![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfcgrg2 | Structured version Visualization version GIF version |
Description: Congruence for two triangles can also be defined as congruence of sides and angles (6 parts). This is often the actual textbook definition of triangle congruence, see for example https://en.wikipedia.org/wiki/Congruence_(geometry)#Congruence_of_triangles. With this definition, the "SSS" congruence theorem has an additional part, namely, that triangle congruence implies congruence of the sides (which means equality of the lengths). Because our development of elementary geometry strives to closely follow Schwabhaeuser's, our original definition of shape congruence, df-cgrg 28432, already covers that part: see trgcgr 28437. This theorem is also named "CPCTC", which stands for "Corresponding Parts of Congruent Triangles are Congruent", see https://en.wikipedia.org/wiki/Congruence_(geometry)#CPCTC 28437. (Contributed by Thierry Arnoux, 18-Jan-2023.) |
Ref | Expression |
---|---|
dfcgrg2.p | ⊢ 𝑃 = (Base‘𝐺) |
dfcgrg2.m | ⊢ − = (dist‘𝐺) |
dfcgrg2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
dfcgrg2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
dfcgrg2.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
dfcgrg2.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
dfcgrg2.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
dfcgrg2.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
dfcgrg2.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
dfcgrg2.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
dfcgrg2.2 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
dfcgrg2.3 | ⊢ (𝜑 → 𝐶 ≠ 𝐴) |
Ref | Expression |
---|---|
dfcgrg2 | ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ (((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)) ∧ (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐶𝐴𝐵”〉(cgrA‘𝐺)〈“𝐹𝐷𝐸”〉 ∧ 〈“𝐵𝐶𝐴”〉(cgrA‘𝐺)〈“𝐸𝐹𝐷”〉)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcgrg2.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝐺) | |
2 | dfcgrg2.m | . . . . . 6 ⊢ − = (dist‘𝐺) | |
3 | eqid 2726 | . . . . . 6 ⊢ (Itv‘𝐺) = (Itv‘𝐺) | |
4 | dfcgrg2.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) → 𝐺 ∈ TarskiG) |
6 | dfcgrg2.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | 6 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) → 𝐴 ∈ 𝑃) |
8 | dfcgrg2.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
9 | 8 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) → 𝐵 ∈ 𝑃) |
10 | dfcgrg2.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
11 | 10 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) → 𝐶 ∈ 𝑃) |
12 | dfcgrg2.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
13 | 12 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) → 𝐷 ∈ 𝑃) |
14 | dfcgrg2.e | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
15 | 14 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) → 𝐸 ∈ 𝑃) |
16 | dfcgrg2.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
17 | 16 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) → 𝐹 ∈ 𝑃) |
18 | eqid 2726 | . . . . . . . . 9 ⊢ (cgrG‘𝐺) = (cgrG‘𝐺) | |
19 | 1, 2, 18, 4, 6, 8, 10, 12, 14, 16 | trgcgrg 28436 | . . . . . . . 8 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ ((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)))) |
20 | 19 | biimpa 475 | . . . . . . 7 ⊢ ((𝜑 ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) → ((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷))) |
21 | 20 | simp1d 1139 | . . . . . 6 ⊢ ((𝜑 ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) → (𝐴 − 𝐵) = (𝐷 − 𝐸)) |
22 | 20 | simp2d 1140 | . . . . . 6 ⊢ ((𝜑 ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) → (𝐵 − 𝐶) = (𝐸 − 𝐹)) |
23 | 20 | simp3d 1141 | . . . . . 6 ⊢ ((𝜑 ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) → (𝐶 − 𝐴) = (𝐹 − 𝐷)) |
24 | dfcgrg2.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
25 | 24 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) → 𝐴 ≠ 𝐵) |
26 | dfcgrg2.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
27 | 26 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) → 𝐵 ≠ 𝐶) |
28 | dfcgrg2.3 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ≠ 𝐴) | |
29 | 28 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) → 𝐶 ≠ 𝐴) |
30 | 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 21, 22, 23, 25, 27, 29 | tgsss1 28781 | . . . . 5 ⊢ ((𝜑 ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) |
31 | 1, 2, 3, 5, 11, 7, 9, 17, 13, 15, 23, 21, 22, 29, 25, 27 | tgsss1 28781 | . . . . 5 ⊢ ((𝜑 ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) → 〈“𝐶𝐴𝐵”〉(cgrA‘𝐺)〈“𝐹𝐷𝐸”〉) |
32 | 1, 2, 3, 5, 9, 11, 7, 15, 17, 13, 22, 23, 21, 27, 29, 25 | tgsss1 28781 | . . . . 5 ⊢ ((𝜑 ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) → 〈“𝐵𝐶𝐴”〉(cgrA‘𝐺)〈“𝐸𝐹𝐷”〉) |
33 | 30, 31, 32 | 3jca 1125 | . . . 4 ⊢ ((𝜑 ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) → (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐶𝐴𝐵”〉(cgrA‘𝐺)〈“𝐹𝐷𝐸”〉 ∧ 〈“𝐵𝐶𝐴”〉(cgrA‘𝐺)〈“𝐸𝐹𝐷”〉)) |
34 | 33 | ex 411 | . . 3 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉 → (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐶𝐴𝐵”〉(cgrA‘𝐺)〈“𝐹𝐷𝐸”〉 ∧ 〈“𝐵𝐶𝐴”〉(cgrA‘𝐺)〈“𝐸𝐹𝐷”〉))) |
35 | 34 | pm4.71d 560 | . 2 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐶𝐴𝐵”〉(cgrA‘𝐺)〈“𝐹𝐷𝐸”〉 ∧ 〈“𝐵𝐶𝐴”〉(cgrA‘𝐺)〈“𝐸𝐹𝐷”〉)))) |
36 | 19 | anbi1d 629 | . 2 ⊢ (𝜑 → ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐶𝐴𝐵”〉(cgrA‘𝐺)〈“𝐹𝐷𝐸”〉 ∧ 〈“𝐵𝐶𝐴”〉(cgrA‘𝐺)〈“𝐸𝐹𝐷”〉)) ↔ (((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)) ∧ (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐶𝐴𝐵”〉(cgrA‘𝐺)〈“𝐹𝐷𝐸”〉 ∧ 〈“𝐵𝐶𝐴”〉(cgrA‘𝐺)〈“𝐸𝐹𝐷”〉)))) |
37 | 35, 36 | bitrd 278 | 1 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ (((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)) ∧ (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐶𝐴𝐵”〉(cgrA‘𝐺)〈“𝐹𝐷𝐸”〉 ∧ 〈“𝐵𝐶𝐴”〉(cgrA‘𝐺)〈“𝐸𝐹𝐷”〉)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 class class class wbr 5143 ‘cfv 6543 (class class class)co 7413 〈“cs3 14843 Basecbs 17205 distcds 17267 TarskiGcstrkg 28348 Itvcitv 28354 cgrGccgrg 28431 cgrAccgra 28728 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7735 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6302 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-map 8846 df-pm 8847 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-card 9972 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12256 df-2 12318 df-3 12319 df-n0 12516 df-z 12602 df-uz 12866 df-fz 13530 df-fzo 13673 df-hash 14340 df-word 14515 df-concat 14571 df-s1 14596 df-s2 14849 df-s3 14850 df-trkgc 28369 df-trkgcb 28371 df-trkg 28374 df-cgrg 28432 df-hlg 28522 df-cgra 28729 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |