| Step | Hyp | Ref
| Expression |
| 1 | | lmddu.o |
. . . . 5
⊢ 𝑂 = (oppCat‘𝐶) |
| 2 | 1 | oveq1i 7379 |
. . . 4
⊢ (𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶))) = ((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶))) |
| 3 | 2 | oveqi 7382 |
. . 3
⊢ ((
oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) = (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) |
| 4 | | relup 49145 |
. . . 4
⊢ Rel ((
oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) |
| 5 | | relup 49145 |
. . . 4
⊢ Rel
((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺) |
| 6 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) → 𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) |
| 7 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) |
| 8 | | lmddu.p |
. . . . . . . 8
⊢ 𝑃 = (oppCat‘𝐷) |
| 9 | | lmddu.d |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ 𝑊) |
| 10 | 9 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐷 ∈ 𝑊) |
| 11 | | lmddu.c |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| 12 | 11 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐶 ∈ 𝑉) |
| 13 | | lmddu.g |
. . . . . . . . 9
⊢ 𝐺 = ( oppFunc ‘𝐹) |
| 14 | 7 | up1st2nd 49147 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝑥(〈(1st ‘(𝑂Δfunc𝑃)), (2nd
‘(𝑂Δfunc𝑃))〉(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) |
| 15 | | eqid 2729 |
. . . . . . . . . . 11
⊢ (𝑃 FuncCat 𝑂) = (𝑃 FuncCat 𝑂) |
| 16 | 15 | fucbas 17901 |
. . . . . . . . . 10
⊢ (𝑃 Func 𝑂) = (Base‘(𝑃 FuncCat 𝑂)) |
| 17 | 14, 16 | uprcl3 49152 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐺 ∈ (𝑃 Func 𝑂)) |
| 18 | 13, 17 | eqeltrrid 2833 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → ( oppFunc ‘𝐹) ∈ (𝑃 Func 𝑂)) |
| 19 | 8, 1, 10, 12, 18 | funcoppc5 49107 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐹 ∈ (𝐷 Func 𝐶)) |
| 20 | | eqid 2729 |
. . . . . . . 8
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 21 | 14, 1, 20 | oppcuprcl4 49161 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝑥 ∈ (Base‘𝐶)) |
| 22 | | eqid 2729 |
. . . . . . . . . 10
⊢ (𝑃 Nat 𝑂) = (𝑃 Nat 𝑂) |
| 23 | 15, 22 | fuchom 17902 |
. . . . . . . . 9
⊢ (𝑃 Nat 𝑂) = (Hom ‘(𝑃 FuncCat 𝑂)) |
| 24 | 14, 23 | uprcl5 49154 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝑚 ∈ (𝐺(𝑃 Nat 𝑂)((1st ‘(𝑂Δfunc𝑃))‘𝑥))) |
| 25 | | eqid 2729 |
. . . . . . . . 9
⊢ (𝐷 Nat 𝐶) = (𝐷 Nat 𝐶) |
| 26 | | eqid 2729 |
. . . . . . . . . . . . . . 15
⊢ (𝐶Δfunc𝐷) = (𝐶Δfunc𝐷) |
| 27 | | funcrcl 17801 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ (𝐷 Func 𝐶) → (𝐷 ∈ Cat ∧ 𝐶 ∈ Cat)) |
| 28 | 27 | simprd 495 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ (𝐷 Func 𝐶) → 𝐶 ∈ Cat) |
| 29 | 27 | simpld 494 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ (𝐷 Func 𝐶) → 𝐷 ∈ Cat) |
| 30 | | eqid 2729 |
. . . . . . . . . . . . . . 15
⊢ (𝐷 FuncCat 𝐶) = (𝐷 FuncCat 𝐶) |
| 31 | 26, 28, 29, 30 | diagcl 18178 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ (𝐷 Func 𝐶) → (𝐶Δfunc𝐷) ∈ (𝐶 Func (𝐷 FuncCat 𝐶))) |
| 32 | 31 | oppf1 49101 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ (𝐷 Func 𝐶) → (1st ‘( oppFunc
‘(𝐶Δfunc𝐷))) = (1st ‘(𝐶Δfunc𝐷))) |
| 33 | 32 | fveq1d 6842 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (𝐷 Func 𝐶) → ((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥) = ((1st ‘(𝐶Δfunc𝐷))‘𝑥)) |
| 34 | 33 | fveq2d 6844 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (𝐷 Func 𝐶) → ( oppFunc ‘((1st
‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)) = ( oppFunc ‘((1st
‘(𝐶Δfunc𝐷))‘𝑥))) |
| 35 | 19, 34 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → ( oppFunc ‘((1st
‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)) = ( oppFunc ‘((1st
‘(𝐶Δfunc𝐷))‘𝑥))) |
| 36 | 19, 28 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐶 ∈ Cat) |
| 37 | 19, 29 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐷 ∈ Cat) |
| 38 | 1, 8, 26, 36, 37, 20, 21 | oppfdiag1a 49377 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → ( oppFunc ‘((1st
‘(𝐶Δfunc𝐷))‘𝑥)) = ((1st ‘(𝑂Δfunc𝑃))‘𝑥)) |
| 39 | 35, 38 | eqtr2d 2765 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → ((1st ‘(𝑂Δfunc𝑃))‘𝑥) = ( oppFunc ‘((1st
‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥))) |
| 40 | 13 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐺 = ( oppFunc ‘𝐹)) |
| 41 | 8, 1, 25, 22, 39, 40, 10, 12 | natoppfb 49193 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → (((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹) = (𝐺(𝑃 Nat 𝑂)((1st ‘(𝑂Δfunc𝑃))‘𝑥))) |
| 42 | 24, 41 | eleqtrrd 2831 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝑚 ∈ (((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) |
| 43 | | simp1 1136 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝐹 ∈ (𝐷 Func 𝐶)) |
| 44 | 43 | fvresd 6860 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (( oppFunc ↾ (𝐷 Func 𝐶))‘𝐹) = ( oppFunc ‘𝐹)) |
| 45 | 44, 13 | eqtr4di 2782 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (( oppFunc ↾ (𝐷 Func 𝐶))‘𝐹) = 𝐺) |
| 46 | | eqid 2729 |
. . . . . . . . . 10
⊢
(oppCat‘(𝐷
FuncCat 𝐶)) =
(oppCat‘(𝐷 FuncCat
𝐶)) |
| 47 | | eqidd 2730 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ( oppFunc ↾ (𝐷 Func 𝐶)) = ( oppFunc ↾ (𝐷 Func 𝐶))) |
| 48 | | eqidd 2730 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓))) = (𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓)))) |
| 49 | 29 | 3ad2ant1 1133 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝐷 ∈ Cat) |
| 50 | 28 | 3ad2ant1 1133 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝐶 ∈ Cat) |
| 51 | 8, 1, 30, 46, 15, 25, 47, 48, 49, 50 | fucoppcffth 49373 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ( oppFunc ↾ (𝐷 Func 𝐶))(((oppCat‘(𝐷 FuncCat 𝐶)) Full (𝑃 FuncCat 𝑂)) ∩ ((oppCat‘(𝐷 FuncCat 𝐶)) Faith (𝑃 FuncCat 𝑂)))(𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓)))) |
| 52 | 1, 8, 26, 50, 49, 47, 25, 48 | oppfdiag 49378 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (〈( oppFunc ↾ (𝐷 Func 𝐶)), (𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓)))〉 ∘func (
oppFunc ‘(𝐶Δfunc𝐷))) = (𝑂Δfunc𝑃)) |
| 53 | | relfunc 17800 |
. . . . . . . . . . . 12
⊢ Rel
(𝑂 Func
(oppCat‘(𝐷 FuncCat
𝐶))) |
| 54 | 1, 46, 31 | oppfoppc2 49104 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ (𝐷 Func 𝐶) → ( oppFunc ‘(𝐶Δfunc𝐷)) ∈ (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶)))) |
| 55 | 43, 54 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ( oppFunc ‘(𝐶Δfunc𝐷)) ∈ (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶)))) |
| 56 | | 1st2nd 7997 |
. . . . . . . . . . . 12
⊢ ((Rel
(𝑂 Func
(oppCat‘(𝐷 FuncCat
𝐶))) ∧ ( oppFunc
‘(𝐶Δfunc𝐷)) ∈ (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶)))) → ( oppFunc ‘(𝐶Δfunc𝐷)) = 〈(1st
