| Metamath
Proof Explorer Theorem List (p. 500 of 500) | < Previous Wrap > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30898) |
(30899-32421) |
(32422-49916) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | alsconv 49901 | There is an equivalence between the two "all some" forms. (Contributed by David A. Wheeler, 22-Oct-2018.) |
| ⊢ (∀!𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀!𝑥 ∈ 𝐴𝜑) | ||
| Theorem | alsi1d 49902 | Deduction rule: Given "all some" applied to a top-level inference, you can extract the "for all" part. (Contributed by David A. Wheeler, 20-Oct-2018.) |
| ⊢ (𝜑 → ∀!𝑥(𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → ∀𝑥(𝜓 → 𝜒)) | ||
| Theorem | alsi2d 49903 | Deduction rule: Given "all some" applied to a top-level inference, you can extract the "exists" part. (Contributed by David A. Wheeler, 20-Oct-2018.) |
| ⊢ (𝜑 → ∀!𝑥(𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → ∃𝑥𝜓) | ||
| Theorem | alsc1d 49904 | Deduction rule: Given "all some" applied to a class, you can extract the "for all" part. (Contributed by David A. Wheeler, 20-Oct-2018.) |
| ⊢ (𝜑 → ∀!𝑥 ∈ 𝐴𝜓) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | ||
| Theorem | alsc2d 49905 | Deduction rule: Given "all some" applied to a class, you can extract the "there exists" part. (Contributed by David A. Wheeler, 20-Oct-2018.) |
| ⊢ (𝜑 → ∀!𝑥 ∈ 𝐴𝜓) ⇒ ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) | ||
| Theorem | alscn0d 49906* | Deduction rule: Given "all some" applied to a class, the class is not the empty set. (Contributed by David A. Wheeler, 23-Oct-2018.) |
| ⊢ (𝜑 → ∀!𝑥 ∈ 𝐴𝜓) ⇒ ⊢ (𝜑 → 𝐴 ≠ ∅) | ||
| Theorem | alsi-no-surprise 49907 | Demonstrate that there is never a "surprise" when using the allsome quantifier, that is, it is never possible for the consequent to be both always true and always false. This uses the definition of df-alsi 49899; the proof itself builds on alimp-no-surprise 49892. For a contrast, see alimp-surprise 49891. (Contributed by David A. Wheeler, 27-Oct-2018.) |
| ⊢ ¬ (∀!𝑥(𝜑 → 𝜓) ∧ ∀!𝑥(𝜑 → ¬ 𝜓)) | ||
Miscellaneous proofs. | ||
| Theorem | 5m4e1 49908 | Prove that 5 - 4 = 1. (Contributed by David A. Wheeler, 31-Jan-2017.) |
| ⊢ (5 − 4) = 1 | ||
| Theorem | 2p2ne5 49909 | Prove that 2 + 2 ≠ 5. In George Orwell's "1984", Part One, Chapter Seven, the protagonist Winston notes that, "In the end the Party would announce that two and two made five, and you would have to believe it." http://www.sparknotes.com/lit/1984/section4.rhtml. More generally, the phrase 2 + 2 = 5 has come to represent an obviously false dogma one may be required to believe. See the Wikipedia article for more about this: https://en.wikipedia.org/wiki/2_%2B_2_%3D_5. Unsurprisingly, we can easily prove that this claim is false. (Contributed by David A. Wheeler, 31-Jan-2017.) |
| ⊢ (2 + 2) ≠ 5 | ||
| Theorem | resolution 49910 | Resolution rule. This is the primary inference rule in some automated theorem provers such as prover9. The resolution rule can be traced back to Davis and Putnam (1960). (Contributed by David A. Wheeler, 9-Feb-2017.) |
| ⊢ (((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒)) → (𝜓 ∨ 𝜒)) | ||
| Theorem | testable 49911 | In classical logic all wffs are testable, that is, it is always true that (¬ 𝜑 ∨ ¬ ¬ 𝜑). This is not necessarily true in intuitionistic logic. In intuitionistic logic, if this statement is true for some 𝜑, then 𝜑 is testable. The proof is trivial because it's simply a special case of the law of the excluded middle, which is true in classical logic but not necessarily true in intuitionisic logic. (Contributed by David A. Wheeler, 5-Dec-2018.) |
| ⊢ (¬ 𝜑 ∨ ¬ ¬ 𝜑) | ||
| Theorem | aacllem 49912* | Lemma for other theorems about 𝔸. (Contributed by Brendan Leahy, 3-Jan-2020.) (Revised by Alexander van der Vekens and David A. Wheeler, 25-Apr-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → 𝑋 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑛 ∈ (1...𝑁)) → 𝐶 ∈ ℚ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐴↑𝑘) = Σ𝑛 ∈ (1...𝑁)(𝐶 · 𝑋)) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝔸) | ||
| Theorem | amgmwlem 49913 | Weighted version of amgmlem 26927. (Contributed by Kunhao Zheng, 19-Jun-2021.) |
| ⊢ 𝑀 = (mulGrp‘ℂfld) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ+) & ⊢ (𝜑 → 𝑊:𝐴⟶ℝ+) & ⊢ (𝜑 → (ℂfld Σg 𝑊) = 1) ⇒ ⊢ (𝜑 → (𝑀 Σg (𝐹 ∘f ↑𝑐𝑊)) ≤ (ℂfld Σg (𝐹 ∘f · 𝑊))) | ||
| Theorem | amgmlemALT 49914 | Alternate proof of amgmlem 26927 using amgmwlem 49913. (Contributed by Kunhao Zheng, 20-Jun-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑀 = (mulGrp‘ℂfld) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ+) ⇒ ⊢ (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴))) | ||
| Theorem | amgmw2d 49915 | Weighted arithmetic-geometric mean inequality for 𝑛 = 2 (compare amgm2d 44301). (Contributed by Kunhao Zheng, 20-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝑃 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝑄 ∈ ℝ+) & ⊢ (𝜑 → (𝑃 + 𝑄) = 1) ⇒ ⊢ (𝜑 → ((𝐴↑𝑐𝑃) · (𝐵↑𝑐𝑄)) ≤ ((𝐴 · 𝑃) + (𝐵 · 𝑄))) | ||
| Theorem | young2d 49916 | Young's inequality for 𝑛 = 2, a direct application of amgmw2d 49915. (Contributed by Kunhao Zheng, 6-Jul-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝑃 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝑄 ∈ ℝ+) & ⊢ (𝜑 → ((1 / 𝑃) + (1 / 𝑄)) = 1) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ≤ (((𝐴↑𝑐𝑃) / 𝑃) + ((𝐵↑𝑐𝑄) / 𝑄))) | ||
| < Previous Wrap > |
| Copyright terms: Public domain | < Previous Wrap > |