Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscmd Structured version   Visualization version   GIF version

Theorem iscmd 49659
Description: The universal property of colimits of a diagram. (Contributed by Zhi Wang, 13-Nov-2025.)
Hypotheses
Ref Expression
islmd.l 𝐿 = (𝐶Δfunc𝐷)
islmd.a 𝐴 = (Base‘𝐶)
islmd.n 𝑁 = (𝐷 Nat 𝐶)
islmd.b 𝐵 = (Base‘𝐷)
islmd.h 𝐻 = (Hom ‘𝐶)
islmd.x · = (comp‘𝐶)
Assertion
Ref Expression
iscmd (𝑋((𝐶 Colimit 𝐷)‘𝐹)𝑅 ↔ ((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ ∀𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥))∃!𝑚 ∈ (𝑋𝐻𝑥)𝑎 = (𝑗𝐵 ↦ (𝑚(⟨((1st𝐹)‘𝑗), 𝑋· 𝑥)(𝑅𝑗)))))
Distinct variable groups:   · ,𝑗   𝐴,𝑎,𝑗,𝑚,𝑥   𝐵,𝑗   𝐶,𝑎,𝑗,𝑚,𝑥   𝐷,𝑎,𝑗,𝑚,𝑥   𝐹,𝑎,𝑗,𝑚,𝑥   𝑗,𝐻,𝑚   𝐿,𝑎,𝑗,𝑚,𝑥   𝑁,𝑎,𝑗,𝑚,𝑥   𝑅,𝑎,𝑗,𝑚,𝑥   𝑋,𝑎,𝑗,𝑚,𝑥   𝐻,𝑎,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑚,𝑎)   · (𝑥,𝑚,𝑎)

Proof of Theorem iscmd
StepHypRef Expression
1 cmdfval2 49649 . . . 4 ((𝐶 Colimit 𝐷)‘𝐹) = ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)
2 islmd.l . . . . 5 𝐿 = (𝐶Δfunc𝐷)
32oveq1i 7400 . . . 4 (𝐿(𝐶 UP (𝐷 FuncCat 𝐶))𝐹) = ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)
41, 3eqtr4i 2756 . . 3 ((𝐶 Colimit 𝐷)‘𝐹) = (𝐿(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)
54breqi 5116 . 2 (𝑋((𝐶 Colimit 𝐷)‘𝐹)𝑅𝑋(𝐿(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅)
6 id 22 . . . . . 6 (𝑋(𝐿(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅𝑋(𝐿(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅)
76up1st2nd 49178 . . . . 5 (𝑋(𝐿(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅𝑋(⟨(1st𝐿), (2nd𝐿)⟩(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅)
8 islmd.a . . . . 5 𝐴 = (Base‘𝐶)
97, 8uprcl4 49184 . . . 4 (𝑋(𝐿(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅𝑋𝐴)
10 eqid 2730 . . . . . 6 (𝐷 FuncCat 𝐶) = (𝐷 FuncCat 𝐶)
11 islmd.n . . . . . 6 𝑁 = (𝐷 Nat 𝐶)
1210, 11fuchom 17933 . . . . 5 𝑁 = (Hom ‘(𝐷 FuncCat 𝐶))
137, 12uprcl5 49185 . . . 4 (𝑋(𝐿(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋)))
149, 13jca 511 . . 3 (𝑋(𝐿(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅 → (𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))))
1511natrcl 17922 . . . . . . . . . 10 (𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋)) → (𝐹 ∈ (𝐷 Func 𝐶) ∧ ((1st𝐿)‘𝑋) ∈ (𝐷 Func 𝐶)))
1615adantl 481 . . . . . . . . 9 ((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) → (𝐹 ∈ (𝐷 Func 𝐶) ∧ ((1st𝐿)‘𝑋) ∈ (𝐷 Func 𝐶)))
1716simpld 494 . . . . . . . 8 ((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) → 𝐹 ∈ (𝐷 Func 𝐶))
