Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmddu Structured version   Visualization version   GIF version

Theorem lmddu 49672
Description: The duality of limits and colimits: limits of a diagram are colimits of an opposite diagram in opposite categories. (Contributed by Zhi Wang, 20-Nov-2025.)
Hypotheses
Ref Expression
lmddu.o 𝑂 = (oppCat‘𝐶)
lmddu.p 𝑃 = (oppCat‘𝐷)
lmddu.g 𝐺 = ( oppFunc ‘𝐹)
lmddu.c (𝜑𝐶𝑉)
lmddu.d (𝜑𝐷𝑊)
Assertion
Ref Expression
lmddu (𝜑 → ((𝐶 Limit 𝐷)‘𝐹) = ((𝑂 Colimit 𝑃)‘𝐺))

Proof of Theorem lmddu
Dummy variables 𝑓 𝑔 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmddu.o . . . . 5 𝑂 = (oppCat‘𝐶)
21oveq1i 7363 . . . 4 (𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶))) = ((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))
32oveqi 7366 . . 3 (( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) = (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)
4 relup 49188 . . . 4 Rel (( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)
5 relup 49188 . . . 4 Rel ((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)
6 simpr 484 . . . . 5 ((𝜑𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) → 𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚)
7 simpr 484 . . . . . 6 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚)
8 lmddu.p . . . . . . . 8 𝑃 = (oppCat‘𝐷)
9 lmddu.d . . . . . . . . 9 (𝜑𝐷𝑊)
109adantr 480 . . . . . . . 8 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐷𝑊)
11 lmddu.c . . . . . . . . 9 (𝜑𝐶𝑉)
1211adantr 480 . . . . . . . 8 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐶𝑉)
13 lmddu.g . . . . . . . . 9 𝐺 = ( oppFunc ‘𝐹)
147up1st2nd 49190 . . . . . . . . . 10 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝑥(⟨(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))⟩(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚)
15 eqid 2729 . . . . . . . . . . 11 (𝑃 FuncCat 𝑂) = (𝑃 FuncCat 𝑂)
1615fucbas 17889 . . . . . . . . . 10 (𝑃 Func 𝑂) = (Base‘(𝑃 FuncCat 𝑂))
1714, 16uprcl3 49195 . . . . . . . . 9 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐺 ∈ (𝑃 Func 𝑂))
1813, 17eqeltrrid 2833 . . . . . . . 8 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → ( oppFunc ‘𝐹) ∈ (𝑃 Func 𝑂))
198, 1, 10, 12, 18funcoppc5 49150 . . . . . . 7 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐹 ∈ (𝐷 Func 𝐶))
20 eqid 2729 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
2114, 1, 20oppcuprcl4 49204 . . . . . . 7 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝑥 ∈ (Base‘𝐶))
22 eqid 2729 . . . . . . . . . 10 (𝑃 Nat 𝑂) = (𝑃 Nat 𝑂)
2315, 22fuchom 17890 . . . . . . . . 9 (𝑃 Nat 𝑂) = (Hom ‘(𝑃 FuncCat 𝑂))
2414, 23uprcl5 49197 . . . . . . . 8 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝑚 ∈ (𝐺(𝑃 Nat 𝑂)((1st ‘(𝑂Δfunc𝑃))‘𝑥)))
25 eqid 2729 . . . . . . . . 9 (𝐷 Nat 𝐶) = (𝐷 Nat 𝐶)
26 eqid 2729 . . . . . . . . . . . . . . 15 (𝐶Δfunc𝐷) = (𝐶Δfunc𝐷)
27 funcrcl 17789 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (𝐷 Func 𝐶) → (𝐷 ∈ Cat ∧ 𝐶 ∈ Cat))
2827simprd 495 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐷 Func 𝐶) → 𝐶 ∈ Cat)
2927simpld 494 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐷 Func 𝐶) → 𝐷 ∈ Cat)
30 eqid 2729 . . . . . . . . . . . . . . 15 (𝐷 FuncCat 𝐶) = (𝐷 FuncCat 𝐶)
3126, 28, 29, 30diagcl 18166 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝐷 Func 𝐶) → (𝐶Δfunc𝐷) ∈ (𝐶 Func (𝐷 FuncCat 𝐶)))
3231oppf1 49144 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐷 Func 𝐶) → (1st ‘( oppFunc ‘(𝐶Δfunc𝐷))) = (1st ‘(𝐶Δfunc𝐷)))
3332fveq1d 6828 . . . . . . . . . . . 12 (𝐹 ∈ (𝐷 Func 𝐶) → ((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥) = ((1st ‘(𝐶Δfunc𝐷))‘𝑥))
3433fveq2d 6830 . . . . . . . . . . 11 (𝐹 ∈ (𝐷 Func 𝐶) → ( oppFunc ‘((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)) = ( oppFunc ‘((1st ‘(𝐶Δfunc𝐷))‘𝑥)))
3519, 34syl 17 . . . . . . . . . 10 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → ( oppFunc ‘((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)) = ( oppFunc ‘((1st ‘(𝐶Δfunc𝐷))‘𝑥)))
3619, 28syl 17 . . . . . . . . . . 11 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐶 ∈ Cat)
3719, 29syl 17 . . . . . . . . . . 11 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐷 ∈ Cat)
381, 8, 26, 36, 37, 20, 21oppfdiag1a 49420 . . . . . . . . . 10 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → ( oppFunc ‘((1st ‘(𝐶Δfunc𝐷))‘𝑥)) = ((1st ‘(𝑂Δfunc𝑃))‘𝑥))
3935, 38eqtr2d 2765 . . . . . . . . 9 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → ((1st ‘(𝑂Δfunc𝑃))‘𝑥) = ( oppFunc ‘((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)))
4013a1i 11 . . . . . . . . 9 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐺 = ( oppFunc ‘𝐹))
418, 1, 25, 22, 39, 40, 10, 12natoppfb 49236 . . . . . . . 8 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹) = (𝐺(𝑃 Nat 𝑂)((1st ‘(𝑂Δfunc𝑃))‘𝑥)))
4224, 41eleqtrrd 2831 . . . . . . 7 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹))
43 simp1 1136 . . . . . . . . . . 11 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝐹 ∈ (𝐷 Func 𝐶))
4443fvresd 6846 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (( oppFunc ↾ (𝐷 Func 𝐶))‘𝐹) = ( oppFunc ‘𝐹))
4544, 13eqtr4di 2782 . . . . . . . . 9 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (( oppFunc ↾ (𝐷 Func 𝐶))‘𝐹) = 𝐺)
46 eqid 2729 . . . . . . . . . 10 (oppCat‘(𝐷 FuncCat 𝐶)) = (oppCat‘(𝐷 FuncCat 𝐶))
47 eqidd 2730 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ( oppFunc ↾ (𝐷 Func 𝐶)) = ( oppFunc ↾ (𝐷 Func 𝐶)))
48 eqidd 2730 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓))) = (𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓))))
49293ad2ant1 1133 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝐷 ∈ Cat)
50283ad2ant1 1133 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝐶 ∈ Cat)
518, 1, 30, 46, 15, 25, 47, 48, 49, 50fucoppcffth 49416 . . . . . . . . 9 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ( oppFunc ↾ (𝐷 Func 𝐶))(((oppCat‘(𝐷 FuncCat 𝐶)) Full (𝑃 FuncCat 𝑂)) ∩ ((oppCat‘(𝐷 FuncCat 𝐶)) Faith (𝑃 FuncCat 𝑂)))(𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓))))
521, 8, 26, 50, 49, 47, 25, 48oppfdiag 49421 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (⟨( oppFunc ↾ (𝐷 Func 𝐶)), (𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓)))⟩ ∘func ( oppFunc ‘(𝐶Δfunc𝐷))) = (𝑂Δfunc𝑃))
53 relfunc 17788 . . . . . . . . . . . 12 Rel (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶)))
541, 46, 31oppfoppc2 49147 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐷 Func 𝐶) → ( oppFunc ‘(𝐶Δfunc𝐷)) ∈ (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶))))
5543, 54syl 17 . . . . . . . . . . . 12 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ( oppFunc ‘(𝐶Δfunc𝐷)) ∈ (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶))))
56 1st2nd 7981 . . . . . . . . . . . 12 ((Rel (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶))) ∧ ( oppFunc ‘(𝐶Δfunc𝐷)) ∈ (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶)))) → ( oppFunc ‘(𝐶Δfunc𝐷)) = ⟨(1st ‘( oppFunc ‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc ‘(𝐶Δfunc𝐷)))⟩)
5753, 55, 56sylancr 587 . . . . . . . . . . 11 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ( oppFunc ‘(𝐶Δfunc𝐷)) = ⟨(1st ‘( oppFunc ‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc ‘(𝐶Δfunc𝐷)))⟩)
5857oveq2d 7369 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (⟨( oppFunc ↾ (𝐷 Func 𝐶)), (𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓)))⟩ ∘func ( oppFunc ‘(𝐶Δfunc𝐷))) = (⟨( oppFunc ↾ (𝐷 Func 𝐶)), (𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓)))⟩ ∘func ⟨(1st ‘( oppFunc ‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc ‘(𝐶Δfunc𝐷)))⟩))
59 relfunc 17788 . . . . . . . . . . 11 Rel (𝑂 Func (𝑃 FuncCat 𝑂))
60 eqid 2729 . . . . . . . . . . . 12 (𝑂Δfunc𝑃) = (𝑂Δfunc𝑃)
611oppccat 17647 . . . . . . . . . . . . 13 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
6250, 61syl 17 . . . . . . . . . . . 12 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝑂 ∈ Cat)
638oppccat 17647 . . . . . . . . . . . . 13 (𝐷 ∈ Cat → 𝑃 ∈ Cat)
6449, 63syl 17 . . . . . . . . . . . 12 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝑃 ∈ Cat)
6560, 62, 64, 15diagcl 18166 . . . . . . . . . . 11 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑂Δfunc𝑃) ∈ (𝑂 Func (𝑃 FuncCat 𝑂)))
66 1st2nd 7981 . . . . . . . . . . 11 ((Rel (𝑂 Func (𝑃 FuncCat 𝑂)) ∧ (𝑂Δfunc𝑃) ∈ (𝑂 Func (𝑃 FuncCat 𝑂))) → (𝑂Δfunc𝑃) = ⟨(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))⟩)
6759, 65, 66sylancr 587 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑂Δfunc𝑃) = ⟨(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))⟩)
6852, 58, 673eqtr3d 2772 . . . . . . . . 9 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (⟨( oppFunc ↾ (𝐷 Func 𝐶)), (𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓)))⟩ ∘func ⟨(1st ‘( oppFunc ‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc ‘(𝐶Δfunc𝐷)))⟩) = ⟨(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))⟩)
6930fucbas 17889 . . . . . . . . . 10 (𝐷 Func 𝐶) = (Base‘(𝐷 FuncCat 𝐶))
7046, 69oppcbas 17643 . . . . . . . . 9 (𝐷 Func 𝐶) = (Base‘(oppCat‘(𝐷 FuncCat 𝐶)))
7155func1st2nd 49081 . . . . . . . . 9 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))(𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶)))(2nd ‘( oppFunc ‘(𝐶Δfunc𝐷))))
7243, 33syl 17 . . . . . . . . . . 11 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥) = ((1st ‘(𝐶Δfunc𝐷))‘𝑥))
73 simp2 1137 . . . . . . . . . . . 12 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝑥 ∈ (Base‘𝐶))
74 eqid 2729 . . . . . . . . . . . 12 ((1st ‘(𝐶Δfunc𝐷))‘𝑥) = ((1st ‘(𝐶Δfunc𝐷))‘𝑥)
7526, 50, 49, 20, 73, 74diag1cl 18167 . . . . . . . . . . 11 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ((1st ‘(𝐶Δfunc𝐷))‘𝑥) ∈ (𝐷 Func 𝐶))
7672, 75eqeltrd 2828 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥) ∈ (𝐷 Func 𝐶))
77 eqidd 2730 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝑚 = 𝑚)
78 simp3 1138 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹))
7948, 43, 76, 77, 78opf2 49411 . . . . . . . . 9 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ((𝐹(𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓)))((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥))‘𝑚) = 𝑚)
80 eqid 2729 . . . . . . . . 9 (Hom ‘(oppCat‘(𝐷 FuncCat 𝐶))) = (Hom ‘(oppCat‘(𝐷 FuncCat 𝐶)))
8130, 25fuchom 17890 . . . . . . . . . . 11 (𝐷 Nat 𝐶) = (Hom ‘(𝐷 FuncCat 𝐶))
8281, 46oppchom 17640 . . . . . . . . . 10 (𝐹(Hom ‘(oppCat‘(𝐷 FuncCat 𝐶)))((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)) = (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)
8378, 82eleqtrrdi 2839 . . . . . . . . 9 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝑚 ∈ (𝐹(Hom ‘(oppCat‘(𝐷 FuncCat 𝐶)))((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)))
