| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reldmcmd | Structured version Visualization version GIF version | ||
| Description: The domain of Colimit is a relation. (Contributed by Zhi Wang, 12-Nov-2025.) |
| Ref | Expression |
|---|---|
| reldmcmd | ⊢ Rel dom Colimit |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cmd 49468 | . 2 ⊢ Colimit = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑓 ∈ (𝑑 Func 𝑐) ↦ ((𝑐Δfunc𝑑)(𝑐 UP (𝑑 FuncCat 𝑐))𝑓))) | |
| 2 | 1 | reldmmpo 7539 | 1 ⊢ Rel dom Colimit |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3459 ↦ cmpt 5201 dom cdm 5654 Rel wrel 5659 (class class class)co 7403 Func cfunc 17865 FuncCat cfuc 17956 Δfunccdiag 18222 UP cup 49056 Colimit ccmd 49466 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-dm 5664 df-oprab 7407 df-mpo 7408 df-cmd 49468 |
| This theorem is referenced by: cmdfval 49472 |
| Copyright terms: Public domain | W3C validator |