![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cgrcgra | Structured version Visualization version GIF version |
Description: Triangle congruence implies angle congruence. This is a portion of CPCTC, focusing on a specific angle. (Contributed by Arnoux, 2-Aug-2020.) |
Ref | Expression |
---|---|
cgraid.p | β’ π = (BaseβπΊ) |
cgraid.i | β’ πΌ = (ItvβπΊ) |
cgraid.g | β’ (π β πΊ β TarskiG) |
cgraid.k | β’ πΎ = (hlGβπΊ) |
cgraid.a | β’ (π β π΄ β π) |
cgraid.b | β’ (π β π΅ β π) |
cgraid.c | β’ (π β πΆ β π) |
cgracom.d | β’ (π β π· β π) |
cgracom.e | β’ (π β πΈ β π) |
cgracom.f | β’ (π β πΉ β π) |
cgrcgra.1 | β’ (π β π΄ β π΅) |
cgrcgra.2 | β’ (π β π΅ β πΆ) |
cgrcgra.3 | β’ (π β β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ·πΈπΉββ©) |
Ref | Expression |
---|---|
cgrcgra | β’ (π β β¨βπ΄π΅πΆββ©(cgrAβπΊ)β¨βπ·πΈπΉββ©) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cgraid.p | . 2 β’ π = (BaseβπΊ) | |
2 | cgraid.i | . 2 β’ πΌ = (ItvβπΊ) | |
3 | cgraid.k | . 2 β’ πΎ = (hlGβπΊ) | |
4 | cgraid.g | . 2 β’ (π β πΊ β TarskiG) | |
5 | cgraid.a | . 2 β’ (π β π΄ β π) | |
6 | cgraid.b | . 2 β’ (π β π΅ β π) | |
7 | cgraid.c | . 2 β’ (π β πΆ β π) | |
8 | cgracom.d | . 2 β’ (π β π· β π) | |
9 | cgracom.e | . 2 β’ (π β πΈ β π) | |
10 | cgracom.f | . 2 β’ (π β πΉ β π) | |
11 | cgrcgra.3 | . 2 β’ (π β β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ·πΈπΉββ©) | |
12 | eqid 2731 | . . . 4 β’ (distβπΊ) = (distβπΊ) | |
13 | eqid 2731 | . . . . 5 β’ (cgrGβπΊ) = (cgrGβπΊ) | |
14 | 1, 12, 2, 13, 4, 5, 6, 7, 8, 9, 10, 11 | cgr3simp1 28205 | . . . 4 β’ (π β (π΄(distβπΊ)π΅) = (π·(distβπΊ)πΈ)) |
15 | cgrcgra.1 | . . . 4 β’ (π β π΄ β π΅) | |
16 | 1, 12, 2, 4, 5, 6, 8, 9, 14, 15 | tgcgrneq 28168 | . . 3 β’ (π β π· β πΈ) |
17 | 1, 2, 3, 8, 5, 9, 4, 16 | hlid 28294 | . 2 β’ (π β π·(πΎβπΈ)π·) |
18 | 1, 12, 2, 13, 4, 5, 6, 7, 8, 9, 10, 11 | cgr3simp2 28206 | . . . . 5 β’ (π β (π΅(distβπΊ)πΆ) = (πΈ(distβπΊ)πΉ)) |
19 | 1, 12, 2, 4, 6, 7, 9, 10, 18 | tgcgrcomlr 28165 | . . . 4 β’ (π β (πΆ(distβπΊ)π΅) = (πΉ(distβπΊ)πΈ)) |
20 | cgrcgra.2 | . . . . 5 β’ (π β π΅ β πΆ) | |
21 | 20 | necomd 2995 | . . . 4 β’ (π β πΆ β π΅) |
22 | 1, 12, 2, 4, 7, 6, 10, 9, 19, 21 | tgcgrneq 28168 | . . 3 β’ (π β πΉ β πΈ) |
23 | 1, 2, 3, 10, 5, 9, 4, 22 | hlid 28294 | . 2 β’ (π β πΉ(πΎβπΈ)πΉ) |
24 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 8, 10, 11, 17, 23 | iscgrad 28496 | 1 β’ (π β β¨βπ΄π΅πΆββ©(cgrAβπΊ)β¨βπ·πΈπΉββ©) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 β wne 2939 class class class wbr 5148 βcfv 6543 β¨βcs3 14800 Basecbs 17151 distcds 17213 TarskiGcstrkg 28112 Itvcitv 28118 cgrGccgrg 28195 hlGchlg 28285 cgrAccgra 28492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-map 8828 df-pm 8829 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-n0 12480 df-z 12566 df-uz 12830 df-fz 13492 df-fzo 13635 df-hash 14298 df-word 14472 df-concat 14528 df-s1 14553 df-s2 14806 df-s3 14807 df-trkgc 28133 df-trkgcb 28135 df-trkg 28138 df-cgrg 28196 df-hlg 28286 df-cgra 28493 |
This theorem is referenced by: acopy 28518 tgsss1 28545 |
Copyright terms: Public domain | W3C validator |