Proof of Theorem iscmd
| Step | Hyp | Ref
| Expression |
| 1 | | cmdfval2 49476 |
. . . 4
⊢ ((𝐶 Colimit 𝐷)‘𝐹) = ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝐹) |
| 2 | | islmd.l |
. . . . 5
⊢ 𝐿 = (𝐶Δfunc𝐷) |
| 3 | 2 | oveq1i 7413 |
. . . 4
⊢ (𝐿(𝐶 UP (𝐷 FuncCat 𝐶))𝐹) = ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝐹) |
| 4 | 1, 3 | eqtr4i 2761 |
. . 3
⊢ ((𝐶 Colimit 𝐷)‘𝐹) = (𝐿(𝐶 UP (𝐷 FuncCat 𝐶))𝐹) |
| 5 | 4 | breqi 5125 |
. 2
⊢ (𝑋((𝐶 Colimit 𝐷)‘𝐹)𝑅 ↔ 𝑋(𝐿(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅) |
| 6 | | id 22 |
. . . . . 6
⊢ (𝑋(𝐿(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅 → 𝑋(𝐿(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅) |
| 7 | 6 | up1st2nd 49067 |
. . . . 5
⊢ (𝑋(𝐿(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅 → 𝑋(〈(1st ‘𝐿), (2nd ‘𝐿)〉(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅) |
| 8 | | islmd.a |
. . . . 5
⊢ 𝐴 = (Base‘𝐶) |
| 9 | 7, 8 | uprcl4 49073 |
. . . 4
⊢ (𝑋(𝐿(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅 → 𝑋 ∈ 𝐴) |
| 10 | | eqid 2735 |
. . . . . 6
⊢ (𝐷 FuncCat 𝐶) = (𝐷 FuncCat 𝐶) |
| 11 | | islmd.n |
. . . . . 6
⊢ 𝑁 = (𝐷 Nat 𝐶) |
| 12 | 10, 11 | fuchom 17975 |
. . . . 5
⊢ 𝑁 = (Hom ‘(𝐷 FuncCat 𝐶)) |
| 13 | 7, 12 | uprcl5 49074 |
. . . 4
⊢ (𝑋(𝐿(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅 → 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) |
| 14 | 9, 13 | jca 511 |
. . 3
⊢ (𝑋(𝐿(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅 → (𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋)))) |
| 15 | 11 | natrcl 17964 |
. . . . . . . . . 10
⊢ (𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋)) → (𝐹 ∈ (𝐷 Func 𝐶) ∧ ((1st ‘𝐿)‘𝑋) ∈ (𝐷 Func 𝐶))) |
| 16 | 15 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) → (𝐹 ∈ (𝐷 Func 𝐶) ∧ ((1st ‘𝐿)‘𝑋) ∈ (𝐷 Func 𝐶))) |
| 17 | 16 | simpld 494 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) → 𝐹 ∈ (𝐷 Func 𝐶)) |
| 18 | 17 | func1st2nd 48991 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) → (1st ‘𝐹)(𝐷 Func 𝐶)(2nd ‘𝐹)) |
| 19 | 18 | funcrcl3 48993 |
. . . . . 6
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) → 𝐶 ∈ Cat) |
| 20 | 18 | funcrcl2 48992 |
. . . . . 6
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) → 𝐷 ∈ Cat) |
| 21 | 2, 19, 20, 10 | diagcl 18251 |
. . . . 5
