MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscgra Structured version   Visualization version   GIF version

Theorem iscgra 27166
Description: Property for two angles ABC and DEF to be congruent. This is a modified version of the definition 11.3 of [Schwabhauser] p. 95. where the number of constructed points has been reduced to two. We chose this version rather than the textbook version because it is shorter and therefore simpler to work with. Theorem dfcgra2 27187 shows that those definitions are indeed equivalent. (Contributed by Thierry Arnoux, 31-Jul-2020.)
Hypotheses
Ref Expression
iscgra.p 𝑃 = (Base‘𝐺)
iscgra.i 𝐼 = (Itv‘𝐺)
iscgra.k 𝐾 = (hlG‘𝐺)
iscgra.g (𝜑𝐺 ∈ TarskiG)
iscgra.a (𝜑𝐴𝑃)
iscgra.b (𝜑𝐵𝑃)
iscgra.c (𝜑𝐶𝑃)
iscgra.d (𝜑𝐷𝑃)
iscgra.e (𝜑𝐸𝑃)
iscgra.f (𝜑𝐹𝑃)
Assertion
Ref Expression
iscgra (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐸,𝑦   𝑥,𝐹,𝑦   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐺,𝑦   𝑥,𝐼,𝑦   𝑥,𝑃,𝑦

Proof of Theorem iscgra
Dummy variables 𝑎 𝑏 𝑔 𝑘 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 483 . . . . . . 7 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → 𝑎 = ⟨“𝐴𝐵𝐶”⟩)
2 eqidd 2741 . . . . . . . 8 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → 𝑥 = 𝑥)
3 simpr 485 . . . . . . . . 9 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → 𝑏 = ⟨“𝐷𝐸𝐹”⟩)
43fveq1d 6771 . . . . . . . 8 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑏‘1) = (⟨“𝐷𝐸𝐹”⟩‘1))
5 eqidd 2741 . . . . . . . 8 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → 𝑦 = 𝑦)
62, 4, 5s3eqd 14573 . . . . . . 7 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → ⟨“𝑥(𝑏‘1)𝑦”⟩ = ⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩)
71, 6breq12d 5092 . . . . . 6 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩))
84fveq2d 6773 . . . . . . 7 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝐾‘(𝑏‘1)) = (𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1)))
93fveq1d 6771 . . . . . . 7 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑏‘0) = (⟨“𝐷𝐸𝐹”⟩‘0))
102, 8, 9breq123d 5093 . . . . . 6 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ↔ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0)))
113fveq1d 6771 . . . . . . 7 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑏‘2) = (⟨“𝐷𝐸𝐹”⟩‘2))
125, 8, 11breq123d 5093 . . . . . 6 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑦(𝐾‘(𝑏‘1))(𝑏‘2) ↔ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2)))
137, 10, 123anbi123d 1435 . . . . 5 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → ((𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)) ↔ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ∧ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2))))
14132rexbidv 3231 . . . 4 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)) ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ∧ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2))))
15 eqid 2740 . . . 4 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))}
1614, 15brab2a 5679 . . 3 (⟨“𝐴𝐵𝐶”⟩{⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))}⟨“𝐷𝐸𝐹”⟩ ↔ ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ∧ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2))))
17 eqidd 2741 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → 𝑥 = 𝑥)
18 iscgra.e . . . . . . . . . 10 (𝜑𝐸𝑃)
19 s3fv1 14601 . . . . . . . . . 10 (𝐸𝑃 → (⟨“𝐷𝐸𝐹”⟩‘1) = 𝐸)
2018, 19syl 17 . . . . . . . . 9 (𝜑 → (⟨“𝐷𝐸𝐹”⟩‘1) = 𝐸)
2120adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (⟨“𝐷𝐸𝐹”⟩‘1) = 𝐸)
22 eqidd 2741 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → 𝑦 = 𝑦)
2317, 21, 22s3eqd 14573 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → ⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ = ⟨“𝑥𝐸𝑦”⟩)
2423breq2d 5091 . . . . . 6 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩))
2521fveq2d 6773 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1)) = (𝐾𝐸))
26 iscgra.d . . . . . . . . 9 (𝜑𝐷𝑃)
27 s3fv0 14600 . . . . . . . . 9 (𝐷𝑃 → (⟨“𝐷𝐸𝐹”⟩‘0) = 𝐷)
2826, 27syl 17 . . . . . . . 8 (𝜑 → (⟨“𝐷𝐸𝐹”⟩‘0) = 𝐷)
2928adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (⟨“𝐷𝐸𝐹”⟩‘0) = 𝐷)
3017, 25, 29breq123d 5093 . . . . . 6 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ↔ 𝑥(𝐾𝐸)𝐷))
31 iscgra.f . . . . . . . . 9 (𝜑𝐹𝑃)
32 s3fv2 14602 . . . . . . . . 9 (𝐹𝑃 → (⟨“𝐷𝐸𝐹”⟩‘2) = 𝐹)
3331, 32syl 17 . . . . . . . 8 (𝜑 → (⟨“𝐷𝐸𝐹”⟩‘2) = 𝐹)
3433adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (⟨“𝐷𝐸𝐹”⟩‘2) = 𝐹)
3522, 25, 34breq123d 5093 . . . . . 6 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2) ↔ 𝑦(𝐾𝐸)𝐹))
3624, 30, 353anbi123d 1435 . . . . 5 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ∧ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2)) ↔ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)))
37362rexbidva 3230 . . . 4 (𝜑 → (∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ∧ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2)) ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)))
3837anbi2d 629 . . 3 (𝜑 → (((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ∧ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2))) ↔ ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹))))
3916, 38syl5bb 283 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩{⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))}⟨“𝐷𝐸𝐹”⟩ ↔ ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹))))
40 iscgra.g . . . 4 (𝜑𝐺 ∈ TarskiG)
41 elex 3449 . . . 4 (𝐺 ∈ TarskiG → 𝐺 ∈ V)
42 iscgra.p . . . . . . . 8 𝑃 = (Base‘𝐺)
43 iscgra.k . . . . . . . 8 𝐾 = (hlG‘𝐺)
44 simpl 483 . . . . . . . . . . . . 13 ((𝑝 = 𝑃𝑘 = 𝐾) → 𝑝 = 𝑃)
4544eqcomd 2746 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑘 = 𝐾) → 𝑃 = 𝑝)
4645oveq1d 7284 . . . . . . . . . . 11 ((𝑝 = 𝑃𝑘 = 𝐾) → (𝑃m (0..^3)) = (𝑝m (0..^3)))
4746eleq2d 2826 . . . . . . . . . 10 ((𝑝 = 𝑃𝑘 = 𝐾) → (𝑎 ∈ (𝑃m (0..^3)) ↔ 𝑎 ∈ (𝑝m (0..^3))))
4846eleq2d 2826 . . . . . . . . . 10 ((𝑝 = 𝑃𝑘 = 𝐾) → (𝑏 ∈ (𝑃m (0..^3)) ↔ 𝑏 ∈ (𝑝m (0..^3))))
4947, 48anbi12d 631 . . . . . . . . 9 ((𝑝 = 𝑃𝑘 = 𝐾) → ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ↔ (𝑎 ∈ (𝑝m (0..^3)) ∧ 𝑏 ∈ (𝑝m (0..^3)))))
50 simpr 485 . . . . . . . . . . . . . . 15 ((𝑝 = 𝑃𝑘 = 𝐾) → 𝑘 = 𝐾)
5150fveq1d 6771 . . . . . . . . . . . . . 14 ((𝑝 = 𝑃𝑘 = 𝐾) → (𝑘‘(𝑏‘1)) = (𝐾‘(𝑏‘1)))
5251breqd 5090 . . . . . . . . . . . . 13 ((𝑝 = 𝑃𝑘 = 𝐾) → (𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ↔ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0)))
5351breqd 5090 . . . . . . . . . . . . 13 ((𝑝 = 𝑃𝑘 = 𝐾) → (𝑦(𝑘‘(𝑏‘1))(𝑏‘2) ↔ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))
