| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cgr3swap12 | Structured version Visualization version GIF version | ||
| Description: Permutation law for three-place congruence. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
| Ref | Expression |
|---|---|
| tgcgrxfr.p | ⊢ 𝑃 = (Base‘𝐺) |
| tgcgrxfr.m | ⊢ − = (dist‘𝐺) |
| tgcgrxfr.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tgcgrxfr.r | ⊢ ∼ = (cgrG‘𝐺) |
| tgcgrxfr.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tgbtwnxfr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| tgbtwnxfr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| tgbtwnxfr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| tgbtwnxfr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| tgbtwnxfr.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
| tgbtwnxfr.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
| tgbtwnxfr.2 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) |
| Ref | Expression |
|---|---|
| cgr3swap12 | ⊢ (𝜑 → 〈“𝐵𝐴𝐶”〉 ∼ 〈“𝐸𝐷𝐹”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgcgrxfr.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | tgcgrxfr.m | . 2 ⊢ − = (dist‘𝐺) | |
| 3 | tgcgrxfr.r | . 2 ⊢ ∼ = (cgrG‘𝐺) | |
| 4 | tgcgrxfr.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | tgbtwnxfr.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 6 | tgbtwnxfr.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 7 | tgbtwnxfr.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 8 | tgbtwnxfr.e | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
| 9 | tgbtwnxfr.d | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 10 | tgbtwnxfr.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
| 11 | tgcgrxfr.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 12 | tgbtwnxfr.2 | . . . 4 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) | |
| 13 | 1, 2, 11, 3, 4, 6, 5, 7, 9, 8, 10, 12 | cgr3simp1 28465 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) |
| 14 | 1, 2, 11, 4, 6, 5, 9, 8, 13 | tgcgrcomlr 28425 | . 2 ⊢ (𝜑 → (𝐵 − 𝐴) = (𝐸 − 𝐷)) |
| 15 | 1, 2, 11, 3, 4, 6, 5, 7, 9, 8, 10, 12 | cgr3simp3 28467 | . . 3 ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐹 − 𝐷)) |
| 16 | 1, 2, 11, 4, 7, 6, 10, 9, 15 | tgcgrcomlr 28425 | . 2 ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐷 − 𝐹)) |
| 17 | 1, 2, 11, 3, 4, 6, 5, 7, 9, 8, 10, 12 | cgr3simp2 28466 | . . 3 ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝐹)) |
| 18 | 1, 2, 11, 4, 5, 7, 8, 10, 17 | tgcgrcomlr 28425 | . 2 ⊢ (𝜑 → (𝐶 − 𝐵) = (𝐹 − 𝐸)) |
| 19 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 16, 18 | trgcgr 28461 | 1 ⊢ (𝜑 → 〈“𝐵𝐴𝐶”〉 ∼ 〈“𝐸𝐷𝐹”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 ‘cfv 6482 〈“cs3 14749 Basecbs 17120 distcds 17170 TarskiGcstrkg 28372 Itvcitv 28378 cgrGccgrg 28455 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-fzo 13558 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14503 df-s2 14755 df-s3 14756 df-trkgc 28393 df-trkgcb 28395 df-trkg 28398 df-cgrg 28456 |
| This theorem is referenced by: cgr3swap13 28470 cgr3rotr 28471 cgr3rotl 28472 lnxfr 28511 tgfscgr 28513 cgrahl 28772 |
| Copyright terms: Public domain | W3C validator |