MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgeq3 Structured version   Visualization version   GIF version

Theorem ditgeq3 25840
Description: Equality theorem for the directed integral. (The domain of the equality here is very rough; for more precise bounds one should decompose it with ditgpos 25846 first and use the equality theorems for df-itg 25613.) (Contributed by Mario Carneiro, 13-Aug-2014.)
Assertion
Ref Expression
ditgeq3 (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → ⨜[𝐴𝐵]𝐷 d𝑥 = ⨜[𝐴𝐵]𝐸 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐷(𝑥)   𝐸(𝑥)

Proof of Theorem ditgeq3
StepHypRef Expression
1 ioossre 13431 . . . . 5 (𝐴(,)𝐵) ⊆ ℝ
2 ssralv 4034 . . . . 5 ((𝐴(,)𝐵) ⊆ ℝ → (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → ∀𝑥 ∈ (𝐴(,)𝐵)𝐷 = 𝐸))
31, 2ax-mp 5 . . . 4 (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → ∀𝑥 ∈ (𝐴(,)𝐵)𝐷 = 𝐸)
4 itgeq2 25768 . . . 4 (∀𝑥 ∈ (𝐴(,)𝐵)𝐷 = 𝐸 → ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫(𝐴(,)𝐵)𝐸 d𝑥)
53, 4syl 17 . . 3 (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫(𝐴(,)𝐵)𝐸 d𝑥)
6 ioossre 13431 . . . . . 6 (𝐵(,)𝐴) ⊆ ℝ
7 ssralv 4034 . . . . . 6 ((𝐵(,)𝐴) ⊆ ℝ → (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → ∀𝑥 ∈ (𝐵(,)𝐴)𝐷 = 𝐸))
86, 7ax-mp 5 . . . . 5 (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → ∀𝑥 ∈ (𝐵(,)𝐴)𝐷 = 𝐸)
9 itgeq2 25768 . . . . 5 (∀𝑥 ∈ (𝐵(,)𝐴)𝐷 = 𝐸 → ∫(𝐵(,)𝐴)𝐷 d𝑥 = ∫(𝐵(,)𝐴)𝐸 d𝑥)
108, 9syl 17 . . . 4 (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → ∫(𝐵(,)𝐴)𝐷 d𝑥 = ∫(𝐵(,)𝐴)𝐸 d𝑥)
1110negeqd 11485 . . 3 (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → -∫(𝐵(,)𝐴)𝐷 d𝑥 = -∫(𝐵(,)𝐴)𝐸 d𝑥)
125, 11ifeq12d 4529 . 2 (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐷 d𝑥, -∫(𝐵(,)𝐴)𝐷 d𝑥) = if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐸 d𝑥, -∫(𝐵(,)𝐴)𝐸 d𝑥))
13 df-ditg 25837 . 2 ⨜[𝐴𝐵]𝐷 d𝑥 = if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐷 d𝑥, -∫(𝐵(,)𝐴)𝐷 d𝑥)
14 df-ditg 25837 . 2 ⨜[𝐴𝐵]𝐸 d𝑥 = if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐸 d𝑥, -∫(𝐵(,)𝐴)𝐸 d𝑥)
1512, 13, 143eqtr4g 2794 1 (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → ⨜[𝐴𝐵]𝐷 d𝑥 = ⨜[𝐴𝐵]𝐸 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wral 3050  wss 3933  ifcif 4507   class class class wbr 5125  (class class class)co 7414  cr 11137  cle 11279  -cneg 11476  (,)cioo 13370  citg 25608  cdit 25836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-nn 12250  df-n0 12511  df-z 12598  df-uz 12862  df-ioo 13374  df-fz 13531  df-seq 14026  df-sum 15706  df-itg 25613  df-ditg 25837
This theorem is referenced by:  ditgeq3dv  25841
  Copyright terms: Public domain W3C validator