MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgpos Structured version   Visualization version   GIF version

Theorem ditgpos 25733
Description: Value of the directed integral in the forward direction. (Contributed by Mario Carneiro, 13-Aug-2014.)
Hypothesis
Ref Expression
ditgpos.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
ditgpos (𝜑 → ⨜[𝐴𝐵]𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐶 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem ditgpos
StepHypRef Expression
1 df-ditg 25724 . 2 ⨜[𝐴𝐵]𝐶 d𝑥 = if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥)
2 ditgpos.1 . . 3 (𝜑𝐴𝐵)
32iftrued 4492 . 2 (𝜑 → if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) = ∫(𝐴(,)𝐵)𝐶 d𝑥)
41, 3eqtrid 2776 1 (𝜑 → ⨜[𝐴𝐵]𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐶 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  ifcif 4484   class class class wbr 5102  (class class class)co 7369  cle 11185  -cneg 11382  (,)cioo 13282  citg 25495  cdit 25723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-if 4485  df-ditg 25724
This theorem is referenced by:  ditgcl  25735  ditgswap  25736  ditgsplitlem  25737  ftc2ditglem  25928  itgsubstlem  25931  itgsubst  25932  ditgeqiooicc  45931  itgiccshift  45951  itgperiod  45952  fourierdlem82  46159
  Copyright terms: Public domain W3C validator