MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscgra Structured version   Visualization version   GIF version

Theorem iscgra 26118
Description: Property for two angles ABC and DEF to be congruent. This is a modified version of the definition 11.3 of [Schwabhauser] p. 95. where the number of constructed points has been reduced to two. We chose this version rather than the textbook version because it is shorter and therefore simpler to work with. Theorem dfcgra2 26138 shows that those definitions are indeed equivalent. (Contributed by Thierry Arnoux, 31-Jul-2020.)
Hypotheses
Ref Expression
iscgra.p 𝑃 = (Base‘𝐺)
iscgra.i 𝐼 = (Itv‘𝐺)
iscgra.k 𝐾 = (hlG‘𝐺)
iscgra.g (𝜑𝐺 ∈ TarskiG)
iscgra.a (𝜑𝐴𝑃)
iscgra.b (𝜑𝐵𝑃)
iscgra.c (𝜑𝐶𝑃)
iscgra.d (𝜑𝐷𝑃)
iscgra.e (𝜑𝐸𝑃)
iscgra.f (𝜑𝐹𝑃)
Assertion
Ref Expression
iscgra (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐸,𝑦   𝑥,𝐹,𝑦   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐺,𝑦   𝑥,𝐼,𝑦   𝑥,𝑃,𝑦

Proof of Theorem iscgra
Dummy variables 𝑎 𝑏 𝑔 𝑘 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 476 . . . . . . . 8 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → 𝑎 = ⟨“𝐴𝐵𝐶”⟩)
2 eqidd 2826 . . . . . . . . 9 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → 𝑥 = 𝑥)
3 simpr 479 . . . . . . . . . 10 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → 𝑏 = ⟨“𝐷𝐸𝐹”⟩)
43fveq1d 6435 . . . . . . . . 9 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑏‘1) = (⟨“𝐷𝐸𝐹”⟩‘1))
5 eqidd 2826 . . . . . . . . 9 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → 𝑦 = 𝑦)
62, 4, 5s3eqd 13985 . . . . . . . 8 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → ⟨“𝑥(𝑏‘1)𝑦”⟩ = ⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩)
71, 6breq12d 4886 . . . . . . 7 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩))
84fveq2d 6437 . . . . . . . 8 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝐾‘(𝑏‘1)) = (𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1)))
93fveq1d 6435 . . . . . . . 8 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑏‘0) = (⟨“𝐷𝐸𝐹”⟩‘0))
102, 8, 9breq123d 4887 . . . . . . 7 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ↔ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0)))
113fveq1d 6435 . . . . . . . 8 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑏‘2) = (⟨“𝐷𝐸𝐹”⟩‘2))
125, 8, 11breq123d 4887 . . . . . . 7 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑦(𝐾‘(𝑏‘1))(𝑏‘2) ↔ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2)))
137, 10, 123anbi123d 1566 . . . . . 6 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → ((𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)) ↔ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ∧ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2))))
14132rexbidv 3267 . . . . 5 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)) ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ∧ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2))))
15 eqid 2825 . . . . 5 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))}
1614, 15brab2a 5429 . . . 4 (⟨“𝐴𝐵𝐶”⟩{⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))}⟨“𝐷𝐸𝐹”⟩ ↔ ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ∧ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2))))
1716a1i 11 . . 3 (𝜑 → (⟨“𝐴𝐵𝐶”⟩{⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))}⟨“𝐷𝐸𝐹”⟩ ↔ ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ∧ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2)))))
