Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmdfval Structured version   Visualization version   GIF version

Theorem cmdfval 49750
Description: Function value of Colimit. (Contributed by Zhi Wang, 12-Nov-2025.)
Assertion
Ref Expression
cmdfval (𝐶 Colimit 𝐷) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝑓))
Distinct variable groups:   𝐶,𝑓   𝐷,𝑓

Proof of Theorem cmdfval
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝑐 = 𝐶𝑑 = 𝐷) → 𝑑 = 𝐷)
2 simpl 482 . . . . 5 ((𝑐 = 𝐶𝑑 = 𝐷) → 𝑐 = 𝐶)
31, 2oveq12d 7364 . . . 4 ((𝑐 = 𝐶𝑑 = 𝐷) → (𝑑 Func 𝑐) = (𝐷 Func 𝐶))
41, 2oveq12d 7364 . . . . . 6 ((𝑐 = 𝐶𝑑 = 𝐷) → (𝑑 FuncCat 𝑐) = (𝐷 FuncCat 𝐶))
52, 4oveq12d 7364 . . . . 5 ((𝑐 = 𝐶𝑑 = 𝐷) → (𝑐 UP (𝑑 FuncCat 𝑐)) = (𝐶 UP (𝐷 FuncCat 𝐶)))
6 oveq12 7355 . . . . 5 ((𝑐 = 𝐶𝑑 = 𝐷) → (𝑐Δfunc𝑑) = (𝐶Δfunc𝐷))
7 eqidd 2732 . . . . 5 ((𝑐 = 𝐶𝑑 = 𝐷) → 𝑓 = 𝑓)
85, 6, 7oveq123d 7367 . . . 4 ((𝑐 = 𝐶𝑑 = 𝐷) → ((𝑐Δfunc𝑑)(𝑐 UP (𝑑 FuncCat 𝑐))𝑓) = ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝑓))
93, 8mpteq12dv 5176 . . 3 ((𝑐 = 𝐶𝑑 = 𝐷) → (𝑓 ∈ (𝑑 Func 𝑐) ↦ ((𝑐Δfunc𝑑)(𝑐 UP (𝑑 FuncCat 𝑐))𝑓)) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝑓)))
10 df-cmd 49746 . . 3 Colimit = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑓 ∈ (𝑑 Func 𝑐) ↦ ((𝑐Δfunc𝑑)(𝑐 UP (𝑑 FuncCat 𝑐))𝑓)))
11 ovex 7379 . . . 4 (𝐷 Func 𝐶) ∈ V
1211mptex 7157 . . 3 (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝑓)) ∈ V
139, 10, 12ovmpoa 7501 . 2 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶 Colimit 𝐷) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝑓)))
14 reldmcmd 49748 . . . 4 Rel dom Colimit
1514ovprc 7384 . . 3 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶 Colimit 𝐷) = ∅)
16 ancom 460 . . . . . 6 ((𝐶 ∈ V ∧ 𝐷 ∈ V) ↔ (𝐷 ∈ V ∧ 𝐶 ∈ V))
17 reldmfunc 49175 . . . . . . 7 Rel dom Func
1817ovprc 7384 . . . . . 6 (¬ (𝐷 ∈ V ∧ 𝐶 ∈ V) → (𝐷 Func 𝐶) = ∅)
1916, 18sylnbi 330 . . . . 5 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐷 Func 𝐶) = ∅)
2019mpteq1d 5179 . . . 4 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝑓)) = (𝑓 ∈ ∅ ↦ ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝑓)))
21 mpt0 6623 . . . 4 (𝑓 ∈ ∅ ↦ ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝑓)) = ∅
2220, 21eqtrdi 2782 . . 3 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝑓)) = ∅)
2315, 22eqtr4d 2769 . 2 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶 Colimit 𝐷) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝑓)))
2413, 23pm2.61i 182 1 (𝐶 Colimit 𝐷) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝑓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  c0 4280  cmpt 5170  (class class class)co 7346   Func cfunc 17761   FuncCat cfuc 17852  Δfunccdiag 18118   UP cup 49273   Colimit ccmd 49744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-func 17765  df-cmd 49746
This theorem is referenced by:  cmdrcl  49752  reldmcmd2  49754  cmdfval2  49756  cmdpropd  49758
  Copyright terms: Public domain W3C validator