Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-ditg | Structured version Visualization version GIF version |
Description: Define the directed integral, which is just a regular integral but with a sign change when the limits are interchanged. The 𝐴 and 𝐵 here are the lower and upper limits of the integral, usually written as a subscript and superscript next to the integral sign. We define the region of integration to be an open interval instead of closed so that we can use +∞, -∞ for limits and also integrate up to a singularity at an endpoint. (Contributed by Mario Carneiro, 13-Aug-2014.) |
Ref | Expression |
---|---|
df-ditg | ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 = if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar 𝑥 | |
2 | cA | . . 3 class 𝐴 | |
3 | cB | . . 3 class 𝐵 | |
4 | cC | . . 3 class 𝐶 | |
5 | 1, 2, 3, 4 | cdit 24920 | . 2 class ⨜[𝐴 → 𝐵]𝐶 d𝑥 |
6 | cle 10946 | . . . 4 class ≤ | |
7 | 2, 3, 6 | wbr 5071 | . . 3 wff 𝐴 ≤ 𝐵 |
8 | cioo 13013 | . . . . 5 class (,) | |
9 | 2, 3, 8 | co 7256 | . . . 4 class (𝐴(,)𝐵) |
10 | 1, 9, 4 | citg 24692 | . . 3 class ∫(𝐴(,)𝐵)𝐶 d𝑥 |
11 | 3, 2, 8 | co 7256 | . . . . 5 class (𝐵(,)𝐴) |
12 | 1, 11, 4 | citg 24692 | . . . 4 class ∫(𝐵(,)𝐴)𝐶 d𝑥 |
13 | 12 | cneg 11141 | . . 3 class -∫(𝐵(,)𝐴)𝐶 d𝑥 |
14 | 7, 10, 13 | cif 4457 | . 2 class if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) |
15 | 5, 14 | wceq 1539 | 1 wff ⨜[𝐴 → 𝐵]𝐶 d𝑥 = if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) |
Colors of variables: wff setvar class |
This definition is referenced by: ditgeq1 24922 ditgeq2 24923 ditgeq3 24924 ditgex 24926 ditg0 24927 cbvditg 24928 ditgpos 24930 ditgneg 24931 ditgeq3d 43401 |
Copyright terms: Public domain | W3C validator |