| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfcgrg2 | Structured version Visualization version GIF version | ||
| Description: Congruence for two triangles can also be defined as congruence of sides and angles (6 parts). This is often the actual textbook definition of triangle congruence, see for example https://en.wikipedia.org/wiki/Congruence_(geometry)#Congruence_of_triangles. With this definition, the "SSS" congruence theorem has an additional part, namely, that triangle congruence implies congruence of the sides (which means equality of the lengths). Because our development of elementary geometry strives to closely follow Schwabhaeuser's, our original definition of shape congruence, df-cgrg 28484, already covers that part: see trgcgr 28489. This theorem is also named "CPCTC", which stands for "Corresponding Parts of Congruent Triangles are Congruent", see https://en.wikipedia.org/wiki/Congruence_(geometry)#CPCTC 28489. (Contributed by Thierry Arnoux, 18-Jan-2023.) |
| Ref | Expression |
|---|---|
| dfcgrg2.p | ⊢ 𝑃 = (Base‘𝐺) |
| dfcgrg2.m | ⊢ − = (dist‘𝐺) |
| dfcgrg2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| dfcgrg2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| dfcgrg2.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| dfcgrg2.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| dfcgrg2.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| dfcgrg2.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
| dfcgrg2.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
| dfcgrg2.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| dfcgrg2.2 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
| dfcgrg2.3 | ⊢ (𝜑 → 𝐶 ≠ 𝐴) |
| Ref | Expression |
|---|---|
| dfcgrg2 | ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ (((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)) ∧ (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐶𝐴𝐵”〉(cgrA‘𝐺)〈“𝐹𝐷𝐸”〉 ∧ 〈“𝐵𝐶𝐴”〉(cgrA‘𝐺)〈“𝐸𝐹𝐷”〉)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcgrg2.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | dfcgrg2.m | . . . . . 6 ⊢ − = (dist‘𝐺) | |
| 3 | eqid 2731 | . . . . . 6 ⊢ (Itv‘𝐺) = (Itv‘𝐺) | |
| 4 | dfcgrg2.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) → 𝐺 ∈ TarskiG) |
| 6 | dfcgrg2.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 7 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) → 𝐴 ∈ 𝑃) |
| 8 | dfcgrg2.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 9 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) → 𝐵 ∈ 𝑃) |
| 10 | dfcgrg2.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) → 𝐶 ∈ 𝑃) |
| 12 | dfcgrg2.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 13 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) → 𝐷 ∈ 𝑃) |
| 14 | dfcgrg2.e | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
| 15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) → 𝐸 ∈ 𝑃) |
| 16 | dfcgrg2.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
| 17 | 16 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) → 𝐹 ∈ 𝑃) |
| 18 | eqid 2731 | . . . . . . . . 9 ⊢ (cgrG‘𝐺) = (cgrG‘𝐺) | |
| 19 | 1, 2, 18, 4, 6, 8, 10, 12, 14, 16 | trgcgrg 28488 | . . . . . . . 8 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ ((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)))) |
| 20 | 19 | biimpa 476 | . . . . . . 7 ⊢ ((𝜑 ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) → ((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷))) |
| 21 | 20 | simp1d 1142 | . . . . . 6 ⊢ ((𝜑 ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) → (𝐴 − 𝐵) = (𝐷 − 𝐸)) |
| 22 | 20 | simp2d 1143 | . . . . . 6 ⊢ ((𝜑 ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) → (𝐵 − 𝐶) = (𝐸 − 𝐹)) |
| 23 | 20 | simp3d 1144 | . . . . . 6 ⊢ ((𝜑 ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) → (𝐶 − 𝐴) = (𝐹 − 𝐷)) |
| 24 | dfcgrg2.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 25 | 24 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) → 𝐴 ≠ 𝐵) |
| 26 | dfcgrg2.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
| 27 | 26 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) → 𝐵 ≠ 𝐶) |
| 28 | dfcgrg2.3 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ≠ 𝐴) | |
| 29 | 28 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) → 𝐶 ≠ 𝐴) |
| 30 | 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 21, 22, 23, 25, 27, 29 | tgsss1 28833 | . . . . 5 ⊢ ((𝜑 ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) |
| 31 | 1, 2, 3, 5, 11, 7, 9, 17, 13, 15, 23, 21, 22, 29, 25, 27 | tgsss1 28833 | . . . . 5 ⊢ ((𝜑 ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) → 〈“𝐶𝐴𝐵”〉(cgrA‘𝐺)〈“𝐹𝐷𝐸”〉) |
| 32 | 1, 2, 3, 5, 9, 11, 7, 15, 17, 13, 22, 23, 21, 27, 29, 25 | tgsss1 28833 | . . . . 5 ⊢ ((𝜑 ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) → 〈“𝐵𝐶𝐴”〉(cgrA‘𝐺)〈“𝐸𝐹𝐷”〉) |
| 33 | 30, 31, 32 | 3jca 1128 | . . . 4 ⊢ ((𝜑 ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) → (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐶𝐴𝐵”〉(cgrA‘𝐺)〈“𝐹𝐷𝐸”〉 ∧ 〈“𝐵𝐶𝐴”〉(cgrA‘𝐺)〈“𝐸𝐹𝐷”〉)) |
| 34 | 33 | ex 412 | . . 3 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉 → (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐶𝐴𝐵”〉(cgrA‘𝐺)〈“𝐹𝐷𝐸”〉 ∧ 〈“𝐵𝐶𝐴”〉(cgrA‘𝐺)〈“𝐸𝐹𝐷”〉))) |
| 35 | 34 | pm4.71d 561 | . 2 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐶𝐴𝐵”〉(cgrA‘𝐺)〈“𝐹𝐷𝐸”〉 ∧ 〈“𝐵𝐶𝐴”〉(cgrA‘𝐺)〈“𝐸𝐹𝐷”〉)))) |
| 36 | 19 | anbi1d 631 | . 2 ⊢ (𝜑 → ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐶𝐴𝐵”〉(cgrA‘𝐺)〈“𝐹𝐷𝐸”〉 ∧ 〈“𝐵𝐶𝐴”〉(cgrA‘𝐺)〈“𝐸𝐹𝐷”〉)) ↔ (((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)) ∧ (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐶𝐴𝐵”〉(cgrA‘𝐺)〈“𝐹𝐷𝐸”〉 ∧ 〈“𝐵𝐶𝐴”〉(cgrA‘𝐺)〈“𝐸𝐹𝐷”〉)))) |
| 37 | 35, 36 | bitrd 279 | 1 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ (((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)) ∧ (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐶𝐴𝐵”〉(cgrA‘𝐺)〈“𝐹𝐷𝐸”〉 ∧ 〈“𝐵𝐶𝐴”〉(cgrA‘𝐺)〈“𝐸𝐹𝐷”〉)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 〈“cs3 14744 Basecbs 17115 distcds 17165 TarskiGcstrkg 28400 Itvcitv 28406 cgrGccgrg 28483 cgrAccgra 28780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-fzo 13550 df-hash 14233 df-word 14416 df-concat 14473 df-s1 14499 df-s2 14750 df-s3 14751 df-trkgc 28421 df-trkgcb 28423 df-trkg 28426 df-cgrg 28484 df-hlg 28574 df-cgra 28781 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |