Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reldmcmd Structured version   Visualization version   GIF version

Theorem reldmcmd 49470
Description: The domain of Colimit is a relation. (Contributed by Zhi Wang, 12-Nov-2025.)
Assertion
Ref Expression
reldmcmd Rel dom Colimit

Proof of Theorem reldmcmd
Dummy variables 𝑐 𝑑 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cmd 49468 . 2 Colimit = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑓 ∈ (𝑑 Func 𝑐) ↦ ((𝑐Δfunc𝑑)(𝑐 UP (𝑑 FuncCat 𝑐))𝑓)))
21reldmmpo 7539 1 Rel dom Colimit
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3459  cmpt 5201  dom cdm 5654  Rel wrel 5659  (class class class)co 7403   Func cfunc 17865   FuncCat cfuc 17956  Δfunccdiag 18222   UP cup 49056   Colimit ccmd 49466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-dm 5664  df-oprab 7407  df-mpo 7408  df-cmd 49468
This theorem is referenced by:  cmdfval  49472
  Copyright terms: Public domain W3C validator