MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgrcgra Structured version   Visualization version   GIF version

Theorem cgrcgra 26593
Description: Triangle congruence implies angle congruence. This is a portion of CPCTC, focusing on a specific angle. (Contributed by Arnoux, 2-Aug-2020.)
Hypotheses
Ref Expression
cgraid.p 𝑃 = (Base‘𝐺)
cgraid.i 𝐼 = (Itv‘𝐺)
cgraid.g (𝜑𝐺 ∈ TarskiG)
cgraid.k 𝐾 = (hlG‘𝐺)
cgraid.a (𝜑𝐴𝑃)
cgraid.b (𝜑𝐵𝑃)
cgraid.c (𝜑𝐶𝑃)
cgracom.d (𝜑𝐷𝑃)
cgracom.e (𝜑𝐸𝑃)
cgracom.f (𝜑𝐹𝑃)
cgrcgra.1 (𝜑𝐴𝐵)
cgrcgra.2 (𝜑𝐵𝐶)
cgrcgra.3 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩)
Assertion
Ref Expression
cgrcgra (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)

Proof of Theorem cgrcgra
StepHypRef Expression
1 cgraid.p . 2 𝑃 = (Base‘𝐺)
2 cgraid.i . 2 𝐼 = (Itv‘𝐺)
3 cgraid.k . 2 𝐾 = (hlG‘𝐺)
4 cgraid.g . 2 (𝜑𝐺 ∈ TarskiG)
5 cgraid.a . 2 (𝜑𝐴𝑃)
6 cgraid.b . 2 (𝜑𝐵𝑃)
7 cgraid.c . 2 (𝜑𝐶𝑃)
8 cgracom.d . 2 (𝜑𝐷𝑃)
9 cgracom.e . 2 (𝜑𝐸𝑃)
10 cgracom.f . 2 (𝜑𝐹𝑃)
11 cgrcgra.3 . 2 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩)
12 eqid 2821 . . . 4 (dist‘𝐺) = (dist‘𝐺)
13 eqid 2821 . . . . 5 (cgrG‘𝐺) = (cgrG‘𝐺)
141, 12, 2, 13, 4, 5, 6, 7, 8, 9, 10, 11cgr3simp1 26292 . . . 4 (𝜑 → (𝐴(dist‘𝐺)𝐵) = (𝐷(dist‘𝐺)𝐸))
15 cgrcgra.1 . . . 4 (𝜑𝐴𝐵)
161, 12, 2, 4, 5, 6, 8, 9, 14, 15tgcgrneq 26255 . . 3 (𝜑𝐷𝐸)
171, 2, 3, 8, 5, 9, 4, 16hlid 26381 . 2 (𝜑𝐷(𝐾𝐸)𝐷)
181, 12, 2, 13, 4, 5, 6, 7, 8, 9, 10, 11cgr3simp2 26293 . . . . 5 (𝜑 → (𝐵(dist‘𝐺)𝐶) = (𝐸(dist‘𝐺)𝐹))
191, 12, 2, 4, 6, 7, 9, 10, 18tgcgrcomlr 26252 . . . 4 (𝜑 → (𝐶(dist‘𝐺)𝐵) = (𝐹(dist‘𝐺)𝐸))
20 cgrcgra.2 . . . . 5 (𝜑𝐵𝐶)
2120necomd 3062 . . . 4 (𝜑𝐶𝐵)
221, 12, 2, 4, 7, 6, 10, 9, 19, 21tgcgrneq 26255 . . 3 (𝜑𝐹𝐸)
231, 2, 3, 10, 5, 9, 4, 22hlid 26381 . 2 (𝜑𝐹(𝐾𝐸)𝐹)
241, 2, 3, 4, 5, 6, 7, 8, 9, 10, 8, 10, 11, 17, 23iscgrad 26583 1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2115  wne 3007   class class class wbr 5039  cfv 6328  ⟨“cs3 14183  Basecbs 16461  distcds 16552  TarskiGcstrkg 26202  Itvcitv 26208  cgrGccgrg 26282  hlGchlg 26372  cgrAccgra 26579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-oadd 8081  df-er 8264  df-map 8383  df-pm 8384  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-card 9344  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-2 11678  df-3 11679  df-n0 11876  df-z 11960  df-uz 12222  df-fz 12876  df-fzo 13017  df-hash 13675  df-word 13846  df-concat 13902  df-s1 13929  df-s2 14189  df-s3 14190  df-trkgc 26220  df-trkgcb 26222  df-trkg 26225  df-cgrg 26283  df-hlg 26373  df-cgra 26580
This theorem is referenced by:  acopy  26605  tgsss1  26632
  Copyright terms: Public domain W3C validator