![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ditgeq3 | Structured version Visualization version GIF version |
Description: Equality theorem for the directed integral. (The domain of the equality here is very rough; for more precise bounds one should decompose it with ditgpos 24057 first and use the equality theorems for df-itg 23827.) (Contributed by Mario Carneiro, 13-Aug-2014.) |
Ref | Expression |
---|---|
ditgeq3 | ⊢ (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → ⨜[𝐴 → 𝐵]𝐷 d𝑥 = ⨜[𝐴 → 𝐵]𝐸 d𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioossre 12547 | . . . . 5 ⊢ (𝐴(,)𝐵) ⊆ ℝ | |
2 | ssralv 3885 | . . . . 5 ⊢ ((𝐴(,)𝐵) ⊆ ℝ → (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → ∀𝑥 ∈ (𝐴(,)𝐵)𝐷 = 𝐸)) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → ∀𝑥 ∈ (𝐴(,)𝐵)𝐷 = 𝐸) |
4 | itgeq2 23981 | . . . 4 ⊢ (∀𝑥 ∈ (𝐴(,)𝐵)𝐷 = 𝐸 → ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫(𝐴(,)𝐵)𝐸 d𝑥) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫(𝐴(,)𝐵)𝐸 d𝑥) |
6 | ioossre 12547 | . . . . . 6 ⊢ (𝐵(,)𝐴) ⊆ ℝ | |
7 | ssralv 3885 | . . . . . 6 ⊢ ((𝐵(,)𝐴) ⊆ ℝ → (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → ∀𝑥 ∈ (𝐵(,)𝐴)𝐷 = 𝐸)) | |
8 | 6, 7 | ax-mp 5 | . . . . 5 ⊢ (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → ∀𝑥 ∈ (𝐵(,)𝐴)𝐷 = 𝐸) |
9 | itgeq2 23981 | . . . . 5 ⊢ (∀𝑥 ∈ (𝐵(,)𝐴)𝐷 = 𝐸 → ∫(𝐵(,)𝐴)𝐷 d𝑥 = ∫(𝐵(,)𝐴)𝐸 d𝑥) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → ∫(𝐵(,)𝐴)𝐷 d𝑥 = ∫(𝐵(,)𝐴)𝐸 d𝑥) |
11 | 10 | negeqd 10616 | . . 3 ⊢ (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → -∫(𝐵(,)𝐴)𝐷 d𝑥 = -∫(𝐵(,)𝐴)𝐸 d𝑥) |
12 | 5, 11 | ifeq12d 4327 | . 2 ⊢ (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐷 d𝑥, -∫(𝐵(,)𝐴)𝐷 d𝑥) = if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐸 d𝑥, -∫(𝐵(,)𝐴)𝐸 d𝑥)) |
13 | df-ditg 24048 | . 2 ⊢ ⨜[𝐴 → 𝐵]𝐷 d𝑥 = if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐷 d𝑥, -∫(𝐵(,)𝐴)𝐷 d𝑥) | |
14 | df-ditg 24048 | . 2 ⊢ ⨜[𝐴 → 𝐵]𝐸 d𝑥 = if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐸 d𝑥, -∫(𝐵(,)𝐴)𝐸 d𝑥) | |
15 | 12, 13, 14 | 3eqtr4g 2839 | 1 ⊢ (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → ⨜[𝐴 → 𝐵]𝐷 d𝑥 = ⨜[𝐴 → 𝐵]𝐸 d𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∀wral 3090 ⊆ wss 3792 ifcif 4307 class class class wbr 4886 (class class class)co 6922 ℝcr 10271 ≤ cle 10412 -cneg 10607 (,)cioo 12487 ∫citg 23822 ⨜cdit 24047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-n0 11643 df-z 11729 df-uz 11993 df-ioo 12491 df-fz 12644 df-seq 13120 df-sum 14825 df-itg 23827 df-ditg 24048 |
This theorem is referenced by: ditgeq3dv 24052 |
Copyright terms: Public domain | W3C validator |