| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ditgpos | Structured version Visualization version GIF version | ||
| Description: Value of the directed integral in the forward direction. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| Ref | Expression |
|---|---|
| ditgpos.1 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| ditgpos | ⊢ (𝜑 → ⨜[𝐴 → 𝐵]𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐶 d𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ditg 25775 | . 2 ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 = if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) | |
| 2 | ditgpos.1 | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 3 | 2 | iftrued 4480 | . 2 ⊢ (𝜑 → if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) = ∫(𝐴(,)𝐵)𝐶 d𝑥) |
| 4 | 1, 3 | eqtrid 2778 | 1 ⊢ (𝜑 → ⨜[𝐴 → 𝐵]𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐶 d𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ifcif 4472 class class class wbr 5089 (class class class)co 7346 ≤ cle 11147 -cneg 11345 (,)cioo 13245 ∫citg 25546 ⨜cdit 25774 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-if 4473 df-ditg 25775 |
| This theorem is referenced by: ditgcl 25786 ditgswap 25787 ditgsplitlem 25788 ftc2ditglem 25979 itgsubstlem 25982 itgsubst 25983 ditgeqiooicc 46006 itgiccshift 46026 itgperiod 46027 fourierdlem82 46234 |
| Copyright terms: Public domain | W3C validator |