5452, 533anbi23d 1438 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑘 = 𝐾) → ((𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2)) ↔ (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2))))
5554bicomd 222 . . . . . . . . . . 11 ((𝑝 = 𝑃𝑘 = 𝐾) → ((𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)) ↔ (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2))))
5645, 55rexeqbidv 3336 . . . . . . . . . 10 ((𝑝 = 𝑃𝑘 = 𝐾) → (∃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)) ↔ ∃𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2))))
5745, 56rexeqbidv 3336 . . . . . . . . 9 ((𝑝 = 𝑃𝑘 = 𝐾) → (∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)) ↔ ∃𝑥𝑝𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2))))
5849, 57anbi12d 631 . . . . . . . 8 ((𝑝 = 𝑃𝑘 = 𝐾) → (((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2))) ↔ ((𝑎 ∈ (𝑝m (0..^3)) ∧ 𝑏 ∈ (𝑝m (0..^3))) ∧ ∃𝑥𝑝𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2)))))
5942, 43, 58sbcie2s 16858 . . . . . . 7 (𝑔 = 𝐺 → ([(Base‘𝑔) / 𝑝][(hlG‘𝑔) / 𝑘]((𝑎 ∈ (𝑝m (0..^3)) ∧ 𝑏 ∈ (𝑝m (0..^3))) ∧ ∃𝑥𝑝𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2))) ↔ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))))
6059opabbidv 5145 . . . . . 6 (𝑔 = 𝐺 → {⟨𝑎, 𝑏⟩ ∣ [(Base‘𝑔) / 𝑝][(hlG‘𝑔) / 𝑘]((𝑎 ∈ (𝑝m (0..^3)) ∧ 𝑏 ∈ (𝑝m (0..^3))) ∧ ∃𝑥𝑝𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2)))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))})
61 fveq2 6769 . . . . . . . . . . 11 (𝑔 = 𝐺 → (cgrG‘𝑔) = (cgrG‘𝐺))
6261breqd 5090 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ↔ 𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩))
63623anbi1d 1439 . . . . . . . . 9 (𝑔 = 𝐺 → ((𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)) ↔ (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2))))
64632rexbidv 3231 . . . . . . . 8 (𝑔 = 𝐺 → (∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)) ↔ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2))))
6564anbi2d 629 . . . . . . 7 (𝑔 = 𝐺 → (((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2))) ↔ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))))
6665opabbidv 5145 . . . . . 6 (𝑔 = 𝐺 → {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))})
6760, 66eqtrd 2780 . . . . 5 (𝑔 = 𝐺 → {⟨𝑎, 𝑏⟩ ∣ [(Base‘𝑔) / 𝑝][(hlG‘𝑔) / 𝑘]((𝑎 ∈ (𝑝m (0..^3)) ∧ 𝑏 ∈ (𝑝m (0..^3))) ∧ ∃𝑥𝑝𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2)))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))})
68 df-cgra 27165 . . . . 5 cgrA = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ [(Base‘𝑔) / 𝑝][(hlG‘𝑔) / 𝑘]((𝑎 ∈ (𝑝m (0..^3)) ∧ 𝑏 ∈ (𝑝m (0..^3))) ∧ ∃𝑥𝑝𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2)))})
69 ovex 7302 . . . . . . 7 (𝑃m (0..^3)) ∈ V
7069, 69xpex 7595 . . . . . 6 ((𝑃m (0..^3)) × (𝑃m (0..^3))) ∈ V
71 opabssxp 5678 . . . . . 6 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))} ⊆ ((𝑃m (0..^3)) × (𝑃m (0..^3)))
7270, 71ssexi 5250 . . . . 5 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))} ∈ V
7367, 68, 72fvmpt 6870 . . . 4 (𝐺 ∈ V → (cgrA‘𝐺) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))})
7440, 41, 733syl 18 . . 3 (𝜑 → (cgrA‘𝐺) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))})
7574breqd 5090 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩{⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃m (0..^3)) ∧ 𝑏 ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))}⟨“𝐷𝐸𝐹”⟩))
