Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmddu Structured version   Visualization version   GIF version

Theorem lmddu 49635
Description: The duality of limits and colimits: limits of a diagram are colimits of an opposite diagram in opposite categories. (Contributed by Zhi Wang, 20-Nov-2025.)
Hypotheses
Ref Expression
lmddu.o 𝑂 = (oppCat‘𝐶)
lmddu.p 𝑃 = (oppCat‘𝐷)
lmddu.g 𝐺 = (oppFunc‘𝐹)
lmddu.c (𝜑𝐶𝑉)
lmddu.d (𝜑𝐷𝑊)
Assertion
Ref Expression
lmddu (𝜑 → ((𝐶 Limit 𝐷)‘𝐹) = ((𝑂 Colimit 𝑃)‘𝐺))

Proof of Theorem lmddu
Dummy variables 𝑓 𝑔 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmddu.o . . . . 5 𝑂 = (oppCat‘𝐶)
21oveq1i 7399 . . . 4 (𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶))) = ((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))
32oveqi 7402 . . 3 ((oppFunc‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) = ((oppFunc‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)
4 relup 49156 . . . 4 Rel ((oppFunc‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)
5 relup 49156 . . . 4 Rel ((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)
6 simpr 484 . . . . 5 ((𝜑𝑥((oppFunc‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) → 𝑥((oppFunc‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚)
7 simpr 484 . . . . . 6 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚)
8 lmddu.p . . . . . . . 8 𝑃 = (oppCat‘𝐷)
9 lmddu.d . . . . . . . . 9 (𝜑𝐷𝑊)
109adantr 480 . . . . . . . 8 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐷𝑊)
11 lmddu.c . . . . . . . . 9 (𝜑𝐶𝑉)
1211adantr 480 . . . . . . . 8 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐶𝑉)
13 lmddu.g . . . . . . . . 9 𝐺 = (oppFunc‘𝐹)
147up1st2nd 49158 . . . . . . . . . 10 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝑥(⟨(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))⟩(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚)
15 eqid 2730 . . . . . . . . . . 11 (𝑃 FuncCat 𝑂) = (𝑃 FuncCat 𝑂)
1615fucbas 17931 . . . . . . . . . 10 (𝑃 Func 𝑂) = (Base‘(𝑃 FuncCat 𝑂))
1714, 16uprcl3 49163 . . . . . . . . 9 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐺 ∈ (𝑃 Func 𝑂))
1813, 17eqeltrrid 2834 . . . . . . . 8 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → (oppFunc‘𝐹) ∈ (𝑃 Func 𝑂))
198, 1, 10, 12, 18funcoppc5 49122 . . . . . . 7 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐹 ∈ (𝐷 Func 𝐶))
20 eqid 2730 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
2114, 1, 20oppcuprcl4 49172 . . . . . . 7 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝑥 ∈ (Base‘𝐶))
22 eqid 2730 . . . . . . . . . 10 (𝑃 Nat 𝑂) = (𝑃 Nat 𝑂)
2315, 22fuchom 17932 . . . . . . . . 9 (𝑃 Nat 𝑂) = (Hom ‘(𝑃 FuncCat 𝑂))
2414, 23uprcl5 49165 . . . . . . . 8 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝑚 ∈ (𝐺(𝑃 Nat 𝑂)((1st ‘(𝑂Δfunc𝑃))‘𝑥)))
25 eqid 2730 . . . . . . . . 9 (𝐷 Nat 𝐶) = (𝐷 Nat 𝐶)
26 eqid 2730 . . . . . . . . . . . . . . 15 (𝐶Δfunc𝐷) = (𝐶Δfunc𝐷)
27 funcrcl 17831 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (𝐷 Func 𝐶) → (𝐷 ∈ Cat ∧ 𝐶 ∈ Cat))
2827simprd 495 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐷 Func 𝐶) → 𝐶 ∈ Cat)
2927simpld 494 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐷 Func 𝐶) → 𝐷 ∈ Cat)
30 eqid 2730 . . . . . . . . . . . . . . 15 (𝐷 FuncCat 𝐶) = (𝐷 FuncCat 𝐶)
3126, 28, 29, 30diagcl 18208 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝐷 Func 𝐶) → (𝐶Δfunc𝐷) ∈ (𝐶 Func (𝐷 FuncCat 𝐶)))
3231oppf1 49116 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐷 Func 𝐶) → (1st ‘(oppFunc‘(𝐶Δfunc𝐷))) = (1st ‘(𝐶Δfunc𝐷)))
3332fveq1d 6862 . . . . . . . . . . . 12 (𝐹 ∈ (𝐷 Func 𝐶) → ((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥) = ((1st ‘(𝐶Δfunc𝐷))‘𝑥))
3433fveq2d 6864 . . . . . . . . . . 11 (𝐹 ∈ (𝐷 Func 𝐶) → (oppFunc‘((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)) = (oppFunc‘((1st ‘(𝐶Δfunc𝐷))‘𝑥)))
3519, 34syl 17 . . . . . . . . . 10 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → (oppFunc‘((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)) = (oppFunc‘((1st ‘(𝐶Δfunc𝐷))‘𝑥)))
3619, 28syl 17 . . . . . . . . . . 11 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐶 ∈ Cat)
3719, 29syl 17 . . . . . . . . . . 11 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐷 ∈ Cat)
381, 8, 26, 36, 37, 20, 21oppfdiag1a 49384 . . . . . . . . . 10 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → (oppFunc‘((1st ‘(𝐶Δfunc𝐷))‘𝑥)) = ((1st ‘(𝑂Δfunc𝑃))‘𝑥))
3935, 38eqtr2d 2766 . . . . . . . . 9 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → ((1st ‘(𝑂Δfunc𝑃))‘𝑥) = (oppFunc‘((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)))
4013a1i 11 . . . . . . . . 9 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐺 = (oppFunc‘𝐹))
418, 1, 25, 22, 39, 40, 10, 12natoppfb 49202 . . . . . . . 8 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → (((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹) = (𝐺(𝑃 Nat 𝑂)((1st ‘(𝑂Δfunc𝑃))‘𝑥)))
4224, 41eleqtrrd 2832 . . . . . . 7 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝑚 ∈ (((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹))
43 simp1 1136 . . . . . . . . . . 11 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝐹 ∈ (𝐷 Func 𝐶))
4443fvresd 6880 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ((oppFunc ↾ (𝐷 Func 𝐶))‘𝐹) = (oppFunc‘𝐹))
4544, 13eqtr4di 2783 . . . . . . . . 9 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ((oppFunc ↾ (𝐷 Func 𝐶))‘𝐹) = 𝐺)
46 eqid 2730 . . . . . . . . . 10 (oppCat‘(𝐷 FuncCat 𝐶)) = (oppCat‘(𝐷 FuncCat 𝐶))
47 eqidd 2731 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (oppFunc ↾ (𝐷 Func 𝐶)) = (oppFunc ↾ (𝐷 Func 𝐶)))
48 eqidd 2731 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓))) = (𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓))))
49293ad2ant1 1133 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝐷 ∈ Cat)
50283ad2ant1 1133 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝐶 ∈ Cat)
518, 1, 30, 46, 15, 25, 47, 48, 49, 50fucoppcffth 49380 . . . . . . . . 9 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (oppFunc ↾ (𝐷 Func 𝐶))(((oppCat‘(𝐷 FuncCat 𝐶)) Full (𝑃 FuncCat 𝑂)) ∩ ((oppCat‘(𝐷 FuncCat 𝐶)) Faith (𝑃 FuncCat 𝑂)))(𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓))))
521, 8, 26, 50, 49, 47, 25, 48oppfdiag 49385 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (⟨(oppFunc ↾ (𝐷 Func 𝐶)), (𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓)))⟩ ∘func (oppFunc‘(𝐶Δfunc𝐷))) = (𝑂Δfunc𝑃))
53 relfunc 17830 . . . . . . . . . . . 12 Rel (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶)))
541, 46, 31oppfoppc2 49119 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐷 Func 𝐶) → (oppFunc‘(𝐶Δfunc𝐷)) ∈ (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶))))
5543, 54syl 17 . . . . . . . . . . . 12 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (oppFunc‘(𝐶Δfunc𝐷)) ∈ (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶))))
56 1st2nd 8020 . . . . . . . . . . . 12 ((Rel (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶))) ∧ (oppFunc‘(𝐶Δfunc𝐷)) ∈ (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶)))) → (oppFunc‘(𝐶Δfunc𝐷)) = ⟨(1st ‘(oppFunc‘(𝐶Δfunc𝐷))), (2nd ‘(oppFunc‘(𝐶Δfunc𝐷)))⟩)
5753, 55, 56sylancr 587 . . . . . . . . . . 11 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (oppFunc‘(𝐶Δfunc𝐷)) = ⟨(1st ‘(oppFunc‘(𝐶Δfunc𝐷))), (2nd ‘(oppFunc‘(𝐶Δfunc𝐷)))⟩)
5857oveq2d 7405 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (⟨(oppFunc ↾ (𝐷 Func 𝐶)), (𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓)))⟩ ∘func (oppFunc‘(𝐶Δfunc𝐷))) = (⟨(oppFunc ↾ (𝐷 Func 𝐶)), (𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓)))⟩ ∘func ⟨(1st ‘(oppFunc‘(𝐶Δfunc𝐷))), (2nd ‘(oppFunc‘(𝐶Δfunc𝐷)))⟩))
59 relfunc 17830 . . . . . . . . . . 11 Rel (𝑂 Func (𝑃 FuncCat 𝑂))
60 eqid 2730 . . . . . . . . . . . 12 (𝑂Δfunc𝑃) = (𝑂Δfunc𝑃)
611oppccat 17689 . . . . . . . . . . . . 13 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
6250, 61syl 17 . . . . . . . . . . . 12 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝑂 ∈ Cat)
638oppccat 17689 . . . . . . . . . . . . 13 (𝐷 ∈ Cat → 𝑃 ∈ Cat)
6449, 63syl 17 . . . . . . . . . . . 12 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝑃 ∈ Cat)
6560, 62, 64, 15diagcl 18208 . . . . . . . . . . 11 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑂Δfunc𝑃) ∈ (𝑂 Func (𝑃 FuncCat 𝑂)))
66 1st2nd 8020 . . . . . . . . . . 11 ((Rel (𝑂 Func (𝑃 FuncCat 𝑂)) ∧ (𝑂Δfunc𝑃) ∈ (𝑂 Func (𝑃 FuncCat 𝑂))) → (𝑂Δfunc𝑃) = ⟨(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))⟩)
6759, 65, 66sylancr 587 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑂Δfunc𝑃) = ⟨(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))⟩)
6852, 58, 673eqtr3d 2773 . . . . . . . . 9 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (⟨(oppFunc ↾ (𝐷 Func 𝐶)), (𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓)))⟩ ∘func ⟨(1st ‘(oppFunc‘(𝐶Δfunc𝐷))), (2nd ‘(oppFunc‘(𝐶Δfunc𝐷)))⟩) = ⟨(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))⟩)
6930fucbas 17931 . . . . . . . . . 10 (𝐷 Func 𝐶) = (Base‘(𝐷 FuncCat 𝐶))
7046, 69oppcbas 17685 . . . . . . . . 9 (𝐷 Func 𝐶) = (Base‘(oppCat‘(𝐷 FuncCat 𝐶)))
7155func1st2nd 49053 . . . . . . . . 9 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (1st ‘(oppFunc‘(𝐶Δfunc𝐷)))(𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶)))(2nd ‘(oppFunc‘(𝐶Δfunc𝐷))))
7243, 33syl 17 . . . . . . . . . . 11 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥) = ((1st ‘(𝐶Δfunc𝐷))‘𝑥))
73 simp2 1137 . . . . . . . . . . . 12 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝑥 ∈ (Base‘𝐶))
74 eqid 2730 . . . . . . . . . . . 12 ((1st ‘(𝐶Δfunc𝐷))‘𝑥) = ((1st ‘(𝐶Δfunc𝐷))‘𝑥)
7526, 50, 49, 20, 73, 74diag1cl 18209 . . . . . . . . . . 11 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ((1st ‘(𝐶Δfunc𝐷))‘𝑥) ∈ (𝐷 Func 𝐶))
7672, 75eqeltrd 2829 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥) ∈ (𝐷 Func 𝐶))
77 eqidd 2731 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝑚 = 𝑚)
78 simp3 1138 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝑚 ∈ (((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹))
7948, 43, 76, 77, 78opf2 49375 . . . . . . . . 9 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ((𝐹(𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓)))((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥))‘𝑚) = 𝑚)
80 eqid 2730 . . . . . . . . 9 (Hom ‘(oppCat‘(𝐷 FuncCat 𝐶))) = (Hom ‘(oppCat‘(𝐷 FuncCat 𝐶)))
8130, 25fuchom 17932 . . . . . . . . . . 11 (𝐷 Nat 𝐶) = (Hom ‘(𝐷 FuncCat 𝐶))
8281, 46oppchom 17682 . . . . . . . . . 10 (𝐹(Hom ‘(oppCat‘(𝐷 FuncCat 𝐶)))((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)) = (((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)
8378, 82eleqtrrdi 2840 . . . . . . . . 9 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝑚 ∈ (𝐹(Hom ‘(oppCat‘(𝐷 FuncCat 𝐶)))((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)))
8445, 51, 68, 70, 43, 71, 79, 80, 83uptr 49186 . . . . . . . 8 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑥(⟨(1st ‘(oppFunc‘(𝐶Δfunc𝐷))), (2nd ‘(oppFunc‘(𝐶Δfunc𝐷)))⟩(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚𝑥(⟨(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))⟩(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚))