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) → 𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶))) |
| 22 | 21 | up1st2ndb 49069 |
. . . 4
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) → (𝑋(𝐿(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅 ↔ 𝑋(〈(1st ‘𝐿), (2nd ‘𝐿)〉(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅)) |
| 23 | 10 | fucbas 17974 |
. . . . 5
⊢ (𝐷 Func 𝐶) = (Base‘(𝐷 FuncCat 𝐶)) |
| 24 | | islmd.h |
. . . . 5
⊢ 𝐻 = (Hom ‘𝐶) |
| 25 | | eqid 2735 |
. . . . 5
⊢
(comp‘(𝐷
FuncCat 𝐶)) =
(comp‘(𝐷 FuncCat
𝐶)) |
| 26 | 21 | func1st2nd 48991 |
. . . . 5
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) → (1st ‘𝐿)(𝐶 Func (𝐷 FuncCat 𝐶))(2nd ‘𝐿)) |
| 27 | | simpl 482 |
. . . . 5
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) → 𝑋 ∈ 𝐴) |
| 28 | | simpr 484 |
. . . . 5
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) → 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) |
| 29 | 8, 23, 24, 12, 25, 17, 26, 27, 28 | isup 49063 |
. . . 4
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) → (𝑋(〈(1st ‘𝐿), (2nd ‘𝐿)〉(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅 ↔ ∀𝑥 ∈ 𝐴 ∀𝑎 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑥))∃!𝑚 ∈ (𝑋𝐻𝑥)𝑎 = (((𝑋(2nd ‘𝐿)𝑥)‘𝑚)(〈𝐹, ((1st ‘𝐿)‘𝑋)〉(comp‘(𝐷 FuncCat 𝐶))((1st ‘𝐿)‘𝑥))𝑅))) |
| 30 | | islmd.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝐷) |
| 31 | 19 | ad2antrr 726 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → 𝐶 ∈ Cat) |
| 32 | 20 | ad2antrr 726 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → 𝐷 ∈ Cat) |
| 33 | 27 | ad2antrr 726 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → 𝑋 ∈ 𝐴) |
| 34 | | simplrl 776 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → 𝑥 ∈ 𝐴) |
| 35 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → 𝑚 ∈ (𝑋𝐻𝑥)) |
| 36 | 2, 8, 30, 24, 31, 32, 33, 34, 35 | diag2 18255 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → ((𝑋(2nd ‘𝐿)𝑥)‘𝑚) = (𝐵 × {𝑚})) |
| 37 | 36 | oveq1d 7418 |
. . . . . . . 8
⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → (((𝑋(2nd ‘𝐿)𝑥)‘𝑚)(〈𝐹, ((1st ‘𝐿)‘𝑋)〉(comp‘(𝐷 FuncCat 𝐶))((1st ‘𝐿)‘𝑥))𝑅) = ((𝐵 × {𝑚})(〈𝐹, ((1st ‘𝐿)‘𝑋)〉(comp‘(𝐷 FuncCat 𝐶))((1st ‘𝐿)‘𝑥))𝑅)) |
| 38 | | islmd.x |
. . . . . . . . 9
⊢ · =
(comp‘𝐶) |
| 39 | 28 | ad2antrr 726 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) |
| 40 | 2, 8, 30, 24, 31, 32, 33, 34, 35, 11 | diag2cl 18256 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → (𝐵 × {𝑚}) ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑥))) |
| 41 | 10, 11, 30, 38, 25, 39, 40 | fucco 17976 |
. . . . . . . 8
⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → ((𝐵 × {𝑚})(〈𝐹, ((1st ‘𝐿)‘𝑋)〉(comp‘(𝐷 FuncCat 𝐶))((1st ‘𝐿)‘𝑥))𝑅) = (𝑗 ∈ 𝐵 ↦ (((𝐵 × {𝑚})‘𝑗)(〈((1st ‘𝐹)‘𝑗), ((1st ‘((1st
‘𝐿)‘𝑋))‘𝑗)〉 · ((1st
‘((1st ‘𝐿)‘𝑥))‘𝑗))(𝑅‘𝑗)))) |
| 42 | 31 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) ∧ 𝑗 ∈ 𝐵) → 𝐶 ∈ Cat) |
| 43 | 32 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) ∧ 𝑗 ∈ 𝐵) → 𝐷 ∈ Cat) |
| 44 | 33 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) ∧ 𝑗 ∈ 𝐵) → 𝑋 ∈ 𝐴) |
| 45 | | eqid 2735 |
. . . . . . . . . . . . 13
⊢
((1st ‘𝐿)‘𝑋) = ((1st ‘𝐿)‘𝑋) |
| 46 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
(((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) ∧ 𝑗 ∈ 𝐵) → 𝑗 ∈ 𝐵) |
| 47 | 2, 42, 43, 8, 44, 45, 30, 46 | diag11 18253 |
. . . . . . . . . . . 12
⊢
(((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) ∧ 𝑗 ∈ 𝐵) → ((1st
‘((1st ‘𝐿)‘𝑋))‘𝑗) = 𝑋) |
| 48 | 47 | opeq2d 4856 |
. . . . . . . . . . 11
⊢
(((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) ∧ 𝑗 ∈ 𝐵) → 〈((1st ‘𝐹)‘𝑗), ((1st ‘((1st
‘𝐿)‘𝑋))‘𝑗)〉 = 〈((1st ‘𝐹)‘𝑗), 𝑋〉) |
| 49 | 34 | adantr 480 |
. . . . . . . . . . . 12
⊢
(((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) ∧ 𝑗 ∈ 𝐵) → 𝑥 ∈ 𝐴) |
| 50 | | eqid 2735 |
. . . . . . . . . . . 12
⊢
((1st ‘𝐿)‘𝑥) = ((1st ‘𝐿)‘𝑥) |
| 51 | 2, 42, 43, 8, 49, 50, 30, 46 | diag11 18253 |
. . . . . . . . . . 11
⊢
(((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) ∧ 𝑗 ∈ 𝐵) → ((1st
‘((1st ‘𝐿)‘𝑥))‘𝑗) = 𝑥) |
| 52 | 48, 51 | oveq12d 7421 |
. . . . . . . . . 10
⊢
(((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) ∧ 𝑗 ∈ 𝐵) → (〈((1st
‘𝐹)‘𝑗), ((1st
‘((1st ‘𝐿)‘𝑋))‘𝑗)〉 · ((1st
‘((1st ‘𝐿)‘𝑥))‘𝑗)) = (〈((1st ‘𝐹)‘𝑗), 𝑋〉 · 𝑥)) |
| 53 | | vex 3463 |
. . . . . . . . . . . 12
⊢ 𝑚 ∈ V |
| 54 | 53 | fvconst2 7195 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ 𝐵 → ((𝐵 × {𝑚})‘𝑗) = 𝑚) |
| 55 | 54 | adantl 481 |
. . . . . . . . . 10
⊢
(((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) ∧ 𝑗 ∈ 𝐵) → ((𝐵 × {𝑚})‘𝑗) = 𝑚) |
| 56 | | eqidd 2736 |
. . . . . . . . . 10
⊢
(((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) ∧ 𝑗 ∈ 𝐵) → (𝑅‘𝑗) = (𝑅‘𝑗)) |
| 57 | 52, 55, 56 | oveq123d 7424 |
. . . . . . . . 9
⊢
(((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) ∧ 𝑗 ∈ 𝐵) → (((𝐵 × {𝑚})‘𝑗)(〈((1st ‘𝐹)‘𝑗), ((1st ‘((1st
‘𝐿)‘𝑋))‘𝑗)〉 · ((1st
‘((1st ‘𝐿)‘𝑥))‘𝑗))(𝑅‘𝑗)) = (𝑚(〈((1st ‘𝐹)‘𝑗), 𝑋〉 · 𝑥)(𝑅‘𝑗))) |
| 58 | 57 | mpteq2dva 5214 |
. . . . . . . 8
⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → (𝑗 ∈ 𝐵 ↦ (((𝐵 × {𝑚})‘𝑗)(〈((1st ‘𝐹)‘𝑗), ((1st ‘((1st
‘𝐿)‘𝑋))‘𝑗)〉 · ((1st
‘((1st ‘𝐿)‘𝑥))‘𝑗))(𝑅‘𝑗))) = (𝑗 ∈ 𝐵 ↦ (𝑚(〈((1st ‘𝐹)‘𝑗), 𝑋〉 · 𝑥)(𝑅‘𝑗)))) |
| 59 | 37, 41, 58 | 3eqtrd 2774 |
. . . . . . 7
⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → (((𝑋(2nd ‘𝐿)𝑥)‘𝑚)(〈𝐹, ((1st ‘𝐿)‘𝑋)〉(comp‘(𝐷 FuncCat 𝐶))((1st ‘𝐿)‘𝑥))𝑅) = (𝑗 ∈ 𝐵 ↦ (𝑚(〈((1st ‘𝐹)‘𝑗), 𝑋〉 · 𝑥)(𝑅‘𝑗)))) |
| 60 | 59 | eqeq2d 2746 |
. . . . . 6
⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑥)))) ∧ 𝑚 ∈ (𝑋𝐻𝑥)) → (𝑎 = (((𝑋(2nd ‘𝐿)𝑥)‘𝑚)(〈𝐹, ((1st ‘𝐿)‘𝑋)〉(comp‘(𝐷 FuncCat 𝐶))((1st ‘𝐿)‘𝑥))𝑅) ↔ 𝑎 = (𝑗 ∈ 𝐵 ↦ (𝑚(〈((1st ‘𝐹)‘𝑗), 𝑋〉 · 𝑥)(𝑅‘𝑗))))) |
| 61 | 60 | reubidva 3375 |
. . . . 5
⊢ (((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑥)))) → (∃!𝑚 ∈ (𝑋𝐻𝑥)𝑎 = (((𝑋(2nd ‘𝐿)𝑥)‘𝑚)(〈𝐹, ((1st ‘𝐿)‘𝑋)〉(comp‘(𝐷 FuncCat 𝐶))((1st ‘𝐿)‘𝑥))𝑅) ↔ ∃!𝑚 ∈ (𝑋𝐻𝑥)𝑎 = (𝑗 ∈ 𝐵 ↦ (𝑚(〈((1st ‘𝐹)‘𝑗), 𝑋〉 · 𝑥)(𝑅‘𝑗))))) |
| 62 | 61 | 2ralbidva 3203 |
. . . 4
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) → (∀𝑥 ∈ 𝐴 ∀𝑎 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑥))∃!𝑚 ∈ (𝑋𝐻𝑥)𝑎 = (((𝑋(2nd ‘𝐿)𝑥)‘𝑚)(〈𝐹, ((1st ‘𝐿)‘𝑋)〉(comp‘(𝐷 FuncCat 𝐶))((1st ‘𝐿)‘𝑥))𝑅) ↔ ∀𝑥 ∈ 𝐴 ∀𝑎 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑥))∃!𝑚 ∈ (𝑋𝐻𝑥)𝑎 = (𝑗 ∈ 𝐵 ↦ (𝑚(〈((1st ‘𝐹)‘𝑗), 𝑋〉 · 𝑥)(𝑅‘𝑗))))) |
| 63 | 22, 29, 62 | 3bitrd 305 |
. . 3
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) → (𝑋(𝐿(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅 ↔ ∀𝑥 ∈ 𝐴 ∀𝑎 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑥))∃!𝑚 ∈ (𝑋𝐻𝑥)𝑎 = (𝑗 ∈ 𝐵 ↦ (𝑚(〈((1st ‘𝐹)‘𝑗), 𝑋〉 · 𝑥)(𝑅‘𝑗))))) |
| 64 | 14, 63 | biadanii 821 |
. 2
⊢ (𝑋(𝐿(𝐶 UP (𝐷 FuncCat 𝐶))𝐹)𝑅 ↔ ((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) ∧ ∀𝑥 ∈ 𝐴 ∀𝑎 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑥))∃!𝑚 ∈ (𝑋𝐻𝑥)𝑎 = (𝑗 ∈ 𝐵 ↦ (𝑚(〈((1st ‘𝐹)‘𝑗), 𝑋〉 · 𝑥)(𝑅‘𝑗))))) |
| 65 | 5, 64 | bitri 275 |
1
⊢ (𝑋((𝐶 Colimit 𝐷)‘𝐹)𝑅 ↔ ((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑋))) ∧ ∀𝑥 ∈ 𝐴 ∀𝑎 ∈ (𝐹𝑁((1st ‘𝐿)‘𝑥))∃!𝑚 ∈ (𝑋𝐻𝑥)𝑎 = (𝑗 ∈ 𝐵 ↦ (𝑚(〈((1st ‘𝐹)‘𝑗), 𝑋〉 · 𝑥)(𝑅‘𝑗))))) |