MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgpos Structured version   Visualization version   GIF version

Theorem ditgpos 25807
Description: Value of the directed integral in the forward direction. (Contributed by Mario Carneiro, 13-Aug-2014.)
Hypothesis
Ref Expression
ditgpos.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
ditgpos (𝜑 → ⨜[𝐴𝐵]𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐶 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem ditgpos
StepHypRef Expression
1 df-ditg 25798 . 2 ⨜[𝐴𝐵]𝐶 d𝑥 = if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥)
2 ditgpos.1 . . 3 (𝜑𝐴𝐵)
32iftrued 4508 . 2 (𝜑 → if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) = ∫(𝐴(,)𝐵)𝐶 d𝑥)
41, 3eqtrid 2782 1 (𝜑 → ⨜[𝐴𝐵]𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐶 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  ifcif 4500   class class class wbr 5119  (class class class)co 7403  cle 11268  -cneg 11465  (,)cioo 13360  citg 25569  cdit 25797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-if 4501  df-ditg 25798
This theorem is referenced by:  ditgcl  25809  ditgswap  25810  ditgsplitlem  25811  ftc2ditglem  26002  itgsubstlem  26005  itgsubst  26006  ditgeqiooicc  45937  itgiccshift  45957  itgperiod  45958  fourierdlem82  46165
  Copyright terms: Public domain W3C validator