18 eqidd 2826 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → 𝑥 = 𝑥)
19 iscgra.e . . . . . . . . . 10 (𝜑𝐸𝑃)
20 s3fv1 14013 . . . . . . . . . 10 (𝐸𝑃 → (⟨“𝐷𝐸𝐹”⟩‘1) = 𝐸)
2119, 20syl 17 . . . . . . . . 9 (𝜑 → (⟨“𝐷𝐸𝐹”⟩‘1) = 𝐸)
2221adantr 474 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (⟨“𝐷𝐸𝐹”⟩‘1) = 𝐸)
23 eqidd 2826 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → 𝑦 = 𝑦)
2418, 22, 23s3eqd 13985 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → ⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ = ⟨“𝑥𝐸𝑦”⟩)
2524breq2d 4885 . . . . . 6 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩))
2622fveq2d 6437 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1)) = (𝐾𝐸))
27 iscgra.d . . . . . . . . 9 (𝜑𝐷𝑃)
28 s3fv0 14012 . . . . . . . . 9 (𝐷𝑃 → (⟨“𝐷𝐸𝐹”⟩‘0) = 𝐷)
2927, 28syl 17 . . . . . . . 8 (𝜑 → (⟨“𝐷𝐸𝐹”⟩‘0) = 𝐷)
3029adantr 474 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (⟨“𝐷𝐸𝐹”⟩‘0) = 𝐷)
3118, 26, 30breq123d 4887 . . . . . 6 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ↔ 𝑥(𝐾𝐸)𝐷))
32 iscgra.f . . . . . . . . 9 (𝜑𝐹𝑃)
33 s3fv2 14014 . . . . . . . . 9 (𝐹𝑃 → (⟨“𝐷𝐸𝐹”⟩‘2) = 𝐹)
3432, 33syl 17 . . . . . . . 8 (𝜑 → (⟨“𝐷𝐸𝐹”⟩‘2) = 𝐹)
3534adantr 474 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (⟨“𝐷𝐸𝐹”⟩‘2) = 𝐹)
3623, 26, 35breq123d 4887 . . . . . 6 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2) ↔ 𝑦(𝐾𝐸)𝐹))
3725, 31, 363anbi123d 1566 . . . . 5 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ∧ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2)) ↔ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)))
38372rexbidva 3266 . . . 4 (𝜑 → (∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ∧ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2)) ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)))
3938anbi2d 624 . . 3 (𝜑 → (((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥(⟨“𝐷𝐸𝐹”⟩‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘0) ∧ 𝑦(𝐾‘(⟨“𝐷𝐸𝐹”⟩‘1))(⟨“𝐷𝐸𝐹”⟩‘2))) ↔ ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹))))
4017, 39bitrd 271 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩{⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))}⟨“𝐷𝐸𝐹”⟩ ↔ ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹))))
41 iscgra.g . . . 4 (𝜑𝐺 ∈ TarskiG)
42 elex 3429 . . . 4 (𝐺 ∈ TarskiG → 𝐺 ∈ V)
43 iscgra.p . . . . . . . 8 𝑃 = (Base‘𝐺)
44 iscgra.k . . . . . . . 8 𝐾 = (hlG‘𝐺)
45 simpl 476 . . . . . . . . . . . . 13 ((𝑝 = 𝑃𝑘 = 𝐾) → 𝑝 = 𝑃)
4645eqcomd 2831 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑘 = 𝐾) → 𝑃 = 𝑝)
4746oveq1d 6920 . . . . . . . . . . 11 ((𝑝 = 𝑃𝑘 = 𝐾) → (𝑃𝑚 (0..^3)) = (𝑝𝑚 (0..^3)))
4847eleq2d 2892 . . . . . . . . . 10 ((𝑝 = 𝑃𝑘 = 𝐾) → (𝑎 ∈ (𝑃𝑚 (0..^3)) ↔ 𝑎 ∈ (𝑝𝑚 (0..^3))))
4947eleq2d 2892 . . . . . . . . . 10 ((𝑝 = 𝑃𝑘 = 𝐾) → (𝑏 ∈ (𝑃𝑚 (0..^3)) ↔ 𝑏 ∈ (𝑝𝑚 (0..^3))))
5048, 49anbi12d 626 . . . . . . . . 9 ((𝑝 = 𝑃𝑘 = 𝐾) → ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ↔ (𝑎 ∈ (𝑝𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑝𝑚 (0..^3)))))
51 simpr 479 . . . . . . . . . . . . . . 15 ((𝑝 = 𝑃𝑘 = 𝐾) → 𝑘 = 𝐾)
52 eqidd 2826 . . . . . . . . . . . . . . 15 ((𝑝 = 𝑃𝑘 = 𝐾) → (𝑏‘1) = (𝑏‘1))
5351, 52fveq12d 6440 . . . . . . . . . . . . . 14 ((𝑝 = 𝑃𝑘 = 𝐾) → (𝑘‘(𝑏‘1)) = (𝐾‘(𝑏‘1)))
5453breqd 4884 . . . . . . . . . . . . 13 ((𝑝 = 𝑃𝑘 = 𝐾) → (𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ↔ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0)))
5553breqd 4884 . . . . . . . . . . . . 13 ((𝑝 = 𝑃𝑘 = 𝐾) → (𝑦(𝑘‘(𝑏‘1))(𝑏‘2) ↔ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))
5654, 553anbi23d 1569 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑘 = 𝐾) → ((𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2)) ↔ (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2))))
5756bicomd 215 . . . . . . . . . . 11 ((𝑝 = 𝑃𝑘 = 𝐾) → ((𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)) ↔ (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2))))
5846, 57rexeqbidv 3365 . . . . . . . . . 10 ((𝑝 = 𝑃𝑘 = 𝐾) → (∃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)) ↔ ∃𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2))))
5946, 58rexeqbidv 3365 . . . . . . . . 9 ((𝑝 = 𝑃𝑘 = 𝐾) → (∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)) ↔ ∃𝑥𝑝𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2))))
6050, 59anbi12d 626 . . . . . . . 8 ((𝑝 = 𝑃𝑘 = 𝐾) → (((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2))) ↔ ((𝑎 ∈ (𝑝𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑝𝑚 (0..^3))) ∧ ∃𝑥𝑝𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2)))))
6143, 44, 60sbcie2s 16279 . . . . . . 7 (𝑔 = 𝐺 → ([(Base‘𝑔) / 𝑝][(hlG‘𝑔) / 𝑘]((𝑎 ∈ (𝑝𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑝𝑚 (0..^3))) ∧ ∃𝑥𝑝𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2))) ↔ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))))
6261opabbidv 4939 . . . . . 6 (𝑔 = 𝐺 → {⟨𝑎, 𝑏⟩ ∣ [(Base‘𝑔) / 𝑝][(hlG‘𝑔) / 𝑘]((𝑎 ∈ (𝑝𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑝𝑚 (0..^3))) ∧ ∃𝑥𝑝𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2)))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))})
63 fveq2 6433 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (cgrG‘𝑔) = (cgrG‘𝐺))
6463breqd 4884 . . . . . . . . . . 11 (𝑔 = 𝐺 → (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ↔ 𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩))
65643anbi1d 1570 . . . . . . . . . 10 (𝑔 = 𝐺 → ((𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)) ↔ (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2))))
6665rexbidv 3262 . . . . . . . . 9 (𝑔 = 𝐺 → (∃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)) ↔ ∃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2))))
6766rexbidv 3262 . . . . . . . 8 (𝑔 = 𝐺 → (∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)) ↔ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2))))
6867anbi2d 624 . . . . . . 7 (𝑔 = 𝐺 → (((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2))) ↔ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))))
6968opabbidv 4939 . . . . . 6 (𝑔 = 𝐺 → {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))})
7062, 69eqtrd 2861 . . . . 5 (𝑔 = 𝐺 → {⟨𝑎, 𝑏⟩ ∣ [(Base‘𝑔) / 𝑝][(hlG‘𝑔) / 𝑘]((𝑎 ∈ (𝑝𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑝𝑚 (0..^3))) ∧ ∃𝑥𝑝𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2)))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))})
71 df-cgra 26117 . . . . 5 cgrA = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ [(Base‘𝑔) / 𝑝][(hlG‘𝑔) / 𝑘]((𝑎 ∈ (𝑝𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑝𝑚 (0..^3))) ∧ ∃𝑥𝑝𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2)))})
72 ovex 6937 . . . . . . 7 (𝑃𝑚 (0..^3)) ∈ V
7372, 72xpex 7223 . . . . . 6 ((𝑃𝑚 (0..^3)) × (𝑃𝑚 (0..^3))) ∈ V
74 opabssxp 5428 . . . . . 6 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))} ⊆ ((𝑃𝑚 (0..^3)) × (𝑃𝑚 (0..^3)))
7573, 74ssexi 5028 . . . . 5 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))} ∈ V