76 iscgra.a . . . . . 6 (𝜑𝐴𝑃)
77 iscgra.b . . . . . 6 (𝜑𝐵𝑃)
78 iscgra.c . . . . . 6 (𝜑𝐶𝑃)
7976, 77, 78s3cld 14581 . . . . 5 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃)
80 s3len 14603 . . . . 5 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
8142fvexi 6783 . . . . . 6 𝑃 ∈ V
82 3nn0 12249 . . . . . 6 3 ∈ ℕ0
83 wrdmap 14245 . . . . . 6 ((𝑃 ∈ V ∧ 3 ∈ ℕ0) → ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = 3) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3))))
8481, 82, 83mp2an 689 . . . . 5 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = 3) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)))
8579, 80, 84sylanblc 589 . . . 4 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)))
8626, 18, 31s3cld 14581 . . . . 5 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ Word 𝑃)
87 s3len 14603 . . . . 5 (♯‘⟨“𝐷𝐸𝐹”⟩) = 3
88 wrdmap 14245 . . . . . 6 ((𝑃 ∈ V ∧ 3 ∈ ℕ0) → ((⟨“𝐷𝐸𝐹”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐷𝐸𝐹”⟩) = 3) ↔ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3))))
8981, 82, 88mp2an 689 . . . . 5 ((⟨“𝐷𝐸𝐹”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐷𝐸𝐹”⟩) = 3) ↔ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3)))
9086, 87, 89sylanblc 589 . . . 4 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3)))
9185, 90jca 512 . . 3 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3))))
9291biantrurd 533 . 2 (𝜑 → (∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹) ↔ ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃m (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹))))
9339, 75, 923bitr4d 311 1 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wrex 3067  Vcvv 3431  [wsbc 3720   class class class wbr 5079  {copab 5141   × cxp 5587  cfv 6431  (class class class)co 7269  m cmap 8596  0cc0 10870  1c1 10871  2c2 12026  3c3 12027  0cn0 12231  ..^cfzo 13379  chash 14040  Word cword 14213  ⟨“cs3 14551  Basecbs 16908  TarskiGcstrkg 26784  Itvcitv 26790  cgrGccgrg 26867  hlGchlg 26957  cgrAccgra 27164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10926  ax-resscn 10927  ax-1cn 10928  ax-icn 10929  ax-addcl 10930  ax-addrcl 10931  ax-mulcl 10932  ax-mulrcl 10933  ax-mulcom 10934  ax-addass 10935  ax-mulass 10936  ax-distr 10937  ax-i2m1 10938  ax-1ne0 10939  ax-1rid 10940  ax-rnegex 10941  ax-rrecex 10942  ax-cnre 10943  ax-pre-lttri 10944  ax-pre-lttrn 10945  ax-pre-ltadd 10946  ax-pre-mulgt0 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7705  df-1st 7822  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-1o 8286  df-er 8479  df-map 8598  df-en 8715  df-dom 8716  df-sdom 8717  df-fin 8718  df-card 9696  df-pnf 11010  df-mnf 11011  df-xr 11012  df-ltxr 11013  df-le 11014  df-sub 11205  df-neg 11206  df-nn 11972  df-2 12034  df-3 12035  df-n0 12232  df-z 12318  df-uz 12580  df-fz 13237  df-fzo 13380  df-hash 14041  df-word 14214  df-concat 14270  df-s1 14297  df-s2 14557  df-s3 14558  df-cgra 27165
This theorem is referenced by:  iscgra1  27167  iscgrad  27168  cgrane1  27169  cgrane2  27170  cgrane3  27171  cgrane4  27172  cgrahl1  27173  cgrahl2  27174  cgracgr  27175  cgraswap  27177  cgracom  27179  cgratr  27180  flatcgra  27181  cgrabtwn  27183  cgrahl  27184  sacgr  27188
  Copyright terms: Public domain W3C validator