MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgpos Structured version   Visualization version   GIF version

Theorem ditgpos 25784
Description: Value of the directed integral in the forward direction. (Contributed by Mario Carneiro, 13-Aug-2014.)
Hypothesis
Ref Expression
ditgpos.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
ditgpos (𝜑 → ⨜[𝐴𝐵]𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐶 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem ditgpos
StepHypRef Expression
1 df-ditg 25775 . 2 ⨜[𝐴𝐵]𝐶 d𝑥 = if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥)
2 ditgpos.1 . . 3 (𝜑𝐴𝐵)
32iftrued 4480 . 2 (𝜑 → if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) = ∫(𝐴(,)𝐵)𝐶 d𝑥)
41, 3eqtrid 2778 1 (𝜑 → ⨜[𝐴𝐵]𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐶 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  ifcif 4472   class class class wbr 5089  (class class class)co 7346  cle 11147  -cneg 11345  (,)cioo 13245  citg 25546  cdit 25774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-if 4473  df-ditg 25775
This theorem is referenced by:  ditgcl  25786  ditgswap  25787  ditgsplitlem  25788  ftc2ditglem  25979  itgsubstlem  25982  itgsubst  25983  ditgeqiooicc  46006  itgiccshift  46026  itgperiod  46027  fourierdlem82  46234
  Copyright terms: Public domain W3C validator