Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscmd Structured version   Visualization version   GIF version

Theorem iscmd 49484
Description: The universal property of colimits of a diagram. (Contributed by Zhi Wang, 13-Nov-2025.)
Hypotheses
Ref Expression
islmd.l 𝐿 = (𝐶Δfunc𝐷)
islmd.a 𝐴 = (Base‘𝐶)
islmd.n 𝑁 = (𝐷 Nat 𝐶)
islmd.b 𝐵 = (Base‘𝐷)
islmd.h 𝐻 = (Hom ‘𝐶)
islmd.x · = (comp‘𝐶)
Assertion
Ref Expression
iscmd (𝑋((𝐶 Colimit 𝐷)‘𝐹)𝑅 ↔ ((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ ∀𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥))∃!𝑚 ∈ (𝑋𝐻𝑥)𝑎 = (𝑗𝐵 ↦ (𝑚(⟨((1st𝐹)‘𝑗), 𝑋· 𝑥)(𝑅𝑗)))))
Distinct variable groups:   · ,𝑗   𝐴,𝑎,𝑗,𝑚,𝑥   𝐵,𝑗   𝐶,𝑎,𝑗,𝑚,𝑥   𝐷,𝑎,𝑗,𝑚,𝑥   𝐹,𝑎,𝑗,𝑚,𝑥   𝑗,𝐻,𝑚   𝐿,𝑎,𝑗,𝑚,𝑥   𝑁,𝑎,𝑗,𝑚,𝑥   𝑅,𝑎,𝑗,𝑚,𝑥   𝑋,𝑎,𝑗,𝑚,𝑥   𝐻,𝑎,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑚,𝑎)   · (𝑥,𝑚,𝑎)

Proof of Theorem iscmd
StepHypRef Expression
1 cmdfval2 49476 . . . 4 ((𝐶 Colimit 𝐷)‘𝐹) = ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)
2 islmd.l . . . . 5 𝐿 = (𝐶Δfunc𝐷)
32oveq1i 7413 . . . 4 (𝐿(𝐶 UP (𝐷 FuncCat 𝐶))𝐹) = ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)
41, 3eqtr4i 2761 . . 3 ((𝐶 Colimit 𝐷)‘𝐹) = (𝐿(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)
54breqi 5125 . 2 (𝑋((𝐶 Colimit 𝐷)‘𝐹)𝑅𝑋(𝐿(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅)
6 id 22 . . . . . 6 (𝑋(𝐿(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅𝑋(𝐿(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅)
76up1st2nd 49067 . . . . 5 (𝑋(𝐿(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅𝑋(⟨(1st𝐿), (2nd𝐿)⟩(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅)
8 islmd.a . . . . 5 𝐴 = (Base‘𝐶)
97, 8uprcl4 49073 . . . 4 (𝑋(𝐿(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅𝑋𝐴)
10 eqid 2735 . . . . . 6 (𝐷 FuncCat 𝐶) = (𝐷 FuncCat 𝐶)
11 islmd.n . . . . . 6 𝑁 = (𝐷 Nat 𝐶)
1210, 11fuchom 17975 . . . . 5 𝑁 = (Hom ‘(𝐷 FuncCat 𝐶))
137, 12uprcl5 49074 . . . 4 (𝑋(𝐿(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋)))
149, 13jca 511 . . 3 (𝑋(𝐿(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅 → (𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))))
1511natrcl 17964 . . . . . . . . . 10 (𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋)) → (𝐹 ∈ (𝐷 Func 𝐶) ∧ ((1st𝐿)‘𝑋) ∈ (𝐷 Func 𝐶)))
1615adantl 481 . . . . . . . . 9 ((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) → (𝐹 ∈ (𝐷 Func 𝐶) ∧ ((1st𝐿)‘𝑋) ∈ (𝐷 Func 𝐶)))
1716simpld 494 . . . . . . . 8 ((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) → 𝐹 ∈ (𝐷 Func 𝐶))
1817func1st2nd 48991 . . . . . . 7 ((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) → (1st𝐹)(𝐷 Func 𝐶)(2nd𝐹))
1918funcrcl3 48993 . . . . . 6 ((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) → 𝐶 ∈ Cat)
2018funcrcl2 48992 . . . . . 6 ((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) → 𝐷 ∈ Cat)
212, 19, 20, 10diagcl 18251 . . . . 5 ((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) → 𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶)))
2221up1st2ndb 49069 . . . 4 ((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) → (𝑋(𝐿(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅𝑋(⟨(1st𝐿), (2nd𝐿)⟩(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅))
2310fucbas 17974 . . . . 5 (𝐷 Func 𝐶) = (Base‘(𝐷 FuncCat 𝐶))
24 islmd.h . . . . 5 𝐻 = (Hom ‘𝐶)
25 eqid 2735 . . . . 5 (comp‘(𝐷 FuncCat 𝐶)) = (comp‘(𝐷 FuncCat 𝐶))
2621func1st2nd 48991 . . . . 5 ((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) → (1st𝐿)(𝐶 Func (𝐷 FuncCat 𝐶))(2nd𝐿))
27 simpl 482 . . . . 5 ((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) → 𝑋𝐴)
28 simpr 484 . . . . 5 ((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) → 𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋)))
298, 23, 24, 12, 25, 17, 26, 27, 28isup 49063 . . . 4 ((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) → (𝑋(⟨(1st𝐿), (2nd𝐿)⟩(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅 ↔ ∀𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥))∃!𝑚 ∈ (𝑋𝐻𝑥)𝑎 = (((𝑋(2nd𝐿)𝑥)‘𝑚)(⟨𝐹, ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))((1st𝐿)‘𝑥))𝑅)))
30 islmd.b . . . . . . . . . 10 𝐵 = (Base‘𝐷)
3119ad2antrr 726 . . . . . . . . . 10 ((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → 𝐶 ∈ Cat)
3220ad2antrr 726 . . . . . . . . . 10 ((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → 𝐷 ∈ Cat)
3327ad2antrr 726 . . . . . . . . . 10 ((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → 𝑋𝐴)
34 simplrl 776 . . . . . . . . . 10 ((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → 𝑥𝐴)
35 simpr 484 . . . . . . . . . 10 ((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → 𝑚 ∈ (𝑋𝐻𝑥))
362, 8, 30, 24, 31, 32, 33, 34, 35diag2 18255 . . . . . . . . 9 ((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → ((𝑋(2nd𝐿)𝑥)‘𝑚) = (𝐵 × {𝑚}))
3736oveq1d 7418 . . . . . . . 8 ((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → (((𝑋(2nd𝐿)𝑥)‘𝑚)(⟨𝐹, ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))((1st𝐿)‘𝑥))𝑅) = ((𝐵 × {𝑚})(⟨𝐹, ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))((1st𝐿)‘𝑥))𝑅))
38 islmd.x . . . . . . . . 9 · = (comp‘𝐶)
3928ad2antrr 726 . . . . . . . . 9 ((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → 𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋)))
402, 8, 30, 24, 31, 32, 33, 34, 35, 11diag2cl 18256 . . . . . . . . 9 ((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → (𝐵 × {𝑚}) ∈ (((1st𝐿)‘𝑋)𝑁((1st𝐿)‘𝑥)))
4110, 11, 30, 38, 25, 39, 40fucco 17976 . . . . . . . 8 ((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → ((𝐵 × {𝑚})(⟨𝐹, ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))((1st𝐿)‘𝑥))𝑅) = (𝑗𝐵 ↦ (((𝐵 × {𝑚})‘𝑗)(⟨((1st𝐹)‘𝑗), ((1st ‘((1st𝐿)‘𝑋))‘𝑗)⟩ · ((1st ‘((1st𝐿)‘𝑥))‘𝑗))(𝑅𝑗))))
4231adantr 480 . . . . . . . . . . . . 13 (((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) ∧ 𝑗𝐵) → 𝐶 ∈ Cat)
4332adantr 480 . . . . . . . . . . . . 13 (((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) ∧ 𝑗𝐵) → 𝐷 ∈ Cat)
4433adantr 480 . . . . . . . . . . . . 13 (((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) ∧ 𝑗𝐵) → 𝑋𝐴)
45 eqid 2735 . . . . . . . . . . . . 13 ((1st𝐿)‘𝑋) = ((1st𝐿)‘𝑋)
46 simpr 484 . . . . . . . . . . . . 13 (((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) ∧ 𝑗𝐵) → 𝑗𝐵)
472, 42, 43, 8, 44, 45, 30, 46diag11 18253 . . . . . . . . . . . 12 (((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) ∧ 𝑗𝐵) → ((1st ‘((1st𝐿)‘𝑋))‘𝑗) = 𝑋)
4847opeq2d 4856 . . . . . . . . . . 11 (((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) ∧ 𝑗𝐵) → ⟨((1st𝐹)‘𝑗), ((1st ‘((1st𝐿)‘𝑋))‘𝑗)⟩ = ⟨((1st𝐹)‘𝑗), 𝑋⟩)
4934adantr 480 . . . . . . . . . . . 12 (((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) ∧ 𝑗𝐵) → 𝑥𝐴)
50 eqid 2735 . . . . . . . . . . . 12 ((1st𝐿)‘𝑥) = ((1st𝐿)‘𝑥)
512, 42, 43, 8, 49, 50, 30, 46diag11 18253 . . . . . . . . . . 11 (((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) ∧ 𝑗𝐵) → ((1st ‘((1st𝐿)‘𝑥))‘𝑗) = 𝑥)
5248, 51oveq12d 7421 . . . . . . . . . 10 (((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) ∧ 𝑗𝐵) → (⟨((1st𝐹)‘𝑗), ((1st ‘((1st𝐿)‘𝑋))‘𝑗)⟩ · ((1st ‘((1st𝐿)‘𝑥))‘𝑗)) = (⟨((1st𝐹)‘𝑗), 𝑋· 𝑥))
53 vex 3463 . . . . . . . . . . . 12 𝑚 ∈ V
5453fvconst2 7195 . . . . . . . . . . 11 (𝑗𝐵 → ((𝐵 × {𝑚})‘𝑗) = 𝑚)
5554adantl 481 . . . . . . . . . 10 (((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) ∧ 𝑗𝐵) → ((𝐵 × {𝑚})‘𝑗) = 𝑚)
56 eqidd 2736 . . . . . . . . . 10 (((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) ∧ 𝑗𝐵) → (𝑅𝑗) = (𝑅𝑗))
5752, 55, 56oveq123d 7424 . . . . . . . . 9 (((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) ∧ 𝑗𝐵) → (((𝐵 × {𝑚})‘𝑗)(⟨((1st𝐹)‘𝑗), ((1st ‘((1st𝐿)‘𝑋))‘𝑗)⟩ · ((1st ‘((1st𝐿)‘𝑥))‘𝑗))(𝑅𝑗)) = (𝑚(⟨((1st𝐹)‘𝑗), 𝑋· 𝑥)(𝑅𝑗)))
5857mpteq2dva 5214 . . . . . . . 8 ((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → (𝑗𝐵 ↦ (((𝐵 × {𝑚})‘𝑗)(⟨((1st𝐹)‘𝑗), ((1st ‘((1st𝐿)‘𝑋))‘𝑗)⟩ · ((1st ‘((1st𝐿)‘𝑥))‘𝑗))(𝑅𝑗))) = (𝑗𝐵 ↦ (𝑚(⟨((1st𝐹)‘𝑗), 𝑋· 𝑥)(𝑅𝑗))))
5937, 41, 583eqtrd 2774 . . . . . . 7 ((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → (((𝑋(2nd𝐿)𝑥)‘𝑚)(⟨𝐹, ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))((1st𝐿)‘𝑥))𝑅) = (𝑗𝐵 ↦ (𝑚(⟨((1st𝐹)‘𝑗), 𝑋· 𝑥)(𝑅𝑗))))
6059eqeq2d 2746 . . . . . 6 ((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → (𝑎 = (((𝑋(2nd𝐿)𝑥)‘𝑚)(⟨𝐹, ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))((1st𝐿)‘𝑥))𝑅) ↔ 𝑎 = (𝑗𝐵 ↦ (𝑚(⟨((1st𝐹)‘𝑗), 𝑋· 𝑥)(𝑅𝑗)))))
6160reubidva 3375 . . . . 5 (((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) → (∃!𝑚 ∈ (𝑋𝐻𝑥)𝑎 = (((𝑋(2nd𝐿)𝑥)‘𝑚)(⟨𝐹, ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))((1st𝐿)‘𝑥))𝑅) ↔ ∃!𝑚 ∈ (𝑋𝐻𝑥)𝑎 = (𝑗𝐵 ↦ (𝑚(⟨((1st𝐹)‘𝑗), 𝑋· 𝑥)(𝑅𝑗)))))
62612ralbidva 3203 . . . 4 ((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) → (∀𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥))∃!𝑚 ∈ (𝑋𝐻𝑥)𝑎 = (((𝑋(2nd𝐿)𝑥)‘𝑚)(⟨𝐹, ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))((1st𝐿)‘𝑥))𝑅) ↔ ∀𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥))∃!𝑚 ∈ (𝑋𝐻𝑥)𝑎 = (𝑗𝐵 ↦ (𝑚(⟨((1st𝐹)‘𝑗), 𝑋· 𝑥)(𝑅𝑗)))))
6322, 29, 623bitrd 305 . . 3 ((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) → (𝑋(𝐿(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅 ↔ ∀𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥))∃!𝑚 ∈ (𝑋𝐻𝑥)𝑎 = (𝑗𝐵 ↦ (𝑚(⟨((1st𝐹)‘𝑗), 𝑋· 𝑥)(𝑅𝑗)))))
6414, 63biadanii 821 . 2 (𝑋(𝐿(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅 ↔ ((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ ∀𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥))∃!𝑚 ∈ (𝑋𝐻𝑥)𝑎 = (𝑗𝐵 ↦ (𝑚(⟨((1st𝐹)‘𝑗), 𝑋· 𝑥)(𝑅𝑗)))))
655, 64bitri 275 1 (𝑋((𝐶 Colimit 𝐷)‘𝐹)𝑅 ↔ ((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ ∀𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥))∃!𝑚 ∈ (𝑋𝐻𝑥)𝑎 = (𝑗𝐵 ↦ (𝑚(⟨((1st𝐹)‘𝑗), 𝑋· 𝑥)(𝑅𝑗)))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  ∃!wreu 3357  {csn 4601  cop 4607   class class class wbr 5119  cmpt 5201   × cxp 5652  cfv 6530  (class class class)co 7403  1st c1st 7984  2nd c2nd 7985  Basecbs 17226  Hom chom 17280  compcco 17281  Catccat 17674   Func cfunc 17865   Nat cnat 17955   FuncCat cfuc 17956  Δfunccdiag 18222   UP cup 49056   Colimit ccmd 49466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-map 8840  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-fz 13523  df-struct 17164  df-slot 17199  df-ndx 17211  df-base 17227  df-hom 17293  df-cco 17294  df-cat 17678  df-cid 17679  df-func 17869  df-nat 17957  df-fuc 17958  df-xpc 18182  df-1stf 18183  df-curf 18224  df-diag 18226  df-up 49057  df-cmd 49468
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator