MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgeq3 Structured version   Visualization version   GIF version

Theorem ditgeq3 24919
Description: Equality theorem for the directed integral. (The domain of the equality here is very rough; for more precise bounds one should decompose it with ditgpos 24925 first and use the equality theorems for df-itg 24692.) (Contributed by Mario Carneiro, 13-Aug-2014.)
Assertion
Ref Expression
ditgeq3 (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → ⨜[𝐴𝐵]𝐷 d𝑥 = ⨜[𝐴𝐵]𝐸 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐷(𝑥)   𝐸(𝑥)

Proof of Theorem ditgeq3
StepHypRef Expression
1 ioossre 13069 . . . . 5 (𝐴(,)𝐵) ⊆ ℝ
2 ssralv 3983 . . . . 5 ((𝐴(,)𝐵) ⊆ ℝ → (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → ∀𝑥 ∈ (𝐴(,)𝐵)𝐷 = 𝐸))
31, 2ax-mp 5 . . . 4 (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → ∀𝑥 ∈ (𝐴(,)𝐵)𝐷 = 𝐸)
4 itgeq2 24847 . . . 4 (∀𝑥 ∈ (𝐴(,)𝐵)𝐷 = 𝐸 → ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫(𝐴(,)𝐵)𝐸 d𝑥)
53, 4syl 17 . . 3 (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫(𝐴(,)𝐵)𝐸 d𝑥)
6 ioossre 13069 . . . . . 6 (𝐵(,)𝐴) ⊆ ℝ
7 ssralv 3983 . . . . . 6 ((𝐵(,)𝐴) ⊆ ℝ → (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → ∀𝑥 ∈ (𝐵(,)𝐴)𝐷 = 𝐸))
86, 7ax-mp 5 . . . . 5 (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → ∀𝑥 ∈ (𝐵(,)𝐴)𝐷 = 𝐸)
9 itgeq2 24847 . . . . 5 (∀𝑥 ∈ (𝐵(,)𝐴)𝐷 = 𝐸 → ∫(𝐵(,)𝐴)𝐷 d𝑥 = ∫(𝐵(,)𝐴)𝐸 d𝑥)
108, 9syl 17 . . . 4 (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → ∫(𝐵(,)𝐴)𝐷 d𝑥 = ∫(𝐵(,)𝐴)𝐸 d𝑥)
1110negeqd 11145 . . 3 (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → -∫(𝐵(,)𝐴)𝐷 d𝑥 = -∫(𝐵(,)𝐴)𝐸 d𝑥)
125, 11ifeq12d 4477 . 2 (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐷 d𝑥, -∫(𝐵(,)𝐴)𝐷 d𝑥) = if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐸 d𝑥, -∫(𝐵(,)𝐴)𝐸 d𝑥))
13 df-ditg 24916 . 2 ⨜[𝐴𝐵]𝐷 d𝑥 = if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐷 d𝑥, -∫(𝐵(,)𝐴)𝐷 d𝑥)
14 df-ditg 24916 . 2 ⨜[𝐴𝐵]𝐸 d𝑥 = if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐸 d𝑥, -∫(𝐵(,)𝐴)𝐸 d𝑥)
1512, 13, 143eqtr4g 2804 1 (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → ⨜[𝐴𝐵]𝐷 d𝑥 = ⨜[𝐴𝐵]𝐸 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wral 3063  wss 3883  ifcif 4456   class class class wbr 5070  (class class class)co 7255  cr 10801  cle 10941  -cneg 11136  (,)cioo 13008  citg 24687  cdit 24915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-ioo 13012  df-fz 13169  df-seq 13650  df-sum 15326  df-itg 24692  df-ditg 24916
This theorem is referenced by:  ditgeq3dv  24920
  Copyright terms: Public domain W3C validator