MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfcgrg2 Structured version   Visualization version   GIF version

Theorem dfcgrg2 26649
Description: Congruence for two triangles can also be defined as congruence of sides and angles (6 parts). This is often the actual textbook definition of triangle congruence, see for example https://en.wikipedia.org/wiki/Congruence_(geometry)#Congruence_of_triangles With this definition, the "SSS" congruence theorem has an additional part, namely, that triangle congruence implies congruence of the sides (which means equality of the lengths). Because our development of elementary geometry strives to closely follow Schwabhaeuser's, our original definition of shape congruence, df-cgrg 26297, already covers that part: see trgcgr 26302. This theorem is also named "CPCTC", which stands for "Corresponding Parts of Congruent Triangles are Congruent", see https://en.wikipedia.org/wiki/Congruence_(geometry)#CPCTC 26302 (Contributed by Thierry Arnoux, 18-Jan-2023.)
Hypotheses
Ref Expression
dfcgrg2.p 𝑃 = (Base‘𝐺)
dfcgrg2.m = (dist‘𝐺)
dfcgrg2.g (𝜑𝐺 ∈ TarskiG)
dfcgrg2.a (𝜑𝐴𝑃)
dfcgrg2.b (𝜑𝐵𝑃)
dfcgrg2.c (𝜑𝐶𝑃)
dfcgrg2.d (𝜑𝐷𝑃)
dfcgrg2.e (𝜑𝐸𝑃)
dfcgrg2.f (𝜑𝐹𝑃)
dfcgrg2.1 (𝜑𝐴𝐵)
dfcgrg2.2 (𝜑𝐵𝐶)
dfcgrg2.3 (𝜑𝐶𝐴)
Assertion
Ref Expression
dfcgrg2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ (((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷)) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐹𝐷𝐸”⟩ ∧ ⟨“𝐵𝐶𝐴”⟩(cgrA‘𝐺)⟨“𝐸𝐹𝐷”⟩))))

Proof of Theorem dfcgrg2
StepHypRef Expression
1 dfcgrg2.p . . . . . 6 𝑃 = (Base‘𝐺)
2 dfcgrg2.m . . . . . 6 = (dist‘𝐺)
3 eqid 2821 . . . . . 6 (Itv‘𝐺) = (Itv‘𝐺)
4 dfcgrg2.g . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
54adantr 483 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐺 ∈ TarskiG)
6 dfcgrg2.a . . . . . . 7 (𝜑𝐴𝑃)
76adantr 483 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐴𝑃)
8 dfcgrg2.b . . . . . . 7 (𝜑𝐵𝑃)
98adantr 483 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐵𝑃)
10 dfcgrg2.c . . . . . . 7 (𝜑𝐶𝑃)
1110adantr 483 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐶𝑃)
12 dfcgrg2.d . . . . . . 7 (𝜑𝐷𝑃)
1312adantr 483 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐷𝑃)
14 dfcgrg2.e . . . . . . 7 (𝜑𝐸𝑃)
1514adantr 483 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐸𝑃)
16 dfcgrg2.f . . . . . . 7 (𝜑𝐹𝑃)
1716adantr 483 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐹𝑃)
18 eqid 2821 . . . . . . . . 9 (cgrG‘𝐺) = (cgrG‘𝐺)
191, 2, 18, 4, 6, 8, 10, 12, 14, 16trgcgrg 26301 . . . . . . . 8 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷))))
2019biimpa 479 . . . . . . 7 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → ((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷)))
2120simp1d 1138 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → (𝐴 𝐵) = (𝐷 𝐸))
2220simp2d 1139 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → (𝐵 𝐶) = (𝐸 𝐹))
2320simp3d 1140 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → (𝐶 𝐴) = (𝐹 𝐷))
24 dfcgrg2.1 . . . . . . 7 (𝜑𝐴𝐵)
2524adantr 483 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐴𝐵)
26 dfcgrg2.2 . . . . . . 7 (𝜑𝐵𝐶)
2726adantr 483 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐵𝐶)
28 dfcgrg2.3 . . . . . . 7 (𝜑𝐶𝐴)
2928adantr 483 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐶𝐴)
301, 2, 3, 5, 7, 9, 11, 13, 15, 17, 21, 22, 23, 25, 27, 29tgsss1 26646 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
311, 2, 3, 5, 11, 7, 9, 17, 13, 15, 23, 21, 22, 29, 25, 27tgsss1 26646 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐹𝐷𝐸”⟩)
321, 2, 3, 5, 9, 11, 7, 15, 17, 13, 22, 23, 21, 27, 29, 25tgsss1 26646 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → ⟨“𝐵𝐶𝐴”⟩(cgrA‘𝐺)⟨“𝐸𝐹𝐷”⟩)
3330, 31, 323jca 1124 . . . 4 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐹𝐷𝐸”⟩ ∧ ⟨“𝐵𝐶𝐴”⟩(cgrA‘𝐺)⟨“𝐸𝐹𝐷”⟩))
3433ex 415 . . 3 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐹𝐷𝐸”⟩ ∧ ⟨“𝐵𝐶𝐴”⟩(cgrA‘𝐺)⟨“𝐸𝐹𝐷”⟩)))
3534pm4.71d 564 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐹𝐷𝐸”⟩ ∧ ⟨“𝐵𝐶𝐴”⟩(cgrA‘𝐺)⟨“𝐸𝐹𝐷”⟩))))
3619anbi1d 631 . 2 (𝜑 → ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐹𝐷𝐸”⟩ ∧ ⟨“𝐵𝐶𝐴”⟩(cgrA‘𝐺)⟨“𝐸𝐹𝐷”⟩)) ↔ (((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷)) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐹𝐷𝐸”⟩ ∧ ⟨“𝐵𝐶𝐴”⟩(cgrA‘𝐺)⟨“𝐸𝐹𝐷”⟩))))
3735, 36bitrd 281 1 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ (((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷)) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐹𝐷𝐸”⟩ ∧ ⟨“𝐵𝐶𝐴”⟩(cgrA‘𝐺)⟨“𝐸𝐹𝐷”⟩))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016   class class class wbr 5066  cfv 6355  (class class class)co 7156  ⟨“cs3 14204  Basecbs 16483  distcds 16574  TarskiGcstrkg 26216  Itvcitv 26222  cgrGccgrg 26296  cgrAccgra 26593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-hash 13692  df-word 13863  df-concat 13923  df-s1 13950  df-s2 14210  df-s3 14211  df-trkgc 26234  df-trkgcb 26236  df-trkg 26239  df-cgrg 26297  df-hlg 26387  df-cgra 26594
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator