MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscgra Structured version   Visualization version   GIF version

Theorem iscgra 28736
Description: Property for two angles ABC and DEF to be congruent. This is a modified version of the definition 11.3 of [Schwabhauser] p. 95. where the number of constructed points has been reduced to two. We chose this version rather than the textbook version because it is shorter and therefore simpler to work with. Theorem dfcgra2 28757 shows that those definitions are indeed equivalent. (Contributed by Thierry Arnoux, 31-Jul-2020.)
Hypotheses
Ref Expression
iscgra.p 𝑃 = (Base‘𝐺)
iscgra.i 𝐼 = (Itv‘𝐺)
iscgra.k 𝐾 = (hlG‘𝐺)
iscgra.g (𝜑𝐺 ∈ TarskiG)
iscgra.a (𝜑𝐴𝑃)
iscgra.b (𝜑𝐵𝑃)
iscgra.c (𝜑𝐶𝑃)
iscgra.d (𝜑𝐷𝑃)
iscgra.e (𝜑𝐸𝑃)
iscgra.f (𝜑𝐹𝑃)
Assertion
Ref Expression
iscgra (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐸,𝑦   𝑥,𝐹,𝑦   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐺,𝑦   𝑥,𝐼,𝑦   𝑥,𝑃,𝑦

Proof of Theorem iscgra
Dummy variables 𝑎 𝑏 𝑔 𝑘 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . . 7 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → 𝑎 = ⟨“𝐴𝐵𝐶”⟩)
2 eqidd 2730 . . . . . . . 8 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → 𝑥 = 𝑥)
3 simpr 484 . . . . . . . . 9 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → 𝑏 = ⟨“𝐷𝐸𝐹”⟩)
43fveq1d 6860 . . . . . . . 8 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑏‘1) = (⟨“𝐷𝐸𝐹”⟩‘1))
5 eqidd 2730 . . . . . . . 8 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → 𝑦 = 𝑦)
62, 4, 5s3eqd 14830 . . . . . . 7 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → ⟨“𝑥(𝑏‘1)𝑦”⟩ = ⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩)
71, 6breq12d 5120 . . . . . 6 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩))
84fveq2d 6862 . . . . . . 7 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝐾‘(𝑏‘1)) = (𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1)))
93fveq1d 6860 . . . . . . 7 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑏‘0) = (⟨“𝐷𝐸𝐹”⟩‘0))
102, 8, 9breq123d 5121 . . . . . 6 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ↔ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0)))
113fveq1d 6860 . . . . . . 7 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑏‘2) = (⟨“𝐷𝐸𝐹”⟩‘2))
125, 8, 11breq123d 5121 . . . . . 6 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑦(𝐾‘(𝑏‘1))(𝑏‘2) ↔ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2)))
137, 10, 123anbi123d 1438 . . . . 5 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → ((𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)) ↔ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ∧ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2))))
14132rexbidv 3202 . . . 4 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)) ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ∧ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2))))
15 eqid 2729 . . . 4 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))}
1614, 15brab2a 5732 . . 3 (⟨“𝐴𝐵𝐶”⟩{⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))}⟨“𝐷𝐸𝐹”⟩ ↔ ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ∧ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2))))
17 eqidd 2730 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → 𝑥 = 𝑥)
18 iscgra.e . . . . . . . . . 10 (𝜑𝐸𝑃)
19 s3fv1 14858 . . . . . . . . . 10 (𝐸𝑃 → (⟨“𝐷𝐸𝐹”⟩‘1) = 𝐸)
2018, 19syl 17 . . . . . . . . 9 (𝜑 → (⟨“𝐷𝐸𝐹”⟩‘1) = 𝐸)
2120adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (⟨“𝐷𝐸𝐹”⟩‘1) = 𝐸)
22 eqidd 2730 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → 𝑦 = 𝑦)
2317, 21, 22s3eqd 14830 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → ⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ = ⟨“𝑥𝐸𝑦”⟩)
2423breq2d 5119 . . . . . 6 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩))
2521fveq2d 6862 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1)) = (𝐾𝐸))
26 iscgra.d . . . . . . . . 9 (𝜑𝐷𝑃)
27 s3fv0 14857 . . . . . . . . 9 (𝐷𝑃 → (⟨“𝐷𝐸𝐹”⟩‘0) = 𝐷)
2826, 27syl 17 . . . . . . . 8 (𝜑 → (⟨“𝐷𝐸𝐹”⟩‘0) = 𝐷)
2928adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (⟨“𝐷𝐸𝐹”⟩‘0) = 𝐷)
3017, 25, 29breq123d 5121 . . . . . 6 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ↔ 𝑥(𝐾𝐸)𝐷))
31 iscgra.f . . . . . . . . 9 (𝜑𝐹𝑃)
32 s3fv2 14859 . . . . . . . . 9 (𝐹𝑃 → (⟨“𝐷𝐸𝐹”⟩‘2) = 𝐹)
3331, 32syl 17 . . . . . . . 8 (𝜑 → (⟨“𝐷𝐸𝐹”⟩‘2) = 𝐹)
3433adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (⟨“𝐷𝐸𝐹”⟩‘2) = 𝐹)
3522, 25, 34breq123d 5121 . . . . . 6 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2) ↔ 𝑦(𝐾𝐸)𝐹))
3624, 30, 353anbi123d 1438 . . . . 5 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ∧ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2)) ↔ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)))
37362rexbidva 3200 . . . 4 (𝜑 → (∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ∧ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2)) ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)))
3837anbi2d 630 . . 3 (𝜑 → (((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ∧ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2))) ↔ ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹))))
3916, 38bitrid 283 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩{⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))}⟨“𝐷𝐸𝐹”⟩ ↔ ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹))))
40 iscgra.g . . . 4 (𝜑𝐺 ∈ TarskiG)
41 elex 3468 . . . 4 (𝐺 ∈ TarskiG → 𝐺 ∈ V)
42 iscgra.p . . . . . . . 8 𝑃 = (Base‘𝐺)
43 iscgra.k . . . . . . . 8 𝐾 = (hlG‘𝐺)
44 simpl 482 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑘 = 𝐾) → 𝑝 = 𝑃)
4544oveq1d 7402 . . . . . . . . . . 11 ((𝑝 = 𝑃𝑘 = 𝐾) → (𝑝m (0..^3)) = (𝑃m (0..^3)))
4645eleq2d 2814 . . . . . . . . . 10 ((𝑝 = 𝑃𝑘 = 𝐾) → (𝑎 ∈ (𝑝m (0..^3)) ↔ 𝑎 ∈ (𝑃m (0..^3))))
4745eleq2d 2814 . . . . . . . . . 10 ((𝑝 = 𝑃𝑘 = 𝐾) → (𝑏 ∈ (𝑝m (0..^3)) ↔ 𝑏 ∈ (𝑃m (0..^3))))
4846, 47anbi12d 632 . . . . . . . . 9 ((𝑝 = 𝑃𝑘 = 𝐾) → ((𝑎 ∈ (𝑝m (0..^3)) ∧ 𝑏 ∈ (𝑝m (0..^3))) ↔ (𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3)))))
49 simpr 484 . . . . . . . . . . . . . 14 ((𝑝 = 𝑃𝑘 = 𝐾) → 𝑘 = 𝐾)
5049fveq1d 6860 . . . . . . . . . . . . 13 ((𝑝 = 𝑃𝑘 = 𝐾) → (𝑘‘(𝑏‘1)) = (𝐾‘(𝑏‘1)))
5150breqd 5118 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑘 = 𝐾) → (𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ↔ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0)))
5250breqd 5118 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑘 = 𝐾) → (𝑦(𝑘‘(𝑏‘1))(𝑏‘2) ↔ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))
5351, 523anbi23d 1441 . . . . . . . . . . 11 ((𝑝 = 𝑃𝑘 = 𝐾) → ((𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2)) ↔ (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2))))
5444, 53rexeqbidv 3320 . . . . . . . . . 10 ((𝑝 = 𝑃𝑘 = 𝐾) → (∃𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2)) ↔ ∃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2))))
5544, 54rexeqbidv 3320 . . . . . . . . 9 ((𝑝 = 𝑃𝑘 = 𝐾) → (∃𝑥𝑝𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2)) ↔ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2))))
5648, 55anbi12d 632 . . . . . . . 8 ((𝑝 = 𝑃𝑘 = 𝐾) → (((𝑎 ∈ (𝑝m (0..^3)) ∧ 𝑏 ∈ (𝑝m (0..^3))) ∧ ∃𝑥𝑝𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2))) ↔ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))))
5742, 43, 56sbcie2s 17131 . . . . . . 7 (𝑔 = 𝐺 → ([(Base‘𝑔) / 𝑝][(hlG‘𝑔) / 𝑘]((𝑎 ∈ (𝑝m (0..^3)) ∧ 𝑏 ∈ (𝑝m (0..^3))) ∧ ∃𝑥𝑝𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2))) ↔ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))))
5857opabbidv 5173 . . . . . 6 (𝑔 = 𝐺 → {⟨𝑎, 𝑏⟩ ∣ [(Base‘𝑔) / 𝑝][(hlG‘𝑔) / 𝑘]((𝑎 ∈ (𝑝m (0..^3)) ∧ 𝑏 ∈ (𝑝m (0..^3))) ∧ ∃𝑥𝑝𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2)))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))})
59 fveq2 6858 . . . . . . . . . . 11 (𝑔 = 𝐺 → (cgrG‘𝑔) = (cgrG‘𝐺))
6059breqd 5118 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ↔ 𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩))
61603anbi1d 1442 . . . . . . . . 9 (𝑔 = 𝐺 → ((𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)) ↔ (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2))))
62612rexbidv 3202 . . . . . . . 8 (𝑔 = 𝐺 → (∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)) ↔ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2))))
6362anbi2d 630 . . . . . . 7 (𝑔 = 𝐺 → (((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2))) ↔ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))))
6463opabbidv 5173 . . . . . 6 (𝑔 = 𝐺 → {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))})
6558, 64eqtrd 2764 . . . . 5 (𝑔 = 𝐺 → {⟨𝑎, 𝑏⟩ ∣ [(Base‘𝑔) / 𝑝][(hlG‘𝑔) / 𝑘]((𝑎 ∈ (𝑝m (0..^3)) ∧ 𝑏 ∈ (𝑝m (0..^3))) ∧ ∃𝑥𝑝𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2)))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))})
66 df-cgra 28735 . . . . 5 cgrA = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ [(Base‘𝑔) / 𝑝][(hlG‘𝑔) / 𝑘]((𝑎 ∈ (𝑝m (0..^3)) ∧ 𝑏 ∈ (𝑝m (0..^3))) ∧ ∃𝑥𝑝𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2)))})
67 ovex 7420 . . . . . . 7 (𝑃m (0..^3)) ∈ V
6867, 67xpex 7729 . . . . . 6 ((𝑃m (0..^3)) × (𝑃m (0..^3))) ∈ V
69 opabssxp 5731 . . . . . 6 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))} ⊆ ((𝑃m (0..^3)) × (𝑃m (0..^3)))
7068, 69ssexi 5277 . . . . 5 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))} ∈ V
7165, 66, 70fvmpt 6968 . . . 4 (𝐺 ∈ V → (cgrA‘𝐺) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))})
7240, 41, 713syl 18 . . 3 (𝜑 → (cgrA‘𝐺) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))})
7372breqd 5118 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩{⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))}⟨“𝐷𝐸𝐹”⟩))
74 iscgra.a . . . . . 6 (𝜑𝐴𝑃)
75 iscgra.b . . . . . 6 (𝜑𝐵𝑃)
76 iscgra.c . . . . . 6 (𝜑𝐶𝑃)
7774, 75, 76s3cld 14838 . . . . 5 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃)
78 s3len 14860 . . . . 5 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
7942fvexi 6872 . . . . . 6 𝑃 ∈ V
80 3nn0 12460 . . . . . 6 3 ∈ ℕ0
81 wrdmap 14511 . . . . . 6 ((𝑃 ∈ V ∧ 3 ∈ ℕ0) → ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = 3) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3))))
8279, 80, 81mp2an 692 . . . . 5 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = 3) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)))
8377, 78, 82sylanblc 589 . . . 4 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)))
8426, 18, 31s3cld 14838 . . . . 5 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ Word 𝑃)
85 s3len 14860 . . . . 5 (♯‘⟨“𝐷𝐸𝐹”⟩) = 3
86 wrdmap 14511 . . . . . 6 ((𝑃 ∈ V ∧ 3 ∈ ℕ0) → ((⟨“𝐷𝐸𝐹”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐷𝐸𝐹”⟩) = 3) ↔ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3))))
8779, 80, 86mp2an 692 . . . . 5 ((⟨“𝐷𝐸𝐹”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐷𝐸𝐹”⟩) = 3) ↔ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3)))
8884, 85, 87sylanblc 589 . . . 4 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3)))
8983, 88jca 511 . . 3 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3))))
9089biantrurd 532 . 2 (𝜑 → (∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹) ↔ ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹))))
9139, 73, 903bitr4d 311 1 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3447  [wsbc 3753   class class class wbr 5107  {copab 5169   × cxp 5636  cfv 6511  (class class class)co 7387  m cmap 8799  0cc0 11068  1c1 11069  2c2 12241  3c3 12242  0cn0 12442  ..^cfzo 13615  chash 14295  Word cword 14478  ⟨“cs3 14808  Basecbs 17179  TarskiGcstrkg 28354  Itvcitv 28360  cgrGccgrg 28437  hlGchlg 28527  cgrAccgra 28734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-concat 14536  df-s1 14561  df-s2 14814  df-s3 14815  df-cgra 28735
This theorem is referenced by:  iscgra1  28737  iscgrad  28738  cgrane1  28739  cgrane2  28740  cgrane3  28741  cgrane4  28742  cgrahl1  28743  cgrahl2  28744  cgracgr  28745  cgraswap  28747  cgracom  28749  cgratr  28750  flatcgra  28751  cgrabtwn  28753  cgrahl  28754  sacgr  28758
  Copyright terms: Public domain W3C validator