Proof of Theorem cmdlan
| Step | Hyp | Ref
| Expression |
| 1 | | cmdfval2 49635 |
. . 3
⊢ ((𝐶 Colimit 𝐷)‘𝐹) = ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝐹) |
| 2 | 1 | breqi 5115 |
. 2
⊢ (𝑋((𝐶 Colimit 𝐷)‘𝐹)𝑀 ↔ 𝑋((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑀) |
| 3 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑀) → 𝑋((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑀) |
| 4 | 3 | up1st2nd 49164 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑀) → 𝑋(〈(1st ‘(𝐶Δfunc𝐷)), (2nd
‘(𝐶Δfunc𝐷))〉(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑀) |
| 5 | | eqid 2730 |
. . . . . . 7
⊢ (𝐷 FuncCat 𝐶) = (𝐷 FuncCat 𝐶) |
| 6 | 5 | fucbas 17931 |
. . . . . 6
⊢ (𝐷 Func 𝐶) = (Base‘(𝐷 FuncCat 𝐶)) |
| 7 | 4, 6 | uprcl3 49169 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑀) → 𝐹 ∈ (𝐷 Func 𝐶)) |
| 8 | | eqid 2730 |
. . . . . 6
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 9 | 4, 8 | uprcl4 49170 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑀) → 𝑋 ∈ (Base‘𝐶)) |
| 10 | 7, 9 | jca 511 |
. . . 4
⊢ ((𝜑 ∧ 𝑋((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑀) → (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) |
| 11 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌((〈 1 , 𝐶〉 −∘F
𝐺)(( 1 FuncCat 𝐶) UP (𝐷 FuncCat 𝐶))𝐹)𝑀) → 𝑌((〈 1 , 𝐶〉 −∘F
𝐺)(( 1 FuncCat 𝐶) UP (𝐷 FuncCat 𝐶))𝐹)𝑀) |
| 12 | 11 | up1st2nd 49164 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑌((〈 1 , 𝐶〉 −∘F
𝐺)(( 1 FuncCat 𝐶) UP (𝐷 FuncCat 𝐶))𝐹)𝑀) → 𝑌(〈(1st ‘(〈 1 , 𝐶〉
−∘F 𝐺)), (2nd ‘(〈 1 , 𝐶〉
−∘F 𝐺))〉(( 1 FuncCat 𝐶) UP (𝐷 FuncCat 𝐶))𝐹)𝑀) |
| 13 | 12, 6 | uprcl3 49169 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌((〈 1 , 𝐶〉 −∘F
𝐺)(( 1 FuncCat 𝐶) UP (𝐷 FuncCat 𝐶))𝐹)𝑀) → 𝐹 ∈ (𝐷 Func 𝐶)) |
| 14 | | lmdran.y |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 = ((1st ‘𝐿)‘𝑋)) |
| 15 | 14 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑌((〈 1 , 𝐶〉 −∘F
𝐺)(( 1 FuncCat 𝐶) UP (𝐷 FuncCat 𝐶))𝐹)𝑀) → 𝑌 = ((1st ‘𝐿)‘𝑋)) |
| 16 | | eqid 2730 |
. . . . . . . . . . 11
⊢ ( 1 FuncCat 𝐶) = ( 1 FuncCat 𝐶) |
| 17 | 16 | fucbas 17931 |
. . . . . . . . . 10
⊢ ( 1 Func 𝐶) = (Base‘( 1 FuncCat 𝐶)) |
| 18 | 12, 17 | uprcl4 49170 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑌((〈 1 , 𝐶〉 −∘F
𝐺)(( 1 FuncCat 𝐶) UP (𝐷 FuncCat 𝐶))𝐹)𝑀) → 𝑌 ∈ ( 1 Func 𝐶)) |
| 19 | | relfunc 17830 |
. . . . . . . . 9
⊢ Rel (
1 Func
𝐶) |
| 20 | 18, 19 | oppfrcllem 49106 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑌((〈 1 , 𝐶〉 −∘F
𝐺)(( 1 FuncCat 𝐶) UP (𝐷 FuncCat 𝐶))𝐹)𝑀) → 𝑌 ≠ ∅) |
| 21 | 15, 20 | eqnetrrd 2994 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌((〈 1 , 𝐶〉 −∘F
𝐺)(( 1 FuncCat 𝐶) UP (𝐷 FuncCat 𝐶))𝐹)𝑀) → ((1st ‘𝐿)‘𝑋) ≠ ∅) |
| 22 | | fvfundmfvn0 6903 |
. . . . . . . 8
⊢
(((1st ‘𝐿)‘𝑋) ≠ ∅ → (𝑋 ∈ dom (1st ‘𝐿) ∧ Fun ((1st
‘𝐿) ↾ {𝑋}))) |
| 23 | 22 | simpld 494 |
. . . . . . 7
⊢
(((1st ‘𝐿)‘𝑋) ≠ ∅ → 𝑋 ∈ dom (1st ‘𝐿)) |
| 24 | 21, 23 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑌((〈 1 , 𝐶〉 −∘F
𝐺)(( 1 FuncCat 𝐶) UP (𝐷 FuncCat 𝐶))𝐹)𝑀) → 𝑋 ∈ dom (1st ‘𝐿)) |
| 25 | | lmdran.1 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ∈
TermCat) |
| 26 | 25 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐹 ∈ (𝐷 Func 𝐶)) → 1 ∈
TermCat) |
| 27 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐹 ∈ (𝐷 Func 𝐶)) → 𝐹 ∈ (𝐷 Func 𝐶)) |
| 28 | 27 | func1st2nd 49055 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐹 ∈ (𝐷 Func 𝐶)) → (1st ‘𝐹)(𝐷 Func 𝐶)(2nd ‘𝐹)) |
| 29 | 28 | funcrcl3 49059 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐹 ∈ (𝐷 Func 𝐶)) → 𝐶 ∈ Cat) |
| 30 | | lmdran.l |
. . . . . . . . . 10
⊢ 𝐿 = (𝐶Δfunc 1 ) |
| 31 | 8, 26, 29, 30 | diag1f1o 49513 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐹 ∈ (𝐷 Func 𝐶)) → (1st ‘𝐿):(Base‘𝐶)–1-1-onto→(
1 Func
𝐶)) |
| 32 | | f1of 6802 |
. . . . . . . . 9
⊢
((1st ‘𝐿):(Base‘𝐶)–1-1-onto→(
1 Func
𝐶) → (1st
‘𝐿):(Base‘𝐶)⟶( 1 Func 𝐶)) |
| 33 | 31, 32 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐹 ∈ (𝐷 Func 𝐶)) → (1st ‘𝐿):(Base‘𝐶)⟶( 1 Func 𝐶)) |
| 34 | 33 | fdmd 6700 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐹 ∈ (𝐷 Func 𝐶)) → dom (1st ‘𝐿) = (Base‘𝐶)) |
| 35 | 13, 34 | syldan 591 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑌((〈 1 , 𝐶〉 −∘F
𝐺)(( 1 FuncCat 𝐶) UP (𝐷 FuncCat 𝐶))𝐹)𝑀) → dom (1st ‘𝐿) = (Base‘𝐶)) |
| 36 | 24, 35 | eleqtrd 2831 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌((〈 1 , 𝐶〉 −∘F
𝐺)(( 1 FuncCat 𝐶) UP (𝐷 FuncCat 𝐶))𝐹)𝑀) → 𝑋 ∈ (Base‘𝐶)) |
| 37 | 13, 36 | jca 511 |
. . . 4
⊢ ((𝜑 ∧ 𝑌((〈 1 , 𝐶〉 −∘F
𝐺)(( 1 FuncCat 𝐶) UP (𝐷 FuncCat 𝐶))𝐹)𝑀) → (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) |
| 38 | 14 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → 𝑌 = ((1st ‘𝐿)‘𝑋)) |
| 39 | | eqid 2730 |
. . . . . 6
⊢ (𝐶Δfunc𝐷) = (𝐶Δfunc𝐷) |
| 40 | | lmdran.g |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 1 )) |
| 41 | 40 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → 𝐺 ∈ (𝐷 Func 1 )) |
| 42 | 29 | adantrr 717 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat) |
| 43 | | eqidd 2731 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → (〈 1 , 𝐶〉 −∘F
𝐺) = (〈 1 , 𝐶〉
−∘F 𝐺)) |
| 44 | 30, 39, 41, 42, 43 | prcofdiag 49373 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → ((〈 1 , 𝐶〉 −∘F
𝐺)
∘func 𝐿) = (𝐶Δfunc𝐷)) |
| 45 | | simprr 772 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → 𝑋 ∈ (Base‘𝐶)) |
| 46 | 16, 42, 5, 41 | prcoffunca 49365 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → (〈 1 , 𝐶〉 −∘F
𝐺) ∈ (( 1 FuncCat 𝐶) Func (𝐷 FuncCat 𝐶))) |
| 47 | 29, 26, 16, 30 | diagffth 49517 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹 ∈ (𝐷 Func 𝐶)) → 𝐿 ∈ ((𝐶 Full ( 1 FuncCat 𝐶)) ∩ (𝐶 Faith ( 1 FuncCat 𝐶)))) |
| 48 | 47 | adantrr 717 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → 𝐿 ∈ ((𝐶 Full ( 1 FuncCat 𝐶)) ∩ (𝐶 Faith ( 1 FuncCat 𝐶)))) |
| 49 | | f1ofo 6809 |
. . . . . . 7
⊢
((1st ‘𝐿):(Base‘𝐶)–1-1-onto→(
1 Func
𝐶) → (1st
‘𝐿):(Base‘𝐶)–onto→( 1 Func 𝐶)) |
| 50 | 31, 49 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹 ∈ (𝐷 Func 𝐶)) → (1st ‘𝐿):(Base‘𝐶)–onto→( 1 Func 𝐶)) |
| 51 | 50 | adantrr 717 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → (1st ‘𝐿):(Base‘𝐶)–onto→( 1 Func 𝐶)) |
| 52 | 8, 17, 38, 44, 45, 46, 48, 51 | uptr2a 49201 |
. . . 4
⊢ ((𝜑 ∧ (𝐹 ∈ (𝐷 Func 𝐶) ∧ 𝑋 ∈ (Base‘𝐶))) → (𝑋((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑀 ↔ 𝑌((〈 1 , 𝐶〉 −∘F
𝐺)(( 1 FuncCat 𝐶) UP (𝐷 FuncCat 𝐶))𝐹)𝑀)) |
| 53 | 10, 37, 52 | bibiad 839 |
. . 3
⊢ (𝜑 → (𝑋((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑀 ↔ 𝑌((〈 1 , 𝐶〉 −∘F
𝐺)(( 1 FuncCat 𝐶) UP (𝐷 FuncCat 𝐶))𝐹)𝑀)) |
| 54 | | eqid 2730 |
. . . . . 6
⊢ (〈
1 , 𝐶〉
−∘F 𝐺) = (〈 1 , 𝐶〉 −∘F
𝐺) |
| 55 | 16, 5, 54 | lanval2 49606 |
. . . . 5
⊢ (𝐺 ∈ (𝐷 Func 1 ) → (𝐺(〈𝐷, 1 〉 Lan 𝐶)𝐹) = ((〈 1 , 𝐶〉 −∘F
𝐺)(( 1 FuncCat 𝐶) UP (𝐷 FuncCat 𝐶))𝐹)) |
| 56 | 40, 55 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐺(〈𝐷, 1 〉 Lan 𝐶)𝐹) = ((〈 1 , 𝐶〉 −∘F
𝐺)(( 1 FuncCat 𝐶) UP (𝐷 FuncCat 𝐶))𝐹)) |
| 57 | 56 | breqd 5120 |
. . 3
⊢ (𝜑 → (𝑌(𝐺(〈𝐷, 1 〉 Lan 𝐶)𝐹)𝑀 ↔ 𝑌((〈 1 , 𝐶〉 −∘F
𝐺)(( 1 FuncCat 𝐶) UP (𝐷 FuncCat 𝐶))𝐹)𝑀)) |
| 58 | 53, 57 | bitr4d 282 |
. 2
⊢ (𝜑 → (𝑋((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑀 ↔ 𝑌(𝐺(〈𝐷, 1 〉 Lan 𝐶)𝐹)𝑀)) |
| 59 | 2, 58 | bitrid 283 |
1
⊢ (𝜑 → (𝑋((𝐶 Colimit 𝐷)‘𝐹)𝑀 ↔ 𝑌(𝐺(〈𝐷, 1 〉 Lan 𝐶)𝐹)𝑀)) |