Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reldmcmd Structured version   Visualization version   GIF version

Theorem reldmcmd 49653
Description: The domain of Colimit is a relation. (Contributed by Zhi Wang, 12-Nov-2025.)
Assertion
Ref Expression
reldmcmd Rel dom Colimit

Proof of Theorem reldmcmd
Dummy variables 𝑐 𝑑 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cmd 49651 . 2 Colimit = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑓 ∈ (𝑑 Func 𝑐) ↦ ((𝑐Δfunc𝑑)(𝑐 UP (𝑑 FuncCat 𝑐))𝑓)))
21reldmmpo 7487 1 Rel dom Colimit
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3438  cmpt 5176  dom cdm 5623  Rel wrel 5628  (class class class)co 7353   Func cfunc 17780   FuncCat cfuc 17871  Δfunccdiag 18137   UP cup 49178   Colimit ccmd 49649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-xp 5629  df-rel 5630  df-dm 5633  df-oprab 7357  df-mpo 7358  df-cmd 49651
This theorem is referenced by:  cmdfval  49655
  Copyright terms: Public domain W3C validator