MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfcgrg2 Structured version   Visualization version   GIF version

Theorem dfcgrg2 26908
Description: Congruence for two triangles can also be defined as congruence of sides and angles (6 parts). This is often the actual textbook definition of triangle congruence, see for example https://en.wikipedia.org/wiki/Congruence_(geometry)#Congruence_of_triangles. With this definition, the "SSS" congruence theorem has an additional part, namely, that triangle congruence implies congruence of the sides (which means equality of the lengths). Because our development of elementary geometry strives to closely follow Schwabhaeuser's, our original definition of shape congruence, df-cgrg 26556, already covers that part: see trgcgr 26561. This theorem is also named "CPCTC", which stands for "Corresponding Parts of Congruent Triangles are Congruent", see https://en.wikipedia.org/wiki/Congruence_(geometry)#CPCTC 26561. (Contributed by Thierry Arnoux, 18-Jan-2023.)
Hypotheses
Ref Expression
dfcgrg2.p 𝑃 = (Base‘𝐺)
dfcgrg2.m = (dist‘𝐺)
dfcgrg2.g (𝜑𝐺 ∈ TarskiG)
dfcgrg2.a (𝜑𝐴𝑃)
dfcgrg2.b (𝜑𝐵𝑃)
dfcgrg2.c (𝜑𝐶𝑃)
dfcgrg2.d (𝜑𝐷𝑃)
dfcgrg2.e (𝜑𝐸𝑃)
dfcgrg2.f (𝜑𝐹𝑃)
dfcgrg2.1 (𝜑𝐴𝐵)
dfcgrg2.2 (𝜑𝐵𝐶)
dfcgrg2.3 (𝜑𝐶𝐴)
Assertion
Ref Expression
dfcgrg2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ (((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷)) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐹𝐷𝐸”⟩ ∧ ⟨“𝐵𝐶𝐴”⟩(cgrA‘𝐺)⟨“𝐸𝐹𝐷”⟩))))

Proof of Theorem dfcgrg2
StepHypRef Expression
1 dfcgrg2.p . . . . . 6 𝑃 = (Base‘𝐺)
2 dfcgrg2.m . . . . . 6 = (dist‘𝐺)
3 eqid 2736 . . . . . 6 (Itv‘𝐺) = (Itv‘𝐺)
4 dfcgrg2.g . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
54adantr 484 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐺 ∈ TarskiG)
6 dfcgrg2.a . . . . . . 7 (𝜑𝐴𝑃)
76adantr 484 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐴𝑃)
8 dfcgrg2.b . . . . . . 7 (𝜑𝐵𝑃)
98adantr 484 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐵𝑃)
10 dfcgrg2.c . . . . . . 7 (𝜑𝐶𝑃)
1110adantr 484 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐶𝑃)
12 dfcgrg2.d . . . . . . 7 (𝜑𝐷𝑃)
1312adantr 484 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐷𝑃)
14 dfcgrg2.e . . . . . . 7 (𝜑𝐸𝑃)
1514adantr 484 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐸𝑃)
16 dfcgrg2.f . . . . . . 7 (𝜑𝐹𝑃)
1716adantr 484 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐹𝑃)
18 eqid 2736 . . . . . . . . 9 (cgrG‘𝐺) = (cgrG‘𝐺)
191, 2, 18, 4, 6, 8, 10, 12, 14, 16trgcgrg 26560 . . . . . . . 8 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷))))
2019biimpa 480 . . . . . . 7 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → ((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷)))
2120simp1d 1144 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → (𝐴 𝐵) = (𝐷 𝐸))
2220simp2d 1145 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → (𝐵 𝐶) = (𝐸 𝐹))
2320simp3d 1146 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → (𝐶 𝐴) = (𝐹 𝐷))
24 dfcgrg2.1 . . . . . . 7 (𝜑𝐴𝐵)
2524adantr 484 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐴𝐵)
26 dfcgrg2.2 . . . . . . 7 (𝜑𝐵𝐶)
2726adantr 484 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐵𝐶)
28 dfcgrg2.3 . . . . . . 7 (𝜑𝐶𝐴)
2928adantr 484 . . . . . 6 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐶𝐴)
301, 2, 3, 5, 7, 9, 11, 13, 15, 17, 21, 22, 23, 25, 27, 29tgsss1 26905 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
311, 2, 3, 5, 11, 7, 9, 17, 13, 15, 23, 21, 22, 29, 25, 27tgsss1 26905 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐹𝐷𝐸”⟩)
321, 2, 3, 5, 9, 11, 7, 15, 17, 13, 22, 23, 21, 27, 29, 25tgsss1 26905 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → ⟨“𝐵𝐶𝐴”⟩(cgrA‘𝐺)⟨“𝐸𝐹𝐷”⟩)
3330, 31, 323jca 1130 . . . 4 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩) → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐹𝐷𝐸”⟩ ∧ ⟨“𝐵𝐶𝐴”⟩(cgrA‘𝐺)⟨“𝐸𝐹𝐷”⟩))
3433ex 416 . . 3 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐹𝐷𝐸”⟩ ∧ ⟨“𝐵𝐶𝐴”⟩(cgrA‘𝐺)⟨“𝐸𝐹𝐷”⟩)))
3534pm4.71d 565 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐹𝐷𝐸”⟩ ∧ ⟨“𝐵𝐶𝐴”⟩(cgrA‘𝐺)⟨“𝐸𝐹𝐷”⟩))))
3619anbi1d 633 . 2 (𝜑 → ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐹𝐷𝐸”⟩ ∧ ⟨“𝐵𝐶𝐴”⟩(cgrA‘𝐺)⟨“𝐸𝐹𝐷”⟩)) ↔ (((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷)) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐹𝐷𝐸”⟩ ∧ ⟨“𝐵𝐶𝐴”⟩(cgrA‘𝐺)⟨“𝐸𝐹𝐷”⟩))))
3735, 36bitrd 282 1 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ (((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷)) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐹𝐷𝐸”⟩ ∧ ⟨“𝐵𝐶𝐴”⟩(cgrA‘𝐺)⟨“𝐸𝐹𝐷”⟩))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wne 2932   class class class wbr 5039  cfv 6358  (class class class)co 7191  ⟨“cs3 14372  Basecbs 16666  distcds 16758  TarskiGcstrkg 26475  Itvcitv 26481  cgrGccgrg 26555  cgrAccgra 26852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-map 8488  df-pm 8489  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-3 11859  df-n0 12056  df-z 12142  df-uz 12404  df-fz 13061  df-fzo 13204  df-hash 13862  df-word 14035  df-concat 14091  df-s1 14118  df-s2 14378  df-s3 14379  df-trkgc 26493  df-trkgcb 26495  df-trkg 26498  df-cgrg 26556  df-hlg 26646  df-cgra 26853
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator