Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmdfval Structured version   Visualization version   GIF version

Theorem cmdfval 49645
Description: Function value of Colimit. (Contributed by Zhi Wang, 12-Nov-2025.)
Assertion
Ref Expression
cmdfval (𝐶 Colimit 𝐷) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝑓))
Distinct variable groups:   𝐶,𝑓   𝐷,𝑓

Proof of Theorem cmdfval
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝑐 = 𝐶𝑑 = 𝐷) → 𝑑 = 𝐷)
2 simpl 482 . . . . 5 ((𝑐 = 𝐶𝑑 = 𝐷) → 𝑐 = 𝐶)
31, 2oveq12d 7367 . . . 4 ((𝑐 = 𝐶𝑑 = 𝐷) → (𝑑 Func 𝑐) = (𝐷 Func 𝐶))
41, 2oveq12d 7367 . . . . . 6 ((𝑐 = 𝐶𝑑 = 𝐷) → (𝑑 FuncCat 𝑐) = (𝐷 FuncCat 𝐶))
52, 4oveq12d 7367 . . . . 5 ((𝑐 = 𝐶𝑑 = 𝐷) → (𝑐 UP (𝑑 FuncCat 𝑐)) = (𝐶 UP (𝐷 FuncCat 𝐶)))
6 oveq12 7358 . . . . 5 ((𝑐 = 𝐶𝑑 = 𝐷) → (𝑐Δfunc𝑑) = (𝐶Δfunc𝐷))
7 eqidd 2730 . . . . 5 ((𝑐 = 𝐶𝑑 = 𝐷) → 𝑓 = 𝑓)
85, 6, 7oveq123d 7370 . . . 4 ((𝑐 = 𝐶𝑑 = 𝐷) → ((𝑐Δfunc𝑑)(𝑐 UP (𝑑 FuncCat 𝑐))𝑓) = ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝑓))
93, 8mpteq12dv 5179 . . 3 ((𝑐 = 𝐶𝑑 = 𝐷) → (𝑓 ∈ (𝑑 Func 𝑐) ↦ ((𝑐Δfunc𝑑)(𝑐 UP (𝑑 FuncCat 𝑐))𝑓)) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝑓)))
10 df-cmd 49641 . . 3 Colimit = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑓 ∈ (𝑑 Func 𝑐) ↦ ((𝑐Δfunc𝑑)(𝑐 UP (𝑑 FuncCat 𝑐))𝑓)))
11 ovex 7382 . . . 4 (𝐷 Func 𝐶) ∈ V
1211mptex 7159 . . 3 (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝑓)) ∈ V
139, 10, 12ovmpoa 7504 . 2 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶 Colimit 𝐷) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝑓)))
14 reldmcmd 49643 . . . 4 Rel dom Colimit
1514ovprc 7387 . . 3 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶 Colimit 𝐷) = ∅)
16 ancom 460 . . . . . 6 ((𝐶 ∈ V ∧ 𝐷 ∈ V) ↔ (𝐷 ∈ V ∧ 𝐶 ∈ V))
17 reldmfunc 49070 . . . . . . 7 Rel dom Func
1817ovprc 7387 . . . . . 6 (¬ (𝐷 ∈ V ∧ 𝐶 ∈ V) → (𝐷 Func 𝐶) = ∅)
1916, 18sylnbi 330 . . . . 5 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐷 Func 𝐶) = ∅)
2019mpteq1d 5182 . . . 4 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝑓)) = (𝑓 ∈ ∅ ↦ ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝑓)))
21 mpt0 6624 . . . 4 (𝑓 ∈ ∅ ↦ ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝑓)) = ∅
2220, 21eqtrdi 2780 . . 3 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝑓)) = ∅)
2315, 22eqtr4d 2767 . 2 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶 Colimit 𝐷) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝑓)))
2413, 23pm2.61i 182 1 (𝐶 Colimit 𝐷) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝑓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  c0 4284  cmpt 5173  (class class class)co 7349   Func cfunc 17761   FuncCat cfuc 17852  Δfunccdiag 18118   UP cup 49168   Colimit ccmd 49639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-func 17765  df-cmd 49641
This theorem is referenced by:  cmdrcl  49647  reldmcmd2  49649  cmdfval2  49651  cmdpropd  49653
  Copyright terms: Public domain W3C validator