| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ditg | Structured version Visualization version GIF version | ||
| Description: Define the directed integral, which is just a regular integral but with a sign change when the limits are interchanged. The 𝐴 and 𝐵 here are the lower and upper limits of the integral, usually written as a subscript and superscript next to the integral sign. We define the region of integration to be an open interval instead of closed so that we can use +∞, -∞ for limits and also integrate up to a singularity at an endpoint. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| Ref | Expression |
|---|---|
| df-ditg | ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 = if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | cA | . . 3 class 𝐴 | |
| 3 | cB | . . 3 class 𝐵 | |
| 4 | cC | . . 3 class 𝐶 | |
| 5 | 1, 2, 3, 4 | cdit 25797 | . 2 class ⨜[𝐴 → 𝐵]𝐶 d𝑥 |
| 6 | cle 11268 | . . . 4 class ≤ | |
| 7 | 2, 3, 6 | wbr 5119 | . . 3 wff 𝐴 ≤ 𝐵 |
| 8 | cioo 13360 | . . . . 5 class (,) | |
| 9 | 2, 3, 8 | co 7403 | . . . 4 class (𝐴(,)𝐵) |
| 10 | 1, 9, 4 | citg 25569 | . . 3 class ∫(𝐴(,)𝐵)𝐶 d𝑥 |
| 11 | 3, 2, 8 | co 7403 | . . . . 5 class (𝐵(,)𝐴) |
| 12 | 1, 11, 4 | citg 25569 | . . . 4 class ∫(𝐵(,)𝐴)𝐶 d𝑥 |
| 13 | 12 | cneg 11465 | . . 3 class -∫(𝐵(,)𝐴)𝐶 d𝑥 |
| 14 | 7, 10, 13 | cif 4500 | . 2 class if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) |
| 15 | 5, 14 | wceq 1540 | 1 wff ⨜[𝐴 → 𝐵]𝐶 d𝑥 = if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) |
| Colors of variables: wff setvar class |
| This definition is referenced by: ditgeq1 25799 ditgeq2 25800 ditgeq3 25801 ditgex 25803 ditg0 25804 cbvditg 25805 ditgpos 25807 ditgneg 25808 ditgeq123i 36173 ditgeq123dv 36185 cbvditgvw2 36213 cbvditgdavw 36246 cbvditgdavw2 36262 ditgeq3d 45941 |
| Copyright terms: Public domain | W3C validator |