8555up1st2ndb 49160 . . . . . . . 8 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑥((oppFunc‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚𝑥(⟨(1st ‘(oppFunc‘(𝐶Δfunc𝐷))), (2nd ‘(oppFunc‘(𝐶Δfunc𝐷)))⟩(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚))
8665up1st2ndb 49160 . . . . . . . 8 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚𝑥(⟨(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))⟩(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚))
8784, 85, 863bitr4d 311 . . . . . . 7 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑥((oppFunc‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚))
8819, 21, 42, 87syl3anc 1373 . . . . . 6 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → (𝑥((oppFunc‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚))
897, 88mpbird 257 . . . . 5 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝑥((oppFunc‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚)
906up1st2nd 49158 . . . . . . 7 ((𝜑𝑥((oppFunc‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) → 𝑥(⟨(1st ‘(oppFunc‘(𝐶Δfunc𝐷))), (2nd ‘(oppFunc‘(𝐶Δfunc𝐷)))⟩(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚)
9190, 46, 69oppcuprcl3 49173 . . . . . 6 ((𝜑𝑥((oppFunc‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) → 𝐹 ∈ (𝐷 Func 𝐶))
9290, 1, 20oppcuprcl4 49172 . . . . . 6 ((𝜑𝑥((oppFunc‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) → 𝑥 ∈ (Base‘𝐶))
9390, 46, 81oppcuprcl5 49174 . . . . . 6 ((𝜑𝑥((oppFunc‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) → 𝑚 ∈ (((1st ‘(oppFunc‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹))
9491, 92, 93, 87syl3anc 1373 . . . . 5 ((𝜑𝑥((oppFunc‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) → (𝑥((oppFunc‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚))
956, 89, 94bibiad 839 . . . 4 (𝜑 → (𝑥((oppFunc‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚))
964, 5, 95eqbrrdiv 5759 . . 3 (𝜑 → ((oppFunc‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) = ((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺))
973, 96eqtr3id 2779 . 2 (𝜑 → ((oppFunc‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) = ((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺))
98 lmdfval2 49623 . 2 ((𝐶 Limit 𝐷)‘𝐹) = ((oppFunc‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)
99 cmdfval2 49624 . 2 ((𝑂 Colimit 𝑃)‘𝐺) = ((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)
10097, 98, 993eqtr4g 2790 1 (𝜑 → ((𝐶 Limit 𝐷)‘𝐹) = ((𝑂 Colimit 𝑃)‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cop 4597   class class class wbr 5109   I cid 5534  cres 5642  Rel wrel 5645  cfv 6513  (class class class)co 7389  cmpo 7391  1st c1st 7968  2nd c2nd 7969  Basecbs 17185  Hom chom 17237  Catccat 17631  oppCatcoppc 17678   Func cfunc 17822  func ccofu 17824   Nat cnat 17912   FuncCat cfuc 17913  Δfunccdiag 18179  oppFunccoppf 49099   UP cup 49146   Limit clmd 49611   Colimit ccmd 49612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-map 8803  df-ixp 8873  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-fz 13475  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-hom 17250  df-cco 17251  df-cat 17635  df-cid 17636  df-homf 17637  df-comf 17638  df-oppc 17679  df-sect 17715  df-inv 17716  df-iso 17717  df-func 17826  df-idfu 17827  df-cofu 17828  df-full 17874  df-fth 17875  df-nat 17914  df-fuc 17915  df-catc 18067  df-xpc 18139  df-1stf 18140  df-curf 18181  df-diag 18183  df-oppf 49100  df-up 49147  df-lmd 49613  df-cmd 49614
This theorem is referenced by:  cmddu  49636
  Copyright terms: Public domain W3C validator