Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ditgpos | Structured version Visualization version GIF version |
Description: Value of the directed integral in the forward direction. (Contributed by Mario Carneiro, 13-Aug-2014.) |
Ref | Expression |
---|---|
ditgpos.1 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Ref | Expression |
---|---|
ditgpos | ⊢ (𝜑 → ⨜[𝐴 → 𝐵]𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐶 d𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ditg 25009 | . 2 ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 = if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) | |
2 | ditgpos.1 | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
3 | 2 | iftrued 4473 | . 2 ⊢ (𝜑 → if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) = ∫(𝐴(,)𝐵)𝐶 d𝑥) |
4 | 1, 3 | eqtrid 2792 | 1 ⊢ (𝜑 → ⨜[𝐴 → 𝐵]𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐶 d𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ifcif 4465 class class class wbr 5079 (class class class)co 7271 ≤ cle 11011 -cneg 11206 (,)cioo 13078 ∫citg 24780 ⨜cdit 25008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-if 4466 df-ditg 25009 |
This theorem is referenced by: ditgcl 25020 ditgswap 25021 ditgsplitlem 25022 ftc2ditglem 25207 itgsubstlem 25210 itgsubst 25211 ditgeqiooicc 43472 itgiccshift 43492 itgperiod 43493 fourierdlem82 43700 |
Copyright terms: Public domain | W3C validator |