Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmddu Structured version   Visualization version   GIF version

Theorem lmddu 49699
Description: The duality of limits and colimits: limits of a diagram are colimits of an opposite diagram in opposite categories. (Contributed by Zhi Wang, 20-Nov-2025.)
Hypotheses
Ref Expression
lmddu.o 𝑂 = (oppCat‘𝐶)
lmddu.p 𝑃 = (oppCat‘𝐷)
lmddu.g 𝐺 = ( oppFunc ‘𝐹)
lmddu.c (𝜑𝐶𝑉)
lmddu.d (𝜑𝐷𝑊)
Assertion
Ref Expression
lmddu (𝜑 → ((𝐶 Limit 𝐷)‘𝐹) = ((𝑂 Colimit 𝑃)‘𝐺))

Proof of Theorem lmddu
Dummy variables 𝑓 𝑔 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmddu.o . . . . 5 𝑂 = (oppCat‘𝐶)
21oveq1i 7351 . . . 4 (𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶))) = ((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))
32oveqi 7354 . . 3 (( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) = (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)
4 relup 49215 . . . 4 Rel (( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)
5 relup 49215 . . . 4 Rel ((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)
6 simpr 484 . . . . 5 ((𝜑𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) → 𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚)
7 simpr 484 . . . . . 6 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚)
8 lmddu.p . . . . . . . 8 𝑃 = (oppCat‘𝐷)
9 lmddu.d . . . . . . . . 9 (𝜑𝐷𝑊)
109adantr 480 . . . . . . . 8 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐷𝑊)
11 lmddu.c . . . . . . . . 9 (𝜑𝐶𝑉)
1211adantr 480 . . . . . . . 8 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐶𝑉)
13 lmddu.g . . . . . . . . 9 𝐺 = ( oppFunc ‘𝐹)
147up1st2nd 49217 . . . . . . . . . 10 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝑥(⟨(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))⟩(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚)
15 eqid 2731 . . . . . . . . . . 11 (𝑃 FuncCat 𝑂) = (𝑃 FuncCat 𝑂)
1615fucbas 17865 . . . . . . . . . 10 (𝑃 Func 𝑂) = (Base‘(𝑃 FuncCat 𝑂))
1714, 16uprcl3 49222 . . . . . . . . 9 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐺 ∈ (𝑃 Func 𝑂))
1813, 17eqeltrrid 2836 . . . . . . . 8 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → ( oppFunc ‘𝐹) ∈ (𝑃 Func 𝑂))
198, 1, 10, 12, 18funcoppc5 49177 . . . . . . 7 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐹 ∈ (𝐷 Func 𝐶))
20 eqid 2731 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
2114, 1, 20oppcuprcl4 49231 . . . . . . 7 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝑥 ∈ (Base‘𝐶))
22 eqid 2731 . . . . . . . . . 10 (𝑃 Nat 𝑂) = (𝑃 Nat 𝑂)
2315, 22fuchom 17866 . . . . . . . . 9 (𝑃 Nat 𝑂) = (Hom ‘(𝑃 FuncCat 𝑂))
2414, 23uprcl5 49224 . . . . . . . 8 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝑚 ∈ (𝐺(𝑃 Nat 𝑂)((1st ‘(𝑂Δfunc𝑃))‘𝑥)))
25 eqid 2731 . . . . . . . . 9 (𝐷 Nat 𝐶) = (𝐷 Nat 𝐶)
26 eqid 2731 . . . . . . . . . . . . . . 15 (𝐶Δfunc𝐷) = (𝐶Δfunc𝐷)
27 funcrcl 17765 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (𝐷 Func 𝐶) → (𝐷 ∈ Cat ∧ 𝐶 ∈ Cat))
2827simprd 495 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐷 Func 𝐶) → 𝐶 ∈ Cat)
2927simpld 494 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐷 Func 𝐶) → 𝐷 ∈ Cat)
30 eqid 2731 . . . . . . . . . . . . . . 15 (𝐷 FuncCat 𝐶) = (𝐷 FuncCat 𝐶)
3126, 28, 29, 30diagcl 18142 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝐷 Func 𝐶) → (𝐶Δfunc𝐷) ∈ (𝐶 Func (𝐷 FuncCat 𝐶)))
3231oppf1 49171 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐷 Func 𝐶) → (1st ‘( oppFunc ‘(𝐶Δfunc𝐷))) = (1st ‘(𝐶Δfunc𝐷)))
3332fveq1d 6819 . . . . . . . . . . . 12 (𝐹 ∈ (𝐷 Func 𝐶) → ((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥) = ((1st ‘(𝐶Δfunc𝐷))‘𝑥))
3433fveq2d 6821 . . . . . . . . . . 11 (𝐹 ∈ (𝐷 Func 𝐶) → ( oppFunc ‘((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)) = ( oppFunc ‘((1st ‘(𝐶Δfunc𝐷))‘𝑥)))
3519, 34syl 17 . . . . . . . . . 10 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → ( oppFunc ‘((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)) = ( oppFunc ‘((1st ‘(𝐶Δfunc𝐷))‘𝑥)))
3619, 28syl 17 . . . . . . . . . . 11 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐶 ∈ Cat)
3719, 29syl 17 . . . . . . . . . . 11 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐷 ∈ Cat)
381, 8, 26, 36, 37, 20, 21oppfdiag1a 49447 . . . . . . . . . 10 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → ( oppFunc ‘((1st ‘(𝐶Δfunc𝐷))‘𝑥)) = ((1st ‘(𝑂Δfunc𝑃))‘𝑥))
3935, 38eqtr2d 2767 . . . . . . . . 9 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → ((1st ‘(𝑂Δfunc𝑃))‘𝑥) = ( oppFunc ‘((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)))
4013a1i 11 . . . . . . . . 9 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝐺 = ( oppFunc ‘𝐹))
418, 1, 25, 22, 39, 40, 10, 12natoppfb 49263 . . . . . . . 8 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹) = (𝐺(𝑃 Nat 𝑂)((1st ‘(𝑂Δfunc𝑃))‘𝑥)))
4224, 41eleqtrrd 2834 . . . . . . 7 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹))
43 simp1 1136 . . . . . . . . . . 11 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝐹 ∈ (𝐷 Func 𝐶))
4443fvresd 6837 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (( oppFunc ↾ (𝐷 Func 𝐶))‘𝐹) = ( oppFunc ‘𝐹))
4544, 13eqtr4di 2784 . . . . . . . . 9 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (( oppFunc ↾ (𝐷 Func 𝐶))‘𝐹) = 𝐺)
46 eqid 2731 . . . . . . . . . 10 (oppCat‘(𝐷 FuncCat 𝐶)) = (oppCat‘(𝐷 FuncCat 𝐶))
47 eqidd 2732 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ( oppFunc ↾ (𝐷 Func 𝐶)) = ( oppFunc ↾ (𝐷 Func 𝐶)))
48 eqidd 2732 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓))) = (𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓))))
49293ad2ant1 1133 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝐷 ∈ Cat)
50283ad2ant1 1133 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝐶 ∈ Cat)
518, 1, 30, 46, 15, 25, 47, 48, 49, 50fucoppcffth 49443 . . . . . . . . 9 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ( oppFunc ↾ (𝐷 Func 𝐶))(((oppCat‘(𝐷 FuncCat 𝐶)) Full (𝑃 FuncCat 𝑂)) ∩ ((oppCat‘(𝐷 FuncCat 𝐶)) Faith (𝑃 FuncCat 𝑂)))(𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓))))
521, 8, 26, 50, 49, 47, 25, 48oppfdiag 49448 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (⟨( oppFunc ↾ (𝐷 Func 𝐶)), (𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓)))⟩ ∘func ( oppFunc ‘(𝐶Δfunc𝐷))) = (𝑂Δfunc𝑃))
53 relfunc 17764 . . . . . . . . . . . 12 Rel (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶)))
541, 46, 31oppfoppc2 49174 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐷 Func 𝐶) → ( oppFunc ‘(𝐶Δfunc𝐷)) ∈ (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶))))
5543, 54syl 17 . . . . . . . . . . . 12 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ( oppFunc ‘(𝐶Δfunc𝐷)) ∈ (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶))))
56 1st2nd 7966 . . . . . . . . . . . 12 ((Rel (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶))) ∧ ( oppFunc ‘(𝐶Δfunc𝐷)) ∈ (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶)))) → ( oppFunc ‘(𝐶Δfunc𝐷)) = ⟨(1st ‘( oppFunc ‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc ‘(𝐶Δfunc𝐷)))⟩)
5753, 55, 56sylancr 587 . . . . . . . . . . 11 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ( oppFunc ‘(𝐶Δfunc𝐷)) = ⟨(1st ‘( oppFunc ‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc ‘(𝐶Δfunc𝐷)))⟩)
5857oveq2d 7357 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (⟨( oppFunc ↾ (𝐷 Func 𝐶)), (𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓)))⟩ ∘func ( oppFunc ‘(𝐶Δfunc𝐷))) = (⟨( oppFunc ↾ (𝐷 Func 𝐶)), (𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓)))⟩ ∘func ⟨(1st ‘( oppFunc ‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc ‘(𝐶Δfunc𝐷)))⟩))
59 relfunc 17764 . . . . . . . . . . 11 Rel (𝑂 Func (𝑃 FuncCat 𝑂))
60 eqid 2731 . . . . . . . . . . . 12 (𝑂Δfunc𝑃) = (𝑂Δfunc𝑃)
611oppccat 17623 . . . . . . . . . . . . 13 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
6250, 61syl 17 . . . . . . . . . . . 12 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝑂 ∈ Cat)
638oppccat 17623 . . . . . . . . . . . . 13 (𝐷 ∈ Cat → 𝑃 ∈ Cat)
6449, 63syl 17 . . . . . . . . . . . 12 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝑃 ∈ Cat)
6560, 62, 64, 15diagcl 18142 . . . . . . . . . . 11 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑂Δfunc𝑃) ∈ (𝑂 Func (𝑃 FuncCat 𝑂)))
66 1st2nd 7966 . . . . . . . . . . 11 ((Rel (𝑂 Func (𝑃 FuncCat 𝑂)) ∧ (𝑂Δfunc𝑃) ∈ (𝑂 Func (𝑃 FuncCat 𝑂))) → (𝑂Δfunc𝑃) = ⟨(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))⟩)
6759, 65, 66sylancr 587 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑂Δfunc𝑃) = ⟨(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))⟩)
6852, 58, 673eqtr3d 2774 . . . . . . . . 9 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (⟨( oppFunc ↾ (𝐷 Func 𝐶)), (𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓)))⟩ ∘func ⟨(1st ‘( oppFunc ‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc ‘(𝐶Δfunc𝐷)))⟩) = ⟨(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))⟩)
6930fucbas 17865 . . . . . . . . . 10 (𝐷 Func 𝐶) = (Base‘(𝐷 FuncCat 𝐶))
7046, 69oppcbas 17619 . . . . . . . . 9 (𝐷 Func 𝐶) = (Base‘(oppCat‘(𝐷 FuncCat 𝐶)))
7155func1st2nd 49108 . . . . . . . . 9 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))(𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶)))(2nd ‘( oppFunc ‘(𝐶Δfunc𝐷))))
7243, 33syl 17 . . . . . . . . . . 11 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥) = ((1st ‘(𝐶Δfunc𝐷))‘𝑥))
73 simp2 1137 . . . . . . . . . . . 12 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝑥 ∈ (Base‘𝐶))
74 eqid 2731 . . . . . . . . . . . 12 ((1st ‘(𝐶Δfunc𝐷))‘𝑥) = ((1st ‘(𝐶Δfunc𝐷))‘𝑥)
7526, 50, 49, 20, 73, 74diag1cl 18143 . . . . . . . . . . 11 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ((1st ‘(𝐶Δfunc𝐷))‘𝑥) ∈ (𝐷 Func 𝐶))
7672, 75eqeltrd 2831 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥) ∈ (𝐷 Func 𝐶))
77 eqidd 2732 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝑚 = 𝑚)
78 simp3 1138 . . . . . . . . . 10 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹))
7948, 43, 76, 77, 78opf2 49438 . . . . . . . . 9 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → ((𝐹(𝑓 ∈ (𝐷 Func 𝐶), 𝑔 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐶)𝑓)))((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥))‘𝑚) = 𝑚)
80 eqid 2731 . . . . . . . . 9 (Hom ‘(oppCat‘(𝐷 FuncCat 𝐶))) = (Hom ‘(oppCat‘(𝐷 FuncCat 𝐶)))
8130, 25fuchom 17866 . . . . . . . . . . 11 (𝐷 Nat 𝐶) = (Hom ‘(𝐷 FuncCat 𝐶))
8281, 46oppchom 17616 . . . . . . . . . 10 (𝐹(Hom ‘(oppCat‘(𝐷 FuncCat 𝐶)))((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)) = (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)
8378, 82eleqtrrdi 2842 . . . . . . . . 9 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → 𝑚 ∈ (𝐹(Hom ‘(oppCat‘(𝐷 FuncCat 𝐶)))((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)))
8445, 51, 68, 70, 43, 71, 79, 80, 83uptr 49245 . . . . . . . 8 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑥(⟨(1st ‘( oppFunc ‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc ‘(𝐶Δfunc𝐷)))⟩(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚𝑥(⟨(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))⟩(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚))
8555up1st2ndb 49219 . . . . . . . 8 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚𝑥(⟨(1st ‘( oppFunc ‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc ‘(𝐶Δfunc𝐷)))⟩(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚))
8665up1st2ndb 49219 . . . . . . . 8 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚𝑥(⟨(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))⟩(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚))
8784, 85, 863bitr4d 311 . . . . . . 7 ((𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹)) → (𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚))
8819, 21, 42, 87syl3anc 1373 . . . . . 6 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → (𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚))
897, 88mpbird 257 . . . . 5 ((𝜑𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚) → 𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚)
906up1st2nd 49217 . . . . . . 7 ((𝜑𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) → 𝑥(⟨(1st ‘( oppFunc ‘(𝐶Δfunc𝐷))), (2nd ‘( oppFunc ‘(𝐶Δfunc𝐷)))⟩(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚)
9190, 46, 69oppcuprcl3 49232 . . . . . 6 ((𝜑𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) → 𝐹 ∈ (𝐷 Func 𝐶))
9290, 1, 20oppcuprcl4 49231 . . . . . 6 ((𝜑𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) → 𝑥 ∈ (Base‘𝐶))
9390, 46, 81oppcuprcl5 49233 . . . . . 6 ((𝜑𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) → 𝑚 ∈ (((1st ‘( oppFunc ‘(𝐶Δfunc𝐷)))‘𝑥)(𝐷 Nat 𝐶)𝐹))
9491, 92, 93, 87syl3anc 1373 . . . . 5 ((𝜑𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚) → (𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚))
956, 89, 94bibiad 839 . . . 4 (𝜑 → (𝑥(( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑚𝑥((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)𝑚))
964, 5, 95eqbrrdiv 5729 . . 3 (𝜑 → (( oppFunc ‘(𝐶Δfunc𝐷))(𝑂 UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) = ((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺))
973, 96eqtr3id 2780 . 2 (𝜑 → (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) = ((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺))
98 lmdfval2 49687 . 2 ((𝐶 Limit 𝐷)‘𝐹) = (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)
99 cmdfval2 49688 . 2 ((𝑂 Colimit 𝑃)‘𝐺) = ((𝑂Δfunc𝑃)(𝑂 UP (𝑃 FuncCat 𝑂))𝐺)
10097, 98, 993eqtr4g 2791 1 (𝜑 → ((𝐶 Limit 𝐷)‘𝐹) = ((𝑂 Colimit 𝑃)‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  cop 4577   class class class wbr 5086   I cid 5505  cres 5613  Rel wrel 5616  cfv 6476  (class class class)co 7341  cmpo 7343  1st c1st 7914  2nd c2nd 7915  Basecbs 17115  Hom chom 17167  Catccat 17565  oppCatcoppc 17612   Func cfunc 17756  func ccofu 17758   Nat cnat 17846   FuncCat cfuc 17847  Δfunccdiag 18113   oppFunc coppf 49154   UP cup 49205   Limit clmd 49675   Colimit ccmd 49676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-fz 13403  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-hom 17180  df-cco 17181  df-cat 17569  df-cid 17570  df-homf 17571  df-comf 17572  df-oppc 17613  df-sect 17649  df-inv 17650  df-iso 17651  df-func 17760  df-idfu 17761  df-cofu 17762  df-full 17808  df-fth 17809  df-nat 17848  df-fuc 17849  df-catc 18001  df-xpc 18073  df-1stf 18074  df-curf 18115  df-diag 18117  df-oppf 49155  df-up 49206  df-lmd 49677  df-cmd 49678
This theorem is referenced by:  cmddu  49700
  Copyright terms: Public domain W3C validator