Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ditgpos | Structured version Visualization version GIF version |
Description: Value of the directed integral in the forward direction. (Contributed by Mario Carneiro, 13-Aug-2014.) |
Ref | Expression |
---|---|
ditgpos.1 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Ref | Expression |
---|---|
ditgpos | ⊢ (𝜑 → ⨜[𝐴 → 𝐵]𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐶 d𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ditg 24916 | . 2 ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 = if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) | |
2 | ditgpos.1 | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
3 | 2 | iftrued 4464 | . 2 ⊢ (𝜑 → if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) = ∫(𝐴(,)𝐵)𝐶 d𝑥) |
4 | 1, 3 | syl5eq 2791 | 1 ⊢ (𝜑 → ⨜[𝐴 → 𝐵]𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐶 d𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ifcif 4456 class class class wbr 5070 (class class class)co 7255 ≤ cle 10941 -cneg 11136 (,)cioo 13008 ∫citg 24687 ⨜cdit 24915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-if 4457 df-ditg 24916 |
This theorem is referenced by: ditgcl 24927 ditgswap 24928 ditgsplitlem 24929 ftc2ditglem 25114 itgsubstlem 25117 itgsubst 25118 ditgeqiooicc 43391 itgiccshift 43411 itgperiod 43412 fourierdlem82 43619 |
Copyright terms: Public domain | W3C validator |