Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmddu Structured version   Visualization version   GIF version

Theorem lmddu 49629
Description: The duality of limits and colimits: limits of a diagram are colimits of an opposite diagram in opposite categories. (Contributed by Zhi Wang, 20-Nov-2025.)
Hypotheses
Ref Expression
lmddu.o 𝑂 = (oppCat‘𝐶)
lmddu.p 𝑃 = (oppCat‘𝐷)
lmddu.g 𝐺 = ( oppFunc ‘𝐹)
lmddu.c (𝜑𝐶𝑉)
lmddu.d (𝜑𝐷𝑊)
Assertion
Ref Expression
lmddu (𝜑 → ((𝐶 Limit 𝐷)‘𝐹) = ((𝑂 Colimit 𝑃)‘𝐺))

Proof of Theorem lmddu
Dummy variables 𝑓 𝑔 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmddu.o . . . . 5 𝑂 = (oppCat‘𝐶)
21oveq1i 7379 . . . 4 (𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶))) = ((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))
32oveqi 7382 . . 3 (( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) = (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)
4 relup 49145 . . . 4 Rel (( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)
5 relup 49145 . . . 4 Rel ((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)
6 simpr 484 . . . . 5 ((𝜑𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) → 𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚)
7 simpr 484 . . . . . 6 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚)
8 lmddu.p . . . . . . . 8 𝑃 = (oppCat‘𝐷)
9 lmddu.d . . . . . . . . 9 (𝜑𝐷𝑊)
109adantr 480 . . . . . . . 8 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐷𝑊)
11 lmddu.c . . . . . . . . 9 (𝜑𝐶𝑉)
1211adantr 480 . . . . . . . 8 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐶𝑉)
13 lmddu.g . . . . . . . . 9 𝐺 = ( oppFunc ‘𝐹)
147up1st2nd 49147 . . . . . . . . . 10 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝑥(⟨(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))⟩(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚)
15 eqid 2729 . . . . . . . . . . 11 (𝑃 FuncCat 𝑂) = (𝑃 FuncCat 𝑂)
1615fucbas 17901 . . . . . . . . . 10 (𝑃 Func 𝑂) = (Base‘(𝑃 FuncCat 𝑂))
1714, 16uprcl3 49152 . . . . . . . . 9 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐺 ∈ (𝑃 Func 𝑂))
1813, 17eqeltrrid 2833 . . . . . . . 8 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → ( oppFunc ‘𝐹) ∈ (𝑃 Func 𝑂))
198, 1, 10, 12, 18funcoppc5 49107 . . . . . . 7 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐹 ∈ (𝐷 Func 𝐶))
20 eqid 2729 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
2114, 1, 20oppcuprcl4 49161 . . . . . . 7 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝑥 ∈ (Base‘𝐶))
22 eqid 2729 . . . . . . . . . 10 (𝑃 Nat 𝑂) = (𝑃 Nat 𝑂)
2315, 22fuchom 17902 . . . . . . . . 9 (𝑃 Nat 𝑂) = (Hom ‘(𝑃 FuncCat 𝑂))
2414, 23uprcl5 49154 . . . . . . . 8 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝑚 ∈ (𝐺(𝑃 Nat 𝑂)((1st ‘(𝑂Δfunc𝑃))‘𝑥)))
25 eqid 2729 . . . . . . . . 9 (𝐷 Nat 𝐶) = (𝐷 Nat 𝐶)
26 eqid 2729 . . . . . . . . . . . . . . 15 (𝐶Δfunc𝐷) = (𝐶Δfunc𝐷)
27 funcrcl 17801 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (𝐷 Func 𝐶) → (𝐷 ∈ Cat ∧ 𝐶 ∈ Cat))
2827simprd 495 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐷 Func 𝐶) → 𝐶 ∈ Cat)
2927simpld 494 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐷 Func 𝐶) → 𝐷 ∈ Cat)
30 eqid 2729 . . . . . . . . . . . . . . 15 (𝐷 FuncCat 𝐶) = (𝐷 FuncCat 𝐶)
3126, 28, 29, 30diagcl 18178 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝐷 Func 𝐶) → (𝐶Δfunc𝐷) ∈ (𝐶 Func (𝐷 FuncCat 𝐶)))
3231oppf1 49101 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐷 Func 𝐶) → (1st ‘( oppFunc ‘(𝐶Δfunc𝐷))) = (1st ‘(𝐶Δfunc𝐷)))
3332fveq1d 6842 . . . . . . . . . . . 12 (𝐹 ∈ (𝐷 Func 𝐶) → ((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥) = ((1st ‘(𝐶Δfunc𝐷))‘𝑥))
3433fveq2d 6844 . . . . . . . . . . 11 (𝐹 ∈ (𝐷 Func 𝐶) → ( oppFunc ‘((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)) = ( oppFunc ‘((1st ‘(𝐶Δfunc𝐷))‘𝑥)))
3519, 34syl 17 . . . . . . . . . 10 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → ( oppFunc ‘((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)) = ( oppFunc ‘((1st ‘(𝐶Δfunc𝐷))‘𝑥)))
3619, 28syl 17 . . . . . . . . . . 11 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐶 ∈ Cat)
3719, 29syl 17 . . . . . . . . . . 11 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐷 ∈ Cat)
381, 8, 26, 36, 37, 20, 21oppfdiag1a 49377 . . . . . . . . . 10 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → ( oppFunc ‘((1st ‘(𝐶Δfunc𝐷))‘𝑥)) = ((1st ‘(𝑂Δfunc𝑃))‘𝑥))
3935, 38eqtr2d 2765 . . . . . . . . 9 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → ((1st ‘(𝑂Δfunc𝑃))‘𝑥) = ( oppFunc ‘((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)))
4013a1i 11 . . . . . . . . 9 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐺 = ( oppFunc ‘𝐹))
418, 1, 25, 22, 39, 40, 10, 12natoppfb 49193 . . . . . . . 8 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹) = (𝐺(𝑃 Nat 𝑂)((1st ‘(𝑂Δfunc𝑃))‘𝑥)))
4224, 41eleqtrrd 2831 . . . . . . 7 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹))
43 simp1 1136 . . . . . . . . . . 11 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝐹 ∈ (𝐷 Func 𝐶))
4443fvresd 6860 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (( oppFunc ↾ (𝐷 Func 𝐶))‘𝐹) = ( oppFunc ‘𝐹))
4544, 13eqtr4di 2782 . . . . . . . . 9 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (( oppFunc ↾ (𝐷 Func 𝐶))‘𝐹) = 𝐺)
46 eqid 2729 . . . . . . . . . 10 (oppCat‘(𝐷 FuncCat 𝐶)) = (oppCat‘(𝐷 FuncCat 𝐶))
47 eqidd 2730 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ( oppFunc ↾ (𝐷 Func 𝐶)) = ( oppFunc ↾ (𝐷 Func 𝐶)))
48 eqidd 2730 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓))) = (𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓))))
49293ad2ant1 1133 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝐷 ∈ Cat)
50283ad2ant1 1133 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝐶 ∈ Cat)
518, 1, 30, 46, 15, 25, 47, 48, 49, 50fucoppcffth 49373 . . . . . . . . 9 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ( oppFunc ↾ (𝐷 Func 𝐶))(((oppCat‘(𝐷 FuncCat 𝐶)) Full (𝑃 FuncCat 𝑂)) ∩ ((oppCat‘(𝐷 FuncCat 𝐶)) Faith (𝑃 FuncCat 𝑂)))(𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓))))
521, 8, 26, 50, 49, 47, 25, 48oppfdiag 49378 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (⟨( oppFunc ↾ (𝐷 Func 𝐶)), (𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓)))⟩ ∘func ( oppFunc ‘(𝐶Δfunc𝐷))) = (𝑂Δfunc𝑃))
53 relfunc 17800 . . . . . . . . . . . 12 Rel (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶)))
541, 46, 31oppfoppc2 49104 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐷 Func 𝐶) → ( oppFunc ‘(𝐶Δfunc𝐷)) ∈ (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶))))
5543, 54syl 17 . . . . . . . . . . . 12 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ( oppFunc ‘(𝐶Δfunc𝐷)) ∈ (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶))))
56 1st2nd 7997 . . . . . . . . . . . 12 ((Rel (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶))) ∧ ( oppFunc ‘(𝐶Δfunc𝐷)) ∈ (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶)))) → ( oppFunc ‘(𝐶Δfunc𝐷)) = ⟨(1st ‘( oppFunc ‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc ‘(𝐶Δfunc𝐷)))⟩)
5753, 55, 56sylancr 587 . . . . . . . . . . 11 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ( oppFunc ‘(𝐶Δfunc𝐷)) = ⟨(1st ‘( oppFunc ‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc ‘(𝐶Δfunc𝐷)))⟩)
5857oveq2d 7385 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (⟨( oppFunc ↾ (𝐷 Func 𝐶)), (𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓)))⟩ ∘func ( oppFunc ‘(𝐶Δfunc𝐷))) = (⟨( oppFunc ↾ (𝐷 Func 𝐶)), (𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓)))⟩ ∘func ⟨(1st ‘( oppFunc ‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc ‘(𝐶Δfunc𝐷)))⟩))
59 relfunc 17800 . . . . . . . . . . 11 Rel (𝑂 Func (𝑃 FuncCat 𝑂))
60 eqid 2729 . . . . . . . . . . . 12 (𝑂Δfunc𝑃) = (𝑂Δfunc𝑃)
611oppccat 17659 . . . . . . . . . . . . 13 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
6250, 61syl 17 . . . . . . . . . . . 12 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝑂 ∈ Cat)
638oppccat 17659 . . . . . . . . . . . . 13 (𝐷 ∈ Cat → 𝑃 ∈ Cat)
6449, 63syl 17 . . . . . . . . . . . 12 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝑃 ∈ Cat)
6560, 62, 64, 15diagcl 18178 . . . . . . . . . . 11 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑂Δfunc𝑃) ∈ (𝑂 Func (𝑃 FuncCat 𝑂)))
66 1st2nd 7997 . . . . . . . . . . 11 ((Rel (𝑂 Func (𝑃 FuncCat 𝑂)) ∧ (𝑂Δfunc𝑃) ∈ (𝑂 Func (𝑃 FuncCat 𝑂))) → (𝑂Δfunc𝑃) = ⟨(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))⟩)
6759, 65, 66sylancr 587 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑂Δfunc𝑃) = ⟨(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))⟩)
6852, 58, 673eqtr3d 2772 . . . . . . . . 9 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (⟨( oppFunc ↾ (𝐷 Func 𝐶)), (𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓)))⟩ ∘func ⟨(1st ‘( oppFunc ‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc ‘(𝐶Δfunc𝐷)))⟩) = ⟨(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))⟩)
6930fucbas 17901 . . . . . . . . . 10 (𝐷 Func 𝐶) = (Base‘(𝐷 FuncCat 𝐶))
7046, 69oppcbas 17655 . . . . . . . . 9 (𝐷 Func 𝐶) = (Base‘(oppCat‘(𝐷 FuncCat 𝐶)))
7155func1st2nd 49038 . . . . . . . . 9 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))(𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶)))(2nd ‘( oppFunc ‘(𝐶Δfunc𝐷))))
7243, 33syl 17 . . . . . . . . . . 11 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥) = ((1st ‘(𝐶Δfunc𝐷))‘𝑥))
73 simp2 1137 . . . . . . . . . . . 12 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝑥 ∈ (Base‘𝐶))
74 eqid 2729 . . . . . . . . . . . 12 ((1st ‘(𝐶Δfunc𝐷))‘𝑥) = ((1st ‘(𝐶Δfunc𝐷))‘𝑥)
7526, 50, 49, 20, 73, 74diag1cl 18179 . . . . . . . . . . 11 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ((1st ‘(𝐶Δfunc𝐷))‘𝑥) ∈ (𝐷 Func 𝐶))
7672, 75eqeltrd 2828 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥) ∈ (𝐷 Func 𝐶))
77 eqidd 2730 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝑚 = 𝑚)
78 simp3 1138 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹))
7948, 43, 76, 77, 78opf2 49368 . . . . . . . . 9 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ((𝐹(𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓)))((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥))‘𝑚) = 𝑚)
80 eqid 2729 . . . . . . . . 9 (Hom ‘(oppCat‘(𝐷 FuncCat 𝐶))) = (Hom ‘(oppCat‘(𝐷 FuncCat 𝐶)))
8130, 25fuchom 17902 . . . . . . . . . . 11 (𝐷 Nat 𝐶) = (Hom ‘(𝐷 FuncCat 𝐶))
8281, 46oppchom 17652 . . . . . . . . . 10 (𝐹(Hom ‘(oppCat‘(𝐷 FuncCat 𝐶)))((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)) = (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)
8378, 82eleqtrrdi 2839 . . . . . . . . 9 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝑚 ∈ (𝐹(Hom ‘(oppCat‘(𝐷 FuncCat 𝐶)))((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)))
8445, 51, 68, 70, 43, 71, 79, 80, 83uptr 49175 . . . . . . . 8 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑥(⟨(1st ‘( oppFunc ‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc ‘(𝐶Δfunc𝐷)))⟩(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚𝑥(⟨(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))⟩(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚))
8555up1st2ndb 49149 . . . . . . . 8 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚𝑥(⟨(1st ‘( oppFunc ‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc ‘(𝐶Δfunc𝐷)))⟩(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚))
8665up1st2ndb 49149 . . . . . . . 8 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚𝑥(⟨(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))⟩(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚))
8784, 85, 863bitr4d 311 . . . . . . 7 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚))
8819, 21, 42, 87syl3anc 1373 . . . . . 6 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → (𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚))
897, 88mpbird 257 . . . . 5 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚)
906up1st2nd 49147 . . . . . . 7 ((𝜑𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) → 𝑥(⟨(1st ‘( oppFunc ‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc ‘(𝐶Δfunc𝐷)))⟩(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚)
9190, 46, 69oppcuprcl3 49162 . . . . . 6 ((𝜑𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) → 𝐹 ∈ (𝐷 Func 𝐶))
9290, 1, 20oppcuprcl4 49161 . . . . . 6 ((𝜑𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) → 𝑥 ∈ (Base‘𝐶))
9390, 46, 81oppcuprcl5 49163 . . . . . 6 ((𝜑𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) → 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹))
9491, 92, 93, 87syl3anc 1373 . . . . 5 ((𝜑𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) → (𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚))
956, 89, 94bibiad 839 . . . 4 (𝜑 → (𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚))
964, 5, 95eqbrrdiv 5748 . . 3 (𝜑 → (( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) = ((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺))
973, 96eqtr3id 2778 . 2 (𝜑 → (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) = ((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺))
98 lmdfval2 49617 . 2 ((𝐶 Limit 𝐷)‘𝐹) = (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)
99 cmdfval2 49618 . 2 ((𝑂 Colimit 𝑃)‘𝐺) = ((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)
10097, 98, 993eqtr4g 2789 1 (𝜑 → ((𝐶 Limit 𝐷)‘𝐹) = ((𝑂 Colimit 𝑃)‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cop 4591   class class class wbr 5102   I cid 5525  cres 5633  Rel wrel 5636  cfv 6499  (class class class)co 7369  cmpo 7371  1st c1st 7945  2nd c2nd 7946  Basecbs 17155  Hom chom 17207  Catccat 17601  oppCatcoppc 17648   Func cfunc 17792  func ccofu 17794   Nat cnat 17882   FuncCat cfuc 17883  Δfunccdiag 18149   oppFunc coppf 49084   UP cup 49135   Limit clmd 49605   Colimit ccmd 49606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-hom 17220  df-cco 17221  df-cat 17605  df-cid 17606  df-homf 17607  df-comf 17608  df-oppc 17649  df-sect 17685  df-inv 17686  df-iso 17687  df-func 17796  df-idfu 17797  df-cofu 17798  df-full 17844  df-fth 17845  df-nat 17884  df-fuc 17885  df-catc 18037  df-xpc 18109  df-1stf 18110  df-curf 18151  df-diag 18153  df-oppf 49085  df-up 49136  df-lmd 49607  df-cmd 49608
This theorem is referenced by:  cmddu  49630
  Copyright terms: Public domain W3C validator