8445, 51, 68, 70, 43, 71, 79, 80, 83uptr 49218 . . . . . . . 8 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑥(⟨(1st ‘( oppFunc ‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc ‘(𝐶Δfunc𝐷)))⟩(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚𝑥(⟨(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))⟩(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚))
8555up1st2ndb 49192 . . . . . . . 8 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚𝑥(⟨(1st ‘( oppFunc ‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc ‘(𝐶Δfunc𝐷)))⟩(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚))
8665up1st2ndb 49192 . . . . . . . 8 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚𝑥(⟨(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))⟩(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚))
8784, 85, 863bitr4d 311 . . . . . . 7 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚))
8819, 21, 42, 87syl3anc 1373 . . . . . 6 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → (𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚))
897, 88mpbird 257 . . . . 5 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚)
906up1st2nd 49190 . . . . . . 7 ((𝜑𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) → 𝑥(⟨(1st ‘( oppFunc ‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc ‘(𝐶Δfunc𝐷)))⟩(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚)
9190, 46, 69oppcuprcl3 49205 . . . . . 6 ((𝜑𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) → 𝐹 ∈ (𝐷 Func 𝐶))
9290, 1, 20oppcuprcl4 49204 . . . . . 6 ((𝜑𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) → 𝑥 ∈ (Base‘𝐶))
9390, 46, 81oppcuprcl5 49206 . . . . . 6 ((𝜑𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) → 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹))
9491, 92, 93, 87syl3anc 1373 . . . . 5 ((𝜑𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) → (𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚))
956, 89, 94bibiad 839 . . . 4 (𝜑 → (𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚))
964, 5, 95eqbrrdiv 5741 . . 3 (𝜑 → (( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) = ((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺))
973, 96eqtr3id 2778 . 2 (𝜑 → (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) = ((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺))
98 lmdfval2 49660 . 2 ((𝐶 Limit 𝐷)‘𝐹) = (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)
99 cmdfval2 49661 . 2 ((𝑂 Colimit 𝑃)‘𝐺) = ((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)
10097, 98, 993eqtr4g 2789 1 (𝜑 → ((𝐶 Limit 𝐷)‘𝐹) = ((𝑂 Colimit 𝑃)‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cop 4585   class class class wbr 5095   I cid 5517  cres 5625  Rel wrel 5628  cfv 6486  (class class class)co 7353  cmpo 7355  1st c1st 7929  2nd c2nd 7930  Basecbs 17139  Hom chom 17191  Catccat 17589  oppCatcoppc 17636   Func cfunc 17780  func ccofu 17782   Nat cnat 17870   FuncCat cfuc 17871  Δfunccdiag 18137   oppFunc coppf 49127   UP cup 49178   Limit clmd 49648   Colimit ccmd 49649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-fz 13430  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-hom 17204  df-cco 17205  df-cat 17593  df-cid 17594  df-homf 17595  df-comf 17596  df-oppc 17637  df-sect 17673  df-inv 17674  df-iso 17675  df-func 17784  df-idfu 17785  df-cofu 17786  df-full 17832  df-fth 17833  df-nat 17872  df-fuc 17873  df-catc 18025  df-xpc 18097  df-1stf 18098  df-curf 18139  df-diag 18141  df-oppf 49128  df-up 49179  df-lmd 49650  df-cmd 49651
This theorem is referenced by:  cmddu  49673
  Copyright terms: Public domain W3C validator