7670, 71, 75fvmpt 6529 . . . 4 (𝐺 ∈ V → (cgrA‘𝐺) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))})
7741, 42, 763syl 18 . . 3 (𝜑 → (cgrA‘𝐺) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))})
7877breqd 4884 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩{⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (𝑎(cgrG‘𝐺)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝐾‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝐾‘(𝑏‘1))(𝑏‘2)))}⟨“𝐷𝐸𝐹”⟩))
79 iscgra.a . . . . . . 7 (𝜑𝐴𝑃)
80 iscgra.b . . . . . . 7 (𝜑𝐵𝑃)
81 iscgra.c . . . . . . 7 (𝜑𝐶𝑃)
8279, 80, 81s3cld 13993 . . . . . 6 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃)
83 s3len 14015 . . . . . . 7 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
8483a1i 11 . . . . . 6 (𝜑 → (♯‘⟨“𝐴𝐵𝐶”⟩) = 3)
8582, 84jca 509 . . . . 5 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = 3))
8643fvexi 6447 . . . . . 6 𝑃 ∈ V
87 3nn0 11638 . . . . . 6 3 ∈ ℕ0
88 wrdmap 13606 . . . . . 6 ((𝑃 ∈ V ∧ 3 ∈ ℕ0) → ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = 3) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3))))
8986, 87, 88mp2an 685 . . . . 5 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = 3) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)))
9085, 89sylib 210 . . . 4 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)))
9127, 19, 32s3cld 13993 . . . . . 6 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ Word 𝑃)
92 s3len 14015 . . . . . . 7 (♯‘⟨“𝐷𝐸𝐹”⟩) = 3
9392a1i 11 . . . . . 6 (𝜑 → (♯‘⟨“𝐷𝐸𝐹”⟩) = 3)
9491, 93jca 509 . . . . 5 (𝜑 → (⟨“𝐷𝐸𝐹”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐷𝐸𝐹”⟩) = 3))
95 wrdmap 13606 . . . . . 6 ((𝑃 ∈ V ∧ 3 ∈ ℕ0) → ((⟨“𝐷𝐸𝐹”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐷𝐸𝐹”⟩) = 3) ↔ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃𝑚 (0..^3))))
9686, 87, 95mp2an 685 . . . . 5 ((⟨“𝐷𝐸𝐹”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐷𝐸𝐹”⟩) = 3) ↔ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃𝑚 (0..^3)))
9794, 96sylib 210 . . . 4 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃𝑚 (0..^3)))
9890, 97jca 509 . . 3 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃𝑚 (0..^3))))
9998biantrurd 530 . 2 (𝜑 → (∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹) ↔ ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹))))
10040, 78, 993bitr4d 303 1 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1113   = wceq 1658  wcel 2166  wrex 3118  Vcvv 3414  [wsbc 3662   class class class wbr 4873  {copab 4935   × cxp 5340  cfv 6123  (class class class)co 6905  𝑚 cmap 8122  0cc0 10252  1c1 10253  2c2 11406  3c3 11407  0cn0 11618  ..^cfzo 12760  chash 13410  Word cword 13574  ⟨“cs3 13963  Basecbs 16222  TarskiGcstrkg 25742  Itvcitv 25748  cgrGccgrg 25822  hlGchlg 25912  cgrAccgra 26116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-map 8124  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-3 11415  df-n0 11619  df-z 11705  df-uz 11969  df-fz 12620  df-fzo 12761  df-hash 13411  df-word 13575  df-concat 13631  df-s1 13656  df-s2 13969  df-s3 13970  df-cgra 26117
This theorem is referenced by:  iscgra1  26119  iscgrad  26120  cgrane1  26121  cgrane2  26122  cgrane3  26123  cgrane4  26124  cgrahl1  26125  cgrahl2  26126  cgracgr  26127  cgraswap  26129  cgracom  26131  cgratr  26132  cgrabtwn  26134  cgrahl  26135  sacgr  26139  sacgrOLD  26140
  Copyright terms: Public domain W3C validator