MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgpos Structured version   Visualization version   GIF version

Theorem ditgpos 25020
Description: Value of the directed integral in the forward direction. (Contributed by Mario Carneiro, 13-Aug-2014.)
Hypothesis
Ref Expression
ditgpos.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
ditgpos (𝜑 → ⨜[𝐴𝐵]𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐶 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem ditgpos
StepHypRef Expression
1 df-ditg 25011 . 2 ⨜[𝐴𝐵]𝐶 d𝑥 = if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥)
2 ditgpos.1 . . 3 (𝜑𝐴𝐵)
32iftrued 4467 . 2 (𝜑 → if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) = ∫(𝐴(,)𝐵)𝐶 d𝑥)
41, 3eqtrid 2790 1 (𝜑 → ⨜[𝐴𝐵]𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐶 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  ifcif 4459   class class class wbr 5074  (class class class)co 7275  cle 11010  -cneg 11206  (,)cioo 13079  citg 24782  cdit 25010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-if 4460  df-ditg 25011
This theorem is referenced by:  ditgcl  25022  ditgswap  25023  ditgsplitlem  25024  ftc2ditglem  25209  itgsubstlem  25212  itgsubst  25213  ditgeqiooicc  43501  itgiccshift  43521  itgperiod  43522  fourierdlem82  43729
  Copyright terms: Public domain W3C validator