1817func1st2nd 49069 . . . . . . 7 ((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) → (1st𝐹)(𝐷 Func 𝐶)(2nd𝐹))
1918funcrcl3 49073 . . . . . 6 ((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) → 𝐶 ∈ Cat)
2018funcrcl2 49072 . . . . . 6 ((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) → 𝐷 ∈ Cat)
212, 19, 20, 10diagcl 18209 . . . . 5 ((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) → 𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶)))
2221up1st2ndb 49180 . . . 4 ((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) → (𝑋(𝐿(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅𝑋(⟨(1st𝐿), (2nd𝐿)⟩(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅))
2310fucbas 17932 . . . . 5 (𝐷 Func 𝐶) = (Base‘(𝐷 FuncCat 𝐶))
24 islmd.h . . . . 5 𝐻 = (Hom ‘𝐶)
25 eqid 2730 . . . . 5 (comp‘(𝐷 FuncCat 𝐶)) = (comp‘(𝐷 FuncCat 𝐶))
2621func1st2nd 49069 . . . . 5 ((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) → (1st𝐿)(𝐶 Func (𝐷 FuncCat 𝐶))(2nd𝐿))
27 simpl 482 . . . . 5 ((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) → 𝑋𝐴)
28 simpr 484 . . . . 5 ((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) → 𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋)))
298, 23, 24, 12, 25, 17, 26, 27, 28isup 49173 . . . 4 ((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) → (𝑋(⟨(1st𝐿), (2nd𝐿)⟩(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅 ↔ ∀𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥))∃!𝑚 ∈ (𝑋𝐻𝑥)𝑎 = (((𝑋(2nd𝐿)𝑥)‘𝑚)(⟨𝐹, ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))((1st𝐿)‘𝑥))𝑅)))
30 islmd.b . . . . . . . . . 10 𝐵 = (Base‘𝐷)
3119ad2antrr 726 . . . . . . . . . 10 ((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → 𝐶 ∈ Cat)
3220ad2antrr 726 . . . . . . . . . 10 ((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → 𝐷 ∈ Cat)
3327ad2antrr 726 . . . . . . . . . 10 ((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → 𝑋𝐴)
34 simplrl 776 . . . . . . . . . 10 ((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → 𝑥𝐴)
35 simpr 484 . . . . . . . . . 10 ((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → 𝑚 ∈ (𝑋𝐻𝑥))
362, 8, 30, 24, 31, 32, 33, 34, 35diag2 18213 . . . . . . . . 9 ((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → ((𝑋(2nd𝐿)𝑥)‘𝑚) = (𝐵 × {𝑚}))
3736oveq1d 7405 . . . . . . . 8 ((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → (((𝑋(2nd𝐿)𝑥)‘𝑚)(⟨𝐹, ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))((1st𝐿)‘𝑥))𝑅) = ((𝐵 × {𝑚})(⟨𝐹, ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))((1st𝐿)‘𝑥))𝑅))
38 islmd.x . . . . . . . . 9 · = (comp‘𝐶)
3928ad2antrr 726 . . . . . . . . 9 ((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → 𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋)))
402, 8, 30, 24, 31, 32, 33, 34, 35, 11diag2cl 18214 . . . . . . . . 9 ((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → (𝐵 × {𝑚}) ∈ (((1st𝐿)‘𝑋)𝑁((1st𝐿)‘𝑥)))
4110, 11, 30, 38, 25, 39, 40fucco 17934 . . . . . . . 8 ((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → ((𝐵 × {𝑚})(⟨𝐹, ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))((1st𝐿)‘𝑥))𝑅) = (𝑗𝐵 ↦ (((𝐵 × {𝑚})‘𝑗)(⟨((1st𝐹)‘𝑗), ((1st ‘((1st𝐿)‘𝑋))‘𝑗)⟩ · ((1st ‘((1st𝐿)‘𝑥))‘𝑗))(𝑅𝑗))))
4231adantr 480 . . . . . . . . . . . . 13 (((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) ∧ 𝑗𝐵) → 𝐶 ∈ Cat)
4332adantr 480 . . . . . . . . . . . . 13 (((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) ∧ 𝑗𝐵) → 𝐷 ∈ Cat)
4433adantr 480 . . . . . . . . . . . . 13 (((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) ∧ 𝑗𝐵) → 𝑋𝐴)
45 eqid 2730 . . . . . . . . . . . . 13 ((1st𝐿)‘𝑋) = ((1st𝐿)‘𝑋)
46 simpr 484 . . . . . . . . . . . . 13 (((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) ∧ 𝑗𝐵) → 𝑗𝐵)
472, 42, 43, 8, 44, 45, 30, 46diag11 18211 . . . . . . . . . . . 12 (((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) ∧ 𝑗𝐵) → ((1st ‘((1st𝐿)‘𝑋))‘𝑗) = 𝑋)
4847opeq2d 4847 . . . . . . . . . . 11 (((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) ∧ 𝑗𝐵) → ⟨((1st𝐹)‘𝑗), ((1st ‘((1st𝐿)‘𝑋))‘𝑗)⟩ = ⟨((1st𝐹)‘𝑗), 𝑋⟩)
4934adantr 480 . . . . . . . . . . . 12 (((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) ∧ 𝑗𝐵) → 𝑥𝐴)
50 eqid 2730 . . . . . . . . . . . 12 ((1st𝐿)‘𝑥) = ((1st𝐿)‘𝑥)
512, 42, 43, 8, 49, 50, 30, 46diag11 18211 . . . . . . . . . . 11 (((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) ∧ 𝑗𝐵) → ((1st ‘((1st𝐿)‘𝑥))‘𝑗) = 𝑥)
5248, 51oveq12d 7408 . . . . . . . . . 10 (((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) ∧ 𝑗𝐵) → (⟨((1st𝐹)‘𝑗), ((1st ‘((1st𝐿)‘𝑋))‘𝑗)⟩ · ((1st ‘((1st𝐿)‘𝑥))‘𝑗)) = (⟨((1st𝐹)‘𝑗), 𝑋· 𝑥))
53 vex 3454 . . . . . . . . . . . 12 𝑚 ∈ V
5453fvconst2 7181 . . . . . . . . . . 11 (𝑗𝐵 → ((𝐵 × {𝑚})‘𝑗) = 𝑚)
5554adantl 481 . . . . . . . . . 10 (((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) ∧ 𝑗𝐵) → ((𝐵 × {𝑚})‘𝑗) = 𝑚)
56 eqidd 2731 . . . . . . . . . 10 (((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) ∧ 𝑗𝐵) → (𝑅𝑗) = (𝑅𝑗))
5752, 55, 56oveq123d 7411 . . . . . . . . 9 (((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) ∧ 𝑗𝐵) → (((𝐵 × {𝑚})‘𝑗)(⟨((1st𝐹)‘𝑗), ((1st ‘((1st𝐿)‘𝑋))‘𝑗)⟩ · ((1st ‘((1st𝐿)‘𝑥))‘𝑗))(𝑅𝑗)) = (𝑚(⟨((1st𝐹)‘𝑗), 𝑋· 𝑥)(𝑅𝑗)))
5857mpteq2dva 5203 . . . . . . . 8 ((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → (𝑗𝐵 ↦ (((𝐵 × {𝑚})‘𝑗)(⟨((1st𝐹)‘𝑗), ((1st ‘((1st𝐿)‘𝑋))‘𝑗)⟩ · ((1st ‘((1st𝐿)‘𝑥))‘𝑗))(𝑅𝑗))) = (𝑗𝐵 ↦ (𝑚(⟨((1st𝐹)‘𝑗), 𝑋· 𝑥)(𝑅𝑗))))
5937, 41, 583eqtrd 2769 . . . . . . 7 ((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → (((𝑋(2nd𝐿)𝑥)‘𝑚)(⟨𝐹, ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))((1st𝐿)‘𝑥))𝑅) = (𝑗𝐵 ↦ (𝑚(⟨((1st𝐹)‘𝑗), 𝑋· 𝑥)(𝑅𝑗))))
6059eqeq2d 2741 . . . . . 6 ((((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → (𝑎 = (((𝑋(2nd𝐿)𝑥)‘𝑚)(⟨𝐹, ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))((1st𝐿)‘𝑥))𝑅) ↔ 𝑎 = (𝑗𝐵 ↦ (𝑚(⟨((1st𝐹)‘𝑗), 𝑋· 𝑥)(𝑅𝑗)))))
6160reubidva 3372 . . . . 5 (((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ (𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥)))) → (∃!𝑚 ∈ (𝑋𝐻𝑥)𝑎 = (((𝑋(2nd𝐿)𝑥)‘𝑚)(⟨𝐹, ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))((1st𝐿)‘𝑥))𝑅) ↔ ∃!𝑚 ∈ (𝑋𝐻𝑥)𝑎 = (𝑗𝐵 ↦ (𝑚(⟨((1st𝐹)‘𝑗), 𝑋· 𝑥)(𝑅𝑗)))))
62612ralbidva 3200 . . . 4 ((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) → (∀𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥))∃!𝑚 ∈ (𝑋𝐻𝑥)𝑎 = (((𝑋(2nd𝐿)𝑥)‘𝑚)(⟨𝐹, ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))((1st𝐿)‘𝑥))𝑅) ↔ ∀𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥))∃!𝑚 ∈ (𝑋𝐻𝑥)𝑎 = (𝑗𝐵 ↦ (𝑚(⟨((1st𝐹)‘𝑗), 𝑋· 𝑥)(𝑅𝑗)))))
6322, 29, 623bitrd 305 . . 3 ((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) → (𝑋(𝐿(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅 ↔ ∀𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥))∃!𝑚 ∈ (𝑋𝐻𝑥)𝑎 = (𝑗𝐵 ↦ (𝑚(⟨((1st𝐹)‘𝑗), 𝑋· 𝑥)(𝑅𝑗)))))
6414, 63biadanii 821 . 2 (𝑋(𝐿(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅 ↔ ((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ ∀𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥))∃!𝑚 ∈ (𝑋𝐻𝑥)𝑎 = (𝑗𝐵 ↦ (𝑚(⟨((1st𝐹)‘𝑗), 𝑋· 𝑥)(𝑅𝑗)))))
655, 64bitri 275 1 (𝑋((𝐶 Colimit 𝐷)‘𝐹)𝑅 ↔ ((𝑋𝐴𝑅 ∈ (𝐹𝑁((1st𝐿)‘𝑋))) ∧ ∀𝑥𝐴𝑎 ∈ (𝐹𝑁((1st𝐿)‘𝑥))∃!𝑚 ∈ (𝑋𝐻𝑥)𝑎 = (𝑗𝐵 ↦ (𝑚(⟨((1st𝐹)‘𝑗), 𝑋· 𝑥)(𝑅𝑗)))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  ∃!wreu 3354  {csn 4592  cop 4598   class class class wbr 5110  cmpt 5191   × cxp 5639  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  Basecbs 17186  Hom chom 17238  compcco 17239  Catccat 17632   Func cfunc 17823   Nat cnat 17913   FuncCat cfuc 17914  Δfunccdiag 18180   UP cup 49166   Colimit ccmd 49637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-hom 17251  df-cco 17252  df-cat 17636  df-cid 17637  df-func 17827  df-nat 17915  df-fuc 17916  df-xpc 18140  df-1stf 18141  df-curf 18182  df-diag 18184  df-up 49167  df-cmd 49639
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator