Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmddu Structured version   Visualization version   GIF version

Theorem lmddu 49828
Description: The duality of limits and colimits: limits of a diagram are colimits of an opposite diagram in opposite categories. (Contributed by Zhi Wang, 20-Nov-2025.)
Hypotheses
Ref Expression
lmddu.o 𝑂 = (oppCat‘𝐶)
lmddu.p 𝑃 = (oppCat‘𝐷)
lmddu.g 𝐺 = ( oppFunc ‘𝐹)
lmddu.c (𝜑𝐶𝑉)
lmddu.d (𝜑𝐷𝑊)
Assertion
Ref Expression
lmddu (𝜑 → ((𝐶 Limit 𝐷)‘𝐹) = ((𝑂 Colimit 𝑃)‘𝐺))

Proof of Theorem lmddu
Dummy variables 𝑓 𝑔 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmddu.o . . . . 5 𝑂 = (oppCat‘𝐶)
21oveq1i 7365 . . . 4 (𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶))) = ((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))
32oveqi 7368 . . 3 (( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) = (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)
4 relup 49344 . . . 4 Rel (( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)
5 relup 49344 . . . 4 Rel ((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)
6 simpr 484 . . . . 5 ((𝜑𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) → 𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚)
7 simpr 484 . . . . . 6 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚)
8 lmddu.p . . . . . . . 8 𝑃 = (oppCat‘𝐷)
9 lmddu.d . . . . . . . . 9 (𝜑𝐷𝑊)
109adantr 480 . . . . . . . 8 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐷𝑊)
11 lmddu.c . . . . . . . . 9 (𝜑𝐶𝑉)
1211adantr 480 . . . . . . . 8 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐶𝑉)
13 lmddu.g . . . . . . . . 9 𝐺 = ( oppFunc ‘𝐹)
147up1st2nd 49346 . . . . . . . . . 10 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝑥(⟨(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))⟩(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚)
15 eqid 2733 . . . . . . . . . . 11 (𝑃 FuncCat 𝑂) = (𝑃 FuncCat 𝑂)
1615fucbas 17878 . . . . . . . . . 10 (𝑃 Func 𝑂) = (Base‘(𝑃 FuncCat 𝑂))
1714, 16uprcl3 49351 . . . . . . . . 9 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐺 ∈ (𝑃 Func 𝑂))
1813, 17eqeltrrid 2838 . . . . . . . 8 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → ( oppFunc ‘𝐹) ∈ (𝑃 Func 𝑂))
198, 1, 10, 12, 18funcoppc5 49306 . . . . . . 7 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐹 ∈ (𝐷 Func 𝐶))
20 eqid 2733 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
2114, 1, 20oppcuprcl4 49360 . . . . . . 7 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝑥 ∈ (Base‘𝐶))
22 eqid 2733 . . . . . . . . . 10 (𝑃 Nat 𝑂) = (𝑃 Nat 𝑂)
2315, 22fuchom 17879 . . . . . . . . 9 (𝑃 Nat 𝑂) = (Hom ‘(𝑃 FuncCat 𝑂))
2414, 23uprcl5 49353 . . . . . . . 8 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝑚 ∈ (𝐺(𝑃 Nat 𝑂)((1st ‘(𝑂Δfunc𝑃))‘𝑥)))
25 eqid 2733 . . . . . . . . 9 (𝐷 Nat 𝐶) = (𝐷 Nat 𝐶)
26 eqid 2733 . . . . . . . . . . . . . . 15 (𝐶Δfunc𝐷) = (𝐶Δfunc𝐷)
27 funcrcl 17778 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (𝐷 Func 𝐶) → (𝐷 ∈ Cat ∧ 𝐶 ∈ Cat))
2827simprd 495 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐷 Func 𝐶) → 𝐶 ∈ Cat)
2927simpld 494 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐷 Func 𝐶) → 𝐷 ∈ Cat)
30 eqid 2733 . . . . . . . . . . . . . . 15 (𝐷 FuncCat 𝐶) = (𝐷 FuncCat 𝐶)
3126, 28, 29, 30diagcl 18155 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝐷 Func 𝐶) → (𝐶Δfunc𝐷) ∈ (𝐶 Func (𝐷 FuncCat 𝐶)))
3231oppf1 49300 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐷 Func 𝐶) → (1st ‘( oppFunc ‘(𝐶Δfunc𝐷))) = (1st ‘(𝐶Δfunc𝐷)))
3332fveq1d 6833 . . . . . . . . . . . 12 (𝐹 ∈ (𝐷 Func 𝐶) → ((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥) = ((1st ‘(𝐶Δfunc𝐷))‘𝑥))
3433fveq2d 6835 . . . . . . . . . . 11 (𝐹 ∈ (𝐷 Func 𝐶) → ( oppFunc ‘((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)) = ( oppFunc ‘((1st ‘(𝐶Δfunc𝐷))‘𝑥)))
3519, 34syl 17 . . . . . . . . . 10 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → ( oppFunc ‘((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)) = ( oppFunc ‘((1st ‘(𝐶Δfunc𝐷))‘𝑥)))
3619, 28syl 17 . . . . . . . . . . 11 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐶 ∈ Cat)
3719, 29syl 17 . . . . . . . . . . 11 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐷 ∈ Cat)
381, 8, 26, 36, 37, 20, 21oppfdiag1a 49576 . . . . . . . . . 10 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → ( oppFunc ‘((1st ‘(𝐶Δfunc𝐷))‘𝑥)) = ((1st ‘(𝑂Δfunc𝑃))‘𝑥))
3935, 38eqtr2d 2769 . . . . . . . . 9 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → ((1st ‘(𝑂Δfunc𝑃))‘𝑥) = ( oppFunc ‘((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)))
4013a1i 11 . . . . . . . . 9 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐺 = ( oppFunc ‘𝐹))
418, 1, 25, 22, 39, 40, 10, 12natoppfb 49392 . . . . . . . 8 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹) = (𝐺(𝑃 Nat 𝑂)((1st ‘(𝑂Δfunc𝑃))‘𝑥)))
4224, 41eleqtrrd 2836 . . . . . . 7 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹))
43 simp1 1136 . . . . . . . . . . 11 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝐹 ∈ (𝐷 Func 𝐶))
4443fvresd 6851 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (( oppFunc ↾ (𝐷 Func 𝐶))‘𝐹) = ( oppFunc ‘𝐹))
4544, 13eqtr4di 2786 . . . . . . . . 9 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (( oppFunc ↾ (𝐷 Func 𝐶))‘𝐹) = 𝐺)
46 eqid 2733 . . . . . . . . . 10 (oppCat‘(𝐷 FuncCat 𝐶)) = (oppCat‘(𝐷 FuncCat 𝐶))
47 eqidd 2734 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ( oppFunc ↾ (𝐷 Func 𝐶)) = ( oppFunc ↾ (𝐷 Func 𝐶)))
48 eqidd 2734 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓))) = (𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓))))
49293ad2ant1 1133 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝐷 ∈ Cat)
50283ad2ant1 1133 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝐶 ∈ Cat)
518, 1, 30, 46, 15, 25, 47, 48, 49, 50fucoppcffth 49572 . . . . . . . . 9 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ( oppFunc ↾ (𝐷 Func 𝐶))(((oppCat‘(𝐷 FuncCat 𝐶)) Full (𝑃 FuncCat 𝑂)) ∩ ((oppCat‘(𝐷 FuncCat 𝐶)) Faith (𝑃 FuncCat 𝑂)))(𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓))))
521, 8, 26, 50, 49, 47, 25, 48oppfdiag 49577 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (⟨( oppFunc ↾ (𝐷 Func 𝐶)), (𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓)))⟩ ∘func ( oppFunc ‘(𝐶Δfunc𝐷))) = (𝑂Δfunc𝑃))
53 relfunc 17777 . . . . . . . . . . . 12 Rel (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶)))
541, 46, 31oppfoppc2 49303 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐷 Func 𝐶) → ( oppFunc ‘(𝐶Δfunc𝐷)) ∈ (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶))))
5543, 54syl 17 . . . . . . . . . . . 12 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ( oppFunc ‘(𝐶Δfunc𝐷)) ∈ (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶))))
56 1st2nd 7980 . . . . . . . . . . . 12 ((Rel (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶))) ∧ ( oppFunc ‘(𝐶Δfunc𝐷)) ∈ (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶)))) → ( oppFunc ‘(𝐶Δfunc𝐷)) = ⟨(1st ‘( oppFunc ‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc ‘(𝐶Δfunc𝐷)))⟩)
5753, 55, 56sylancr 587 . . . . . . . . . . 11 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ( oppFunc ‘(𝐶Δfunc𝐷)) = ⟨(1st ‘( oppFunc ‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc ‘(𝐶Δfunc𝐷)))⟩)
5857oveq2d 7371 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (⟨( oppFunc ↾ (𝐷 Func 𝐶)), (𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓)))⟩ ∘func ( oppFunc ‘(𝐶Δfunc𝐷))) = (⟨( oppFunc ↾ (𝐷 Func 𝐶)), (𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓)))⟩ ∘func ⟨(1st ‘( oppFunc ‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc ‘(𝐶Δfunc𝐷)))⟩))
59 relfunc 17777 . . . . . . . . . . 11 Rel (𝑂 Func (𝑃 FuncCat 𝑂))
60 eqid 2733 . . . . . . . . . . . 12 (𝑂Δfunc𝑃) = (𝑂Δfunc𝑃)
611oppccat 17636 . . . . . . . . . . . . 13 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
6250, 61syl 17 . . . . . . . . . . . 12 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝑂 ∈ Cat)
638oppccat 17636 . . . . . . . . . . . . 13 (𝐷 ∈ Cat → 𝑃 ∈ Cat)
6449, 63syl 17 . . . . . . . . . . . 12 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝑃 ∈ Cat)
6560, 62, 64, 15diagcl 18155 . . . . . . . . . . 11 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑂Δfunc𝑃) ∈ (𝑂 Func (𝑃 FuncCat 𝑂)))
66 1st2nd 7980 . . . . . . . . . . 11 ((Rel (𝑂 Func (𝑃 FuncCat 𝑂)) ∧ (𝑂Δfunc𝑃) ∈ (𝑂 Func (𝑃 FuncCat 𝑂))) → (𝑂Δfunc𝑃) = ⟨(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))⟩)
6759, 65, 66sylancr 587 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑂Δfunc𝑃) = ⟨(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))⟩)
6852, 58, 673eqtr3d 2776 . . . . . . . . 9 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (⟨( oppFunc ↾ (𝐷 Func 𝐶)), (𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓)))⟩ ∘func ⟨(1st ‘( oppFunc ‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc ‘(𝐶Δfunc𝐷)))⟩) = ⟨(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))⟩)
6930fucbas 17878 . . . . . . . . . 10 (𝐷 Func 𝐶) = (Base‘(𝐷 FuncCat 𝐶))
7046, 69oppcbas 17632 . . . . . . . . 9 (𝐷 Func 𝐶) = (Base‘(oppCat‘(𝐷 FuncCat 𝐶)))
7155func1st2nd 49237 . . . . . . . . 9 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))(𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶)))(2nd ‘( oppFunc ‘(𝐶Δfunc𝐷))))
7243, 33syl 17 . . . . . . . . . . 11 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥) = ((1st ‘(𝐶Δfunc𝐷))‘𝑥))
73 simp2 1137 . . . . . . . . . . . 12 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝑥 ∈ (Base‘𝐶))
74 eqid 2733 . . . . . . . . . . . 12 ((1st ‘(𝐶Δfunc𝐷))‘𝑥) = ((1st ‘(𝐶Δfunc𝐷))‘𝑥)
7526, 50, 49, 20, 73, 74diag1cl 18156 . . . . . . . . . . 11 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ((1st ‘(𝐶Δfunc𝐷))‘𝑥) ∈ (𝐷 Func 𝐶))
7672, 75eqeltrd 2833 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥) ∈ (𝐷 Func 𝐶))
77 eqidd 2734 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝑚 = 𝑚)
78 simp3 1138 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹))
7948, 43, 76, 77, 78opf2 49567 . . . . . . . . 9 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ((𝐹(𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓)))((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥))‘𝑚) = 𝑚)
80 eqid 2733 . . . . . . . . 9 (Hom ‘(oppCat‘(𝐷 FuncCat 𝐶))) = (Hom ‘(oppCat‘(𝐷 FuncCat 𝐶)))
8130, 25fuchom 17879 . . . . . . . . . . 11 (𝐷 Nat 𝐶) = (Hom ‘(𝐷 FuncCat 𝐶))
8281, 46oppchom 17629 . . . . . . . . . 10 (𝐹(Hom ‘(oppCat‘(𝐷 FuncCat 𝐶)))((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)) = (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)
8378, 82eleqtrrdi 2844 . . . . . . . . 9 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝑚 ∈ (𝐹(Hom ‘(oppCat‘(𝐷 FuncCat 𝐶)))((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)))
8445, 51, 68, 70, 43, 71, 79, 80, 83uptr 49374 . . . . . . . 8 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑥(⟨(1st ‘( oppFunc ‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc ‘(𝐶Δfunc𝐷)))⟩(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚𝑥(⟨(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))⟩(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚))
8555up1st2ndb 49348 . . . . . . . 8 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚𝑥(⟨(1st ‘( oppFunc ‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc ‘(𝐶Δfunc𝐷)))⟩(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚))
8665up1st2ndb 49348 . . . . . . . 8 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚𝑥(⟨(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))⟩(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚))
8784, 85, 863bitr4d 311 . . . . . . 7 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚))
8819, 21, 42, 87syl3anc 1373 . . . . . 6 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → (𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚))
897, 88mpbird 257 . . . . 5 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚)
906up1st2nd 49346 . . . . . . 7 ((𝜑𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) → 𝑥(⟨(1st ‘( oppFunc ‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc ‘(𝐶Δfunc𝐷)))⟩(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚)
9190, 46, 69oppcuprcl3 49361 . . . . . 6 ((𝜑𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) → 𝐹 ∈ (𝐷 Func 𝐶))
9290, 1, 20oppcuprcl4 49360 . . . . . 6 ((𝜑𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) → 𝑥 ∈ (Base‘𝐶))
9390, 46, 81oppcuprcl5 49362 . . . . . 6 ((𝜑𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) → 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹))
9491, 92, 93, 87syl3anc 1373 . . . . 5 ((𝜑𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) → (𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚))
956, 89, 94bibiad 839 . . . 4 (𝜑 → (𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚))
964, 5, 95eqbrrdiv 5740 . . 3 (𝜑 → (( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) = ((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺))
973, 96eqtr3id 2782 . 2 (𝜑 → (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) = ((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺))
98 lmdfval2 49816 . 2 ((𝐶 Limit 𝐷)‘𝐹) = (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)
99 cmdfval2 49817 . 2 ((𝑂 Colimit 𝑃)‘𝐺) = ((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)
10097, 98, 993eqtr4g 2793 1 (𝜑 → ((𝐶 Limit 𝐷)‘𝐹) = ((𝑂 Colimit 𝑃)‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  cop 4583   class class class wbr 5095   I cid 5515  cres 5623  Rel wrel 5626  cfv 6489  (class class class)co 7355  cmpo 7357  1st c1st 7928  2nd c2nd 7929  Basecbs 17127  Hom chom 17179  Catccat 17578  oppCatcoppc 17625   Func cfunc 17769  func ccofu 17771   Nat cnat 17859   FuncCat cfuc 17860  Δfunccdiag 18126   oppFunc coppf 49283   UP cup 49334   Limit clmd 49804   Colimit ccmd 49805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-fz 13415  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-hom 17192  df-cco 17193  df-cat 17582  df-cid 17583  df-homf 17584  df-comf 17585  df-oppc 17626  df-sect 17662  df-inv 17663  df-iso 17664  df-func 17773  df-idfu 17774  df-cofu 17775  df-full 17821  df-fth 17822  df-nat 17861  df-fuc 17862  df-catc 18014  df-xpc 18086  df-1stf 18087  df-curf 18128  df-diag 18130  df-oppf 49284  df-up 49335  df-lmd 49806  df-cmd 49807
This theorem is referenced by:  cmddu  49829
  Copyright terms: Public domain W3C validator