MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfcgrg2 Structured version   Visualization version   GIF version

Theorem dfcgrg2 28784
Description: Congruence for two triangles can also be defined as congruence of sides and angles (6 parts). This is often the actual textbook definition of triangle congruence, see for example https://en.wikipedia.org/wiki/Congruence_(geometry)#Congruence_of_triangles. With this definition, the "SSS" congruence theorem has an additional part, namely, that triangle congruence implies congruence of the sides (which means equality of the lengths). Because our development of elementary geometry strives to closely follow Schwabhaeuser's, our original definition of shape congruence, df-cgrg 28432, already covers that part: see trgcgr 28437. This theorem is also named "CPCTC", which stands for "Corresponding Parts of Congruent Triangles are Congruent", see https://en.wikipedia.org/wiki/Congruence_(geometry)#CPCTC 28437. (Contributed by Thierry Arnoux, 18-Jan-2023.)
Hypotheses
Ref Expression
dfcgrg2.p 𝑃 = (Base‘𝐺)
dfcgrg2.m = (dist‘𝐺)
dfcgrg2.g (𝜑𝐺 ∈ TarskiG)
dfcgrg2.a (𝜑𝐴𝑃)
dfcgrg2.b (𝜑𝐵𝑃)
dfcgrg2.c (𝜑𝐶𝑃)
dfcgrg2.d (𝜑𝐷𝑃)
dfcgrg2.e (𝜑𝐸𝑃)
dfcgrg2.f (𝜑𝐹𝑃)
dfcgrg2.1 (𝜑𝐴𝐵)
dfcgrg2.2 (𝜑𝐵𝐶)
dfcgrg2.3 (𝜑𝐶𝐴)
Assertion
Ref Expression
dfcgrg2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ (((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷)) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐹𝐷𝐸”⟩ ∧ ⟨“𝐵𝐶𝐴”⟩(cgrA‘𝐺)⟨“𝐸𝐹𝐷”⟩))))

Proof of Theorem dfcgrg2
StepHypRef Expression
1 dfcgrg2.p . . . . . 6 𝑃 = (Base‘𝐺)
2 dfcgrg2.m . . . . . 6 = (dist‘𝐺)
3 eqid 2726 . . . . . 6 (Itv‘𝐺) = (Itv‘𝐺)
4 dfcgrg2.g . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
54adantr 479 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐺 ∈ TarskiG)
6 dfcgrg2.a . . . . . . 7 (𝜑𝐴𝑃)
76adantr 479 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐴𝑃)
8 dfcgrg2.b . . . . . . 7 (𝜑𝐵𝑃)
98adantr 479 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐵𝑃)
10 dfcgrg2.c . . . . . . 7 (𝜑𝐶𝑃)
1110adantr 479 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐶𝑃)
12 dfcgrg2.d . . . . . . 7 (𝜑𝐷𝑃)
1312adantr 479 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐷𝑃)
14 dfcgrg2.e . . . . . . 7 (𝜑𝐸𝑃)
1514adantr 479 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐸𝑃)
16 dfcgrg2.f . . . . . . 7 (𝜑𝐹𝑃)
1716adantr 479 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐹𝑃)
18 eqid 2726 . . . . . . . . 9 (cgrG‘𝐺) = (cgrG‘𝐺)
191, 2, 18, 4, 6, 8, 10, 12, 14, 16trgcgrg 28436 . . . . . . . 8 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷))))
2019biimpa 475 . . . . . . 7 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → ((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷)))
2120simp1d 1139 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → (𝐴 𝐵) = (𝐷 𝐸))
2220simp2d 1140 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → (𝐵 𝐶) = (𝐸 𝐹))
2320simp3d 1141 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → (𝐶 𝐴) = (𝐹 𝐷))
24 dfcgrg2.1 . . . . . . 7 (𝜑𝐴𝐵)
2524adantr 479 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐴𝐵)
26 dfcgrg2.2 . . . . . . 7 (𝜑𝐵𝐶)
2726adantr 479 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐵𝐶)
28 dfcgrg2.3 . . . . . . 7 (𝜑𝐶𝐴)
2928adantr 479 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐶𝐴)
301, 2, 3, 5, 7, 9, 11, 13, 15, 17, 21, 22, 23, 25, 27, 29tgsss1 28781 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
311, 2, 3, 5, 11, 7, 9, 17, 13, 15, 23, 21, 22, 29, 25, 27tgsss1 28781 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐹𝐷𝐸”⟩)
321, 2, 3, 5, 9, 11, 7, 15, 17, 13, 22, 23, 21, 27, 29, 25tgsss1 28781 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → ⟨“𝐵𝐶𝐴”⟩(cgrA‘𝐺)⟨“𝐸𝐹𝐷”⟩)
3330, 31, 323jca 1125 . . . 4 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐹𝐷𝐸”⟩ ∧ ⟨“𝐵𝐶𝐴”⟩(cgrA‘𝐺)⟨“𝐸𝐹𝐷”⟩))
3433ex 411 . . 3 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐹𝐷𝐸”⟩ ∧ ⟨“𝐵𝐶𝐴”⟩(cgrA‘𝐺)⟨“𝐸𝐹𝐷”⟩)))
3534pm4.71d 560 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐹𝐷𝐸”⟩ ∧ ⟨“𝐵𝐶𝐴”⟩(cgrA‘𝐺)⟨“𝐸𝐹𝐷”⟩))))
3619anbi1d 629 . 2 (𝜑 → ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐹𝐷𝐸”⟩ ∧ ⟨“𝐵𝐶𝐴”⟩(cgrA‘𝐺)⟨“𝐸𝐹𝐷”⟩)) ↔ (((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷)) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐹𝐷𝐸”⟩ ∧ ⟨“𝐵𝐶𝐴”⟩(cgrA‘𝐺)⟨“𝐸𝐹𝐷”⟩))))
3735, 36bitrd 278 1 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ (((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷)) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐹𝐷𝐸”⟩ ∧ ⟨“𝐵𝐶𝐴”⟩(cgrA‘𝐺)⟨“𝐸𝐹𝐷”⟩))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930   class class class wbr 5143  cfv 6543  (class class class)co 7413  ⟨“cs3 14843  Basecbs 17205  distcds 17267  TarskiGcstrkg 28348  Itvcitv 28354  cgrGccgrg 28431  cgrAccgra 28728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7735  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6302  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8723  df-map 8846  df-pm 8847  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-card 9972  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12256  df-2 12318  df-3 12319  df-n0 12516  df-z 12602  df-uz 12866  df-fz 13530  df-fzo 13673  df-hash 14340  df-word 14515  df-concat 14571  df-s1 14596  df-s2 14849  df-s3 14850  df-trkgc 28369  df-trkgcb 28371  df-trkg 28374  df-cgrg 28432  df-hlg 28522  df-cgra 28729
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator