| Step | Hyp | Ref
| Expression |
| 1 | | relup 49156 |
. . . 4
⊢ Rel
((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝐹) |
| 2 | | relup 49156 |
. . . 4
⊢ Rel
(((oppCat‘𝑂)Δfunc(oppCat‘𝑃))((oppCat‘𝑂) UP ((oppCat‘𝑃) FuncCat (oppCat‘𝑂)))(oppFunc‘𝐺)) |
| 3 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑚) → 𝑥((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑚) |
| 4 | 3 | up1st2nd 49158 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑚) → 𝑥(〈(1st ‘(𝐶Δfunc𝐷)), (2nd
‘(𝐶Δfunc𝐷))〉(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑚) |
| 5 | | eqid 2730 |
. . . . . . 7
⊢ (𝐷 FuncCat 𝐶) = (𝐷 FuncCat 𝐶) |
| 6 | 5 | fucbas 17931 |
. . . . . 6
⊢ (𝐷 Func 𝐶) = (Base‘(𝐷 FuncCat 𝐶)) |
| 7 | 4, 6 | uprcl3 49163 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑚) → 𝐹 ∈ (𝐷 Func 𝐶)) |
| 8 | | lmddu.p |
. . . . . 6
⊢ 𝑃 = (oppCat‘𝐷) |
| 9 | | lmddu.o |
. . . . . 6
⊢ 𝑂 = (oppCat‘𝐶) |
| 10 | | lmddu.d |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ 𝑊) |
| 11 | 10 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥(((oppCat‘𝑂)Δfunc(oppCat‘𝑃))((oppCat‘𝑂) UP ((oppCat‘𝑃) FuncCat (oppCat‘𝑂)))(oppFunc‘𝐺))𝑚) → 𝐷 ∈ 𝑊) |
| 12 | | lmddu.c |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| 13 | 12 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥(((oppCat‘𝑂)Δfunc(oppCat‘𝑃))((oppCat‘𝑂) UP ((oppCat‘𝑃) FuncCat (oppCat‘𝑂)))(oppFunc‘𝐺))𝑚) → 𝐶 ∈ 𝑉) |
| 14 | | lmddu.g |
. . . . . . 7
⊢ 𝐺 = (oppFunc‘𝐹) |
| 15 | | eqid 2730 |
. . . . . . . 8
⊢
(oppCat‘𝑃) =
(oppCat‘𝑃) |
| 16 | | eqid 2730 |
. . . . . . . 8
⊢
(oppCat‘𝑂) =
(oppCat‘𝑂) |
| 17 | 8 | fvexi 6874 |
. . . . . . . . 9
⊢ 𝑃 ∈ V |
| 18 | 17 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥(((oppCat‘𝑂)Δfunc(oppCat‘𝑃))((oppCat‘𝑂) UP ((oppCat‘𝑃) FuncCat (oppCat‘𝑂)))(oppFunc‘𝐺))𝑚) → 𝑃 ∈ V) |
| 19 | 9 | fvexi 6874 |
. . . . . . . . 9
⊢ 𝑂 ∈ V |
| 20 | 19 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥(((oppCat‘𝑂)Δfunc(oppCat‘𝑃))((oppCat‘𝑂) UP ((oppCat‘𝑃) FuncCat (oppCat‘𝑂)))(oppFunc‘𝐺))𝑚) → 𝑂 ∈ V) |
| 21 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥(((oppCat‘𝑂)Δfunc(oppCat‘𝑃))((oppCat‘𝑂) UP ((oppCat‘𝑃) FuncCat (oppCat‘𝑂)))(oppFunc‘𝐺))𝑚) → 𝑥(((oppCat‘𝑂)Δfunc(oppCat‘𝑃))((oppCat‘𝑂) UP ((oppCat‘𝑃) FuncCat (oppCat‘𝑂)))(oppFunc‘𝐺))𝑚) |
| 22 | 21 | up1st2nd 49158 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥(((oppCat‘𝑂)Δfunc(oppCat‘𝑃))((oppCat‘𝑂) UP ((oppCat‘𝑃) FuncCat (oppCat‘𝑂)))(oppFunc‘𝐺))𝑚) → 𝑥(〈(1st
‘((oppCat‘𝑂)Δfunc(oppCat‘𝑃))), (2nd
‘((oppCat‘𝑂)Δfunc(oppCat‘𝑃)))〉((oppCat‘𝑂) UP ((oppCat‘𝑃) FuncCat (oppCat‘𝑂)))(oppFunc‘𝐺))𝑚) |
| 23 | | eqid 2730 |
. . . . . . . . . 10
⊢
((oppCat‘𝑃)
FuncCat (oppCat‘𝑂)) =
((oppCat‘𝑃) FuncCat
(oppCat‘𝑂)) |
| 24 | 23 | fucbas 17931 |
. . . . . . . . 9
⊢
((oppCat‘𝑃)
Func (oppCat‘𝑂)) =
(Base‘((oppCat‘𝑃) FuncCat (oppCat‘𝑂))) |
| 25 | 22, 24 | uprcl3 49163 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥(((oppCat‘𝑂)Δfunc(oppCat‘𝑃))((oppCat‘𝑂) UP ((oppCat‘𝑃) FuncCat (oppCat‘𝑂)))(oppFunc‘𝐺))𝑚) → (oppFunc‘𝐺) ∈ ((oppCat‘𝑃) Func (oppCat‘𝑂))) |
| 26 | 15, 16, 18, 20, 25 | funcoppc5 49122 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥(((oppCat‘𝑂)Δfunc(oppCat‘𝑃))((oppCat‘𝑂) UP ((oppCat‘𝑃) FuncCat (oppCat‘𝑂)))(oppFunc‘𝐺))𝑚) → 𝐺 ∈ (𝑃 Func 𝑂)) |
| 27 | 14, 26 | eqeltrrid 2834 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥(((oppCat‘𝑂)Δfunc(oppCat‘𝑃))((oppCat‘𝑂) UP ((oppCat‘𝑃) FuncCat (oppCat‘𝑂)))(oppFunc‘𝐺))𝑚) → (oppFunc‘𝐹) ∈ (𝑃 Func 𝑂)) |
| 28 | 8, 9, 11, 13, 27 | funcoppc5 49122 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥(((oppCat‘𝑂)Δfunc(oppCat‘𝑃))((oppCat‘𝑂) UP ((oppCat‘𝑃) FuncCat (oppCat‘𝑂)))(oppFunc‘𝐺))𝑚) → 𝐹 ∈ (𝐷 Func 𝐶)) |
| 29 | 9 | 2oppchomf 17691 |
. . . . . . . . 9
⊢
(Homf ‘𝐶) = (Homf
‘(oppCat‘𝑂)) |
| 30 | 29 | a1i 11 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝐷 Func 𝐶) → (Homf
‘𝐶) =
(Homf ‘(oppCat‘𝑂))) |
| 31 | 9 | 2oppccomf 17692 |
. . . . . . . . 9
⊢
(compf‘𝐶) =
(compf‘(oppCat‘𝑂)) |
| 32 | 31 | a1i 11 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝐷 Func 𝐶) →
(compf‘𝐶) =
(compf‘(oppCat‘𝑂))) |
| 33 | 8 | 2oppchomf 17691 |
. . . . . . . . . . 11
⊢
(Homf ‘𝐷) = (Homf
‘(oppCat‘𝑃)) |
| 34 | 33 | a1i 11 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝐷 Func 𝐶) → (Homf
‘𝐷) =
(Homf ‘(oppCat‘𝑃))) |
| 35 | 8 | 2oppccomf 17692 |
. . . . . . . . . . 11
⊢
(compf‘𝐷) =
(compf‘(oppCat‘𝑃)) |
| 36 | 35 | a1i 11 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝐷 Func 𝐶) →
(compf‘𝐷) =
(compf‘(oppCat‘𝑃))) |
| 37 | | funcrcl 17831 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (𝐷 Func 𝐶) → (𝐷 ∈ Cat ∧ 𝐶 ∈ Cat)) |
| 38 | 37 | simpld 494 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝐷 Func 𝐶) → 𝐷 ∈ Cat) |
| 39 | 8 | oppccat 17689 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ Cat → 𝑃 ∈ Cat) |
| 40 | 15 | oppccat 17689 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ Cat →
(oppCat‘𝑃) ∈
Cat) |
| 41 | 38, 39, 40 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝐷 Func 𝐶) → (oppCat‘𝑃) ∈ Cat) |
| 42 | 37 | simprd 495 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝐷 Func 𝐶) → 𝐶 ∈ Cat) |
| 43 | 9 | oppccat 17689 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ Cat → 𝑂 ∈ Cat) |
| 44 | 16 | oppccat 17689 |
. . . . . . . . . . 11
⊢ (𝑂 ∈ Cat →
(oppCat‘𝑂) ∈
Cat) |
| 45 | 42, 43, 44 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝐷 Func 𝐶) → (oppCat‘𝑂) ∈ Cat) |
| 46 | 34, 36, 30, 32, 38, 41, 42, 45 | fucpropd 17948 |
. . . . . . . . 9
⊢ (𝐹 ∈ (𝐷 Func 𝐶) → (𝐷 FuncCat 𝐶) = ((oppCat‘𝑃) FuncCat (oppCat‘𝑂))) |
| 47 | 46 | fveq2d 6864 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝐷 Func 𝐶) → (Homf
‘(𝐷 FuncCat 𝐶)) = (Homf
‘((oppCat‘𝑃)
FuncCat (oppCat‘𝑂)))) |
| 48 | 46 | fveq2d 6864 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝐷 Func 𝐶) →
(compf‘(𝐷 FuncCat 𝐶)) =
(compf‘((oppCat‘𝑃) FuncCat (oppCat‘𝑂)))) |
| 49 | 5, 38, 42 | fuccat 17941 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝐷 Func 𝐶) → (𝐷 FuncCat 𝐶) ∈ Cat) |
| 50 | 46, 49 | eqeltrrd 2830 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝐷 Func 𝐶) → ((oppCat‘𝑃) FuncCat (oppCat‘𝑂)) ∈ Cat) |
| 51 | 30, 32, 47, 48, 42, 45, 49, 50 | uppropd 49154 |
. . . . . . 7
⊢ (𝐹 ∈ (𝐷 Func 𝐶) → (𝐶 UP (𝐷 FuncCat 𝐶)) = ((oppCat‘𝑂) UP ((oppCat‘𝑃) FuncCat (oppCat‘𝑂)))) |
| 52 | 30, 32, 34, 36, 42, 45, 38, 41 | diagpropd 49263 |
. . . . . . 7
⊢ (𝐹 ∈ (𝐷 Func 𝐶) → (𝐶Δfunc𝐷) = ((oppCat‘𝑂)Δfunc(oppCat‘𝑃))) |
| 53 | | id 22 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (𝐷 Func 𝐶) → 𝐹 ∈ (𝐷 Func 𝐶)) |
| 54 | 8, 9, 53 | oppfoppc2 49119 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝐷 Func 𝐶) → (oppFunc‘𝐹) ∈ (𝑃 Func 𝑂)) |
| 55 | 14, 54 | eqeltrid 2833 |
. . . . . . . . 9
⊢ (𝐹 ∈ (𝐷 Func 𝐶) → 𝐺 ∈ (𝑃 Func 𝑂)) |
| 56 | | relfunc 17830 |
. . . . . . . . 9
⊢ Rel
(𝑃 Func 𝑂) |
| 57 | 55, 56, 14 | 2oppf 49109 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝐷 Func 𝐶) → (oppFunc‘𝐺) = 𝐹) |
| 58 | 57 | eqcomd 2736 |
. . . . . . 7
⊢ (𝐹 ∈ (𝐷 Func 𝐶) → 𝐹 = (oppFunc‘𝐺)) |
| 59 | 51, 52, 58 | oveq123d 7410 |
. . . . . 6
⊢ (𝐹 ∈ (𝐷 Func 𝐶) → ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝐹) = (((oppCat‘𝑂)Δfunc(oppCat‘𝑃))((oppCat‘𝑂) UP ((oppCat‘𝑃) FuncCat (oppCat‘𝑂)))(oppFunc‘𝐺))) |
| 60 | 59 | breqd 5120 |
. . . . 5
⊢ (𝐹 ∈ (𝐷 Func 𝐶) → (𝑥((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑚 ↔ 𝑥(((oppCat‘𝑂)Δfunc(oppCat‘𝑃))((oppCat‘𝑂) UP ((oppCat‘𝑃) FuncCat (oppCat‘𝑂)))(oppFunc‘𝐺))𝑚)) |
| 61 | 7, 28, 60 | pm5.21nd 801 |
. . . 4
⊢ (𝜑 → (𝑥((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑚 ↔ 𝑥(((oppCat‘𝑂)Δfunc(oppCat‘𝑃))((oppCat‘𝑂) UP ((oppCat‘𝑃) FuncCat (oppCat‘𝑂)))(oppFunc‘𝐺))𝑚)) |
| 62 | 1, 2, 61 | eqbrrdiv 5759 |
. . 3
⊢ (𝜑 → ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝐹) = (((oppCat‘𝑂)Δfunc(oppCat‘𝑃))((oppCat‘𝑂) UP ((oppCat‘𝑃) FuncCat (oppCat‘𝑂)))(oppFunc‘𝐺))) |
| 63 | | cmdfval2 49624 |
. . 3
⊢ ((𝐶 Colimit 𝐷)‘𝐹) = ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝐹) |
| 64 | | cmdfval2 49624 |
. . 3
⊢
(((oppCat‘𝑂)
Colimit (oppCat‘𝑃))‘(oppFunc‘𝐺)) = (((oppCat‘𝑂)Δfunc(oppCat‘𝑃))((oppCat‘𝑂) UP ((oppCat‘𝑃) FuncCat (oppCat‘𝑂)))(oppFunc‘𝐺)) |
| 65 | 62, 63, 64 | 3eqtr4g 2790 |
. 2
⊢ (𝜑 → ((𝐶 Colimit 𝐷)‘𝐹) = (((oppCat‘𝑂) Colimit (oppCat‘𝑃))‘(oppFunc‘𝐺))) |
| 66 | | eqid 2730 |
. . 3
⊢
(oppFunc‘𝐺) =
(oppFunc‘𝐺) |
| 67 | 19 | a1i 11 |
. . 3
⊢ (𝜑 → 𝑂 ∈ V) |
| 68 | 17 | a1i 11 |
. . 3
⊢ (𝜑 → 𝑃 ∈ V) |
| 69 | 16, 15, 66, 67, 68 | lmddu 49635 |
. 2
⊢ (𝜑 → ((𝑂 Limit 𝑃)‘𝐺) = (((oppCat‘𝑂) Colimit (oppCat‘𝑃))‘(oppFunc‘𝐺))) |
| 70 | 65, 69 | eqtr4d 2768 |
1
⊢ (𝜑 → ((𝐶 Colimit 𝐷)‘𝐹) = ((𝑂 Limit 𝑃)‘𝐺)) |