‘( oppFunc ‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc
‘(𝐶Δfunc𝐷)))〉) |
| 57 | 53, 55, 56 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ( oppFunc ‘(𝐶Δfunc𝐷)) = 〈(1st
‘( oppFunc ‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc
‘(𝐶Δfunc𝐷)))〉) |
| 58 | 57 | oveq2d 7385 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (〈( oppFunc ↾ (𝐷 Func 𝐶)), (𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓)))〉 ∘func (
oppFunc ‘(𝐶Δfunc𝐷))) = (〈( oppFunc ↾ (𝐷 Func 𝐶)), (𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓)))〉 ∘func
〈(1st ‘( oppFunc ‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc
‘(𝐶Δfunc𝐷)))〉)) |
| 59 | | relfunc 17800 |
. . . . . . . . . . 11
⊢ Rel
(𝑂 Func (𝑃 FuncCat 𝑂)) |
| 60 | | eqid 2729 |
. . . . . . . . . . . 12
⊢ (𝑂Δfunc𝑃) = (𝑂Δfunc𝑃) |
| 61 | 1 | oppccat 17659 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ Cat → 𝑂 ∈ Cat) |
| 62 | 50, 61 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝑂 ∈ Cat) |
| 63 | 8 | oppccat 17659 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∈ Cat → 𝑃 ∈ Cat) |
| 64 | 49, 63 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝑃 ∈ Cat) |
| 65 | 60, 62, 64, 15 | diagcl 18178 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑂Δfunc𝑃) ∈ (𝑂 Func (𝑃 FuncCat 𝑂))) |
| 66 | | 1st2nd 7997 |
. . . . . . . . . . 11
⊢ ((Rel
(𝑂 Func (𝑃 FuncCat 𝑂)) ∧ (𝑂Δfunc𝑃) ∈ (𝑂 Func (𝑃 FuncCat 𝑂))) → (𝑂Δfunc𝑃) = 〈(1st ‘(𝑂Δfunc𝑃)), (2nd
‘(𝑂Δfunc𝑃))〉) |
| 67 | 59, 65, 66 | sylancr 587 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑂Δfunc𝑃) = 〈(1st ‘(𝑂Δfunc𝑃)), (2nd
‘(𝑂Δfunc𝑃))〉) |
| 68 | 52, 58, 67 | 3eqtr3d 2772 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (〈( oppFunc ↾ (𝐷 Func 𝐶)), (𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓)))〉 ∘func
〈(1st ‘( oppFunc ‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc
‘(𝐶Δfunc𝐷)))〉) = 〈(1st
‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))〉) |
| 69 | 30 | fucbas 17901 |
. . . . . . . . . 10
⊢ (𝐷 Func 𝐶) = (Base‘(𝐷 FuncCat 𝐶)) |
| 70 | 46, 69 | oppcbas 17655 |
. . . . . . . . 9
⊢ (𝐷 Func 𝐶) = (Base‘(oppCat‘(𝐷 FuncCat 𝐶))) |
| 71 | 55 | func1st2nd 49038 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))(𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶)))(2nd ‘( oppFunc
‘(𝐶Δfunc𝐷)))) |
| 72 | 43, 33 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥) = ((1st ‘(𝐶Δfunc𝐷))‘𝑥)) |
| 73 | | simp2 1137 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝑥 ∈ (Base‘𝐶)) |
| 74 | | eqid 2729 |
. . . . . . . . . . . 12
⊢
((1st ‘(𝐶Δfunc𝐷))‘𝑥) = ((1st ‘(𝐶Δfunc𝐷))‘𝑥) |
| 75 | 26, 50, 49, 20, 73, 74 | diag1cl 18179 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ((1st ‘(𝐶Δfunc𝐷))‘𝑥) ∈ (𝐷 Func 𝐶)) |
| 76 | 72, 75 | eqeltrd 2828 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥) ∈ (𝐷 Func 𝐶)) |
| 77 | | eqidd 2730 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝑚 = 𝑚) |
| 78 | | simp3 1138 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝑚 ∈ (((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) |
| 79 | 48, 43, 76, 77, 78 | opf2 49368 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ((𝐹(𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓)))((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥))‘𝑚) = 𝑚) |
| 80 | | eqid 2729 |
. . . . . . . . 9
⊢ (Hom
‘(oppCat‘(𝐷
FuncCat 𝐶))) = (Hom
‘(oppCat‘(𝐷
FuncCat 𝐶))) |
| 81 | 30, 25 | fuchom 17902 |
. . . . . . . . . . 11
⊢ (𝐷 Nat 𝐶) = (Hom ‘(𝐷 FuncCat 𝐶)) |
| 82 | 81, 46 | oppchom 17652 |
. . . . . . . . . 10
⊢ (𝐹(Hom ‘(oppCat‘(𝐷 FuncCat 𝐶)))((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥)) = (((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹) |
| 83 | 78, 82 | eleqtrrdi 2839 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝑚 ∈ (𝐹(Hom ‘(oppCat‘(𝐷 FuncCat 𝐶)))((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥))) |
| 84 | 45, 51, 68, 70, 43, 71, 79, 80, 83 | uptr 49175 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑥(〈(1st ‘( oppFunc
‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc
‘(𝐶Δfunc𝐷)))〉(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚 ↔ 𝑥(〈(1st ‘(𝑂Δfunc𝑃)), (2nd
‘(𝑂Δfunc𝑃))〉(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚)) |
| 85 | 55 | up1st2ndb 49149 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚 ↔ 𝑥(〈(1st ‘( oppFunc
‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc
‘(𝐶Δfunc𝐷)))〉(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚)) |
| 86 | 65 | up1st2ndb 49149 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚 ↔ 𝑥(〈(1st ‘(𝑂Δfunc𝑃)), (2nd
‘(𝑂Δfunc𝑃))〉(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚)) |
| 87 | 84, 85, 86 | 3bitr4d 311 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚 ↔ 𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚)) |
| 88 | 19, 21, 42, 87 | syl3anc 1373 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → (𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚 ↔ 𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚)) |
| 89 | 7, 88 | mpbird 257 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) |
| 90 | 6 | up1st2nd 49147 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) → 𝑥(〈(1st ‘( oppFunc
‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc
‘(𝐶Δfunc𝐷)))〉(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) |
| 91 | 90, 46, 69 | oppcuprcl3 49162 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) → 𝐹 ∈ (𝐷 Func 𝐶)) |
| 92 | 90, 1, 20 | oppcuprcl4 49161 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) → 𝑥 ∈ (Base‘𝐶)) |
| 93 | 90, 46, 81 | oppcuprcl5 49163 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) → 𝑚 ∈ (((1st ‘( oppFunc
‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) |
| 94 | 91, 92, 93, 87 | syl3anc 1373 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) → (𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚 ↔ 𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚)) |
| 95 | 6, 89, 94 | bibiad 839 |
. . . 4
⊢ (𝜑 → (𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚 ↔ 𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚)) |
| 96 | 4, 5, 95 | eqbrrdiv 5748 |
. . 3
⊢ (𝜑 → (( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) = ((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)) |
| 97 | 3, 96 | eqtr3id 2778 |
. 2
⊢ (𝜑 → (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) = ((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)) |
| 98 | | lmdfval2 49617 |
. 2
⊢ ((𝐶 Limit 𝐷)‘𝐹) = (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) |
| 99 | | cmdfval2 49618 |
. 2
⊢ ((𝑂 Colimit 𝑃)‘𝐺) = ((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺) |
| 100 | 97, 98, 99 | 3eqtr4g 2789 |
1
⊢ (𝜑 → ((𝐶 Limit 𝐷)‘𝐹) = ((𝑂 Colimit 𝑃)‘𝐺)) |