| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cgr3simp2 | Structured version Visualization version GIF version | ||
| Description: Deduce segment congruence from a triangle congruence. This is a portion of CPCTC, focusing on a specific segment. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
| Ref | Expression |
|---|---|
| tgcgrxfr.p | ⊢ 𝑃 = (Base‘𝐺) |
| tgcgrxfr.m | ⊢ − = (dist‘𝐺) |
| tgcgrxfr.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tgcgrxfr.r | ⊢ ∼ = (cgrG‘𝐺) |
| tgcgrxfr.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tgbtwnxfr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| tgbtwnxfr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| tgbtwnxfr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| tgbtwnxfr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| tgbtwnxfr.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
| tgbtwnxfr.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
| tgbtwnxfr.2 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) |
| Ref | Expression |
|---|---|
| cgr3simp2 | ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgbtwnxfr.2 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) | |
| 2 | tgcgrxfr.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 3 | tgcgrxfr.m | . . . 4 ⊢ − = (dist‘𝐺) | |
| 4 | tgcgrxfr.r | . . . 4 ⊢ ∼ = (cgrG‘𝐺) | |
| 5 | tgcgrxfr.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 6 | tgbtwnxfr.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 7 | tgbtwnxfr.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 8 | tgbtwnxfr.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 9 | tgbtwnxfr.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 10 | tgbtwnxfr.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
| 11 | tgbtwnxfr.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
| 12 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | trgcgrg 28494 | . . 3 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉 ↔ ((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)))) |
| 13 | 1, 12 | mpbid 232 | . 2 ⊢ (𝜑 → ((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷))) |
| 14 | 13 | simp2d 1143 | 1 ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 〈“cs3 14749 Basecbs 17120 distcds 17170 TarskiGcstrkg 28406 Itvcitv 28412 cgrGccgrg 28489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14504 df-s2 14755 df-s3 14756 df-trkgc 28427 df-trkgcb 28429 df-trkg 28432 df-cgrg 28490 |
| This theorem is referenced by: cgr3swap12 28502 cgr3swap23 28503 trgcgrcom 28507 cgr3tr 28508 tgbtwnxfr 28509 tgfscgr 28547 mirtrcgr 28662 midexlem 28671 ragcgr 28686 trgcopy 28783 trgcopyeulem 28784 cgrane2 28792 cgracgr 28797 cgrcgra 28800 cgratr 28802 cgrg3col4 28832 |
| Copyright terms: Public domain | W3C validator |