion of CPCTC, focusing on a specific angle. (Contributed by Arnoux, 2-Aug-2020.) |
Ref | Expression |
---|---|
cgraid.p | ⊢ 𝑃 = (Base‘𝐺) |
cgraid.i | ⊢ 𝐼 = (Itv‘𝐺) |
cgraid.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
cgraid.k | ⊢ 𝐾 = (hlG‘𝐺) |
cgraid.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
cgraid.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
cgraid.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
cgracom.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
cgracom.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
cgracom.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
cgrcgra.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
cgrcgra.2 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
cgrcgra.3 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) |
Ref | Expression |
---|---|
cgrcgra | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cgraid.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
2 | cgraid.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
3 | cgraid.k | . 2 ⊢ 𝐾 = (hlG‘𝐺) | |
4 | cgraid.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | cgraid.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
6 | cgraid.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
7 | cgraid.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
8 | cgracom.d | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
9 | cgracom.e | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
10 | cgracom.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
11 | cgrcgra.3 | . 2 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) | |
12 | eqid 2736 | . . . 4 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
13 | eqid 2736 | . . . . 5 ⊢ (cgrG‘𝐺) = (cgrG‘𝐺) | |
14 | 1, 12, 2, 13, 4, 5, 6, 7, 8, 9, 10, 11 | cgr3simp1 26930 | . . . 4 ⊢ (𝜑 → (𝐴(dist‘𝐺)𝐵) = (𝐷(dist‘𝐺)𝐸)) |
15 | cgrcgra.1 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
16 | 1, 12, 2, 4, 5, 6, 8, 9, 14, 15 | tgcgrneq 26893 | . . 3 ⊢ (𝜑 → 𝐷 ≠ 𝐸) |
17 | 1, 2, 3, 8, 5, 9, 4, 16 | hlid 27019 | . 2 ⊢ (𝜑 → 𝐷(𝐾‘𝐸)𝐷) |
18 | 1, 12, 2, 13, 4, 5, 6, 7, 8, 9, 10, 11 | cgr3simp2 26931 | . . . . 5 ⊢ (𝜑 → (𝐵(dist‘𝐺)𝐶) = (𝐸(dist‘𝐺)𝐹)) |
19 | 1, 12, 2, 4, 6, 7, 9, 10, 18 | tgcgrcomlr 26890 | . . . 4 ⊢ (𝜑 → (𝐶(dist‘𝐺)𝐵) = (𝐹(dist‘𝐺)𝐸)) |
20 | cgrcgra.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
21 | 20 | necomd 2997 | . . . 4 ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
22 | 1, 12, 2, 4, 7, 6, 10, 9, 19, 21 | tgcgrneq 26893 | . . 3 ⊢ (𝜑 → 𝐹 ≠ 𝐸) |
23 | 1, 2, 3, 10, 5, 9, 4, 22 | hlid 27019 | . 2 ⊢ (𝜑 → 𝐹(𝐾‘𝐸)𝐹) |
24 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 8, 10, 11, 17, 23 | iscgrad 27221 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 class class class wbr 5081 ‘cfv 6458 〈“cs3 14604 Basecbs 16961 distcds 17020 TarskiGcstrkg 26837 Itvcitv 26843 cgrGccgrg 26920 hlGchlg 27010 cgrAccgra 27217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-map 8648 df-pm 8649 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-card 9745 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-nn 12024 df-2 12086 df-3 12087 df-n0 12284 df-z 12370 df-uz 12633 df-fz 13290 df-fzo 13433 df-hash 14095 df-word 14267 df-concat 14323 df-s1 14350 df-s2 14610 df-s3 14611 df-trkgc 26858 df-trkgcb 26860 df-trkg 26863 df-cgrg 26921 df-hlg 27011 df-cgra 27218 |
This theorem is referenced by: acopy 27243 tgsss1 27270 |
Copyright terms: Public domain | W3C validator |