HomeHome Metamath Proof Explorer
Theorem List (p. 258 of 450)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28698)
  Hilbert Space Explorer  Hilbert Space Explorer
(28699-30221)
  Users' Mathboxes  Users' Mathboxes
(30222-44913)
 

Theorem List for Metamath Proof Explorer - 25701-25800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremvmage0 25701 The von Mangoldt function is nonnegative. (Contributed by Mario Carneiro, 7-Apr-2016.)
(𝐴 ∈ ℕ → 0 ≤ (Λ‘𝐴))
 
Theoremchpval 25702* Value of the second Chebyshev function, or summary von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.)
(𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛))
 
Theoremchpf 25703 Functionality of the second Chebyshev function. (Contributed by Mario Carneiro, 7-Apr-2016.)
ψ:ℝ⟶ℝ
 
Theoremchpcl 25704 Closure for the second Chebyshev function. (Contributed by Mario Carneiro, 7-Apr-2016.)
(𝐴 ∈ ℝ → (ψ‘𝐴) ∈ ℝ)
 
Theoremefchpcl 25705 The second Chebyshev function is closed in the log-integers. (Contributed by Mario Carneiro, 7-Apr-2016.)
(𝐴 ∈ ℝ → (exp‘(ψ‘𝐴)) ∈ ℕ)
 
Theoremchpge0 25706 The second Chebyshev function is nonnegative. (Contributed by Mario Carneiro, 7-Apr-2016.)
(𝐴 ∈ ℝ → 0 ≤ (ψ‘𝐴))
 
Theoremppival 25707 Value of the prime-counting function pi. (Contributed by Mario Carneiro, 15-Sep-2014.)
(𝐴 ∈ ℝ → (π𝐴) = (♯‘((0[,]𝐴) ∩ ℙ)))
 
Theoremppival2 25708 Value of the prime-counting function pi. (Contributed by Mario Carneiro, 18-Sep-2014.)
(𝐴 ∈ ℤ → (π𝐴) = (♯‘((2...𝐴) ∩ ℙ)))
 
Theoremppival2g 25709 Value of the prime-counting function pi. (Contributed by Mario Carneiro, 22-Sep-2014.)
((𝐴 ∈ ℤ ∧ 2 ∈ (ℤ𝑀)) → (π𝐴) = (♯‘((𝑀...𝐴) ∩ ℙ)))
 
Theoremppif 25710 Domain and range of the prime-counting function pi. (Contributed by Mario Carneiro, 15-Sep-2014.)
π:ℝ⟶ℕ0
 
Theoremppicl 25711 Real closure of the prime-counting function pi. (Contributed by Mario Carneiro, 15-Sep-2014.)
(𝐴 ∈ ℝ → (π𝐴) ∈ ℕ0)
 
Theoremmuval 25712* The value of the Möbius function. (Contributed by Mario Carneiro, 22-Sep-2014.)
(𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))))
 
Theoremmuval1 25713 The value of the Möbius function at a non-squarefree number. (Contributed by Mario Carneiro, 21-Sep-2014.)
((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2) ∧ (𝑃↑2) ∥ 𝐴) → (μ‘𝐴) = 0)
 
Theoremmuval2 25714* The value of the Möbius function at a squarefree number. (Contributed by Mario Carneiro, 3-Oct-2014.)
((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) → (μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})))
 
Theoremisnsqf 25715* Two ways to say that a number is not squarefree. (Contributed by Mario Carneiro, 3-Oct-2014.)
(𝐴 ∈ ℕ → ((μ‘𝐴) = 0 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴))
 
Theoremissqf 25716* Two ways to say that a number is squarefree. (Contributed by Mario Carneiro, 3-Oct-2014.)
(𝐴 ∈ ℕ → ((μ‘𝐴) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1))
 
Theoremsqfpc 25717 The prime count of a squarefree number is at most 1. (Contributed by Mario Carneiro, 1-Jul-2015.)
((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0 ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt 𝐴) ≤ 1)
 
Theoremdvdssqf 25718 A divisor of a squarefree number is squarefree. (Contributed by Mario Carneiro, 1-Jul-2015.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵𝐴) → ((μ‘𝐴) ≠ 0 → (μ‘𝐵) ≠ 0))
 
Theoremsqf11 25719* A squarefree number is completely determined by the set of its prime divisors. (Contributed by Mario Carneiro, 1-Jul-2015.)
(((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵)))
 
Theoremmuf 25720 The Möbius function is a function into the integers. (Contributed by Mario Carneiro, 22-Sep-2014.)
μ:ℕ⟶ℤ
 
Theoremmucl 25721 Closure of the Möbius function. (Contributed by Mario Carneiro, 22-Sep-2014.)
(𝐴 ∈ ℕ → (μ‘𝐴) ∈ ℤ)
 
Theoremsgmval 25722* The value of the divisor function. (Contributed by Mario Carneiro, 22-Sep-2014.) (Revised by Mario Carneiro, 21-Jun-2015.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ) → (𝐴 σ 𝐵) = Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝𝐵} (𝑘𝑐𝐴))
 
Theoremsgmval2 25723* The value of the divisor function. (Contributed by Mario Carneiro, 21-Jun-2015.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 σ 𝐵) = Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝𝐵} (𝑘𝐴))
 
Theorem0sgm 25724* The value of the sum-of-divisors function, usually denoted σ<SUB>0</SUB>(<i>n</i>). (Contributed by Mario Carneiro, 21-Jun-2015.)
(𝐴 ∈ ℕ → (0 σ 𝐴) = (♯‘{𝑝 ∈ ℕ ∣ 𝑝𝐴}))
 
Theoremsgmf 25725 The divisor function is a function into the complex numbers. (Contributed by Mario Carneiro, 22-Sep-2014.) (Revised by Mario Carneiro, 21-Jun-2015.)
σ :(ℂ × ℕ)⟶ℂ
 
Theoremsgmcl 25726 Closure of the divisor function. (Contributed by Mario Carneiro, 22-Sep-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ) → (𝐴 σ 𝐵) ∈ ℂ)
 
Theoremsgmnncl 25727 Closure of the divisor function. (Contributed by Mario Carneiro, 21-Jun-2015.)
((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 σ 𝐵) ∈ ℕ)
 
Theoremmule1 25728 The Möbius function takes on values in magnitude at most 1. (Together with mucl 25721, this implies that it takes a value in {-1, 0, 1} for every positive integer.) (Contributed by Mario Carneiro, 22-Sep-2014.)
(𝐴 ∈ ℕ → (abs‘(μ‘𝐴)) ≤ 1)
 
Theoremchtfl 25729 The Chebyshev function does not change off the integers. (Contributed by Mario Carneiro, 22-Sep-2014.)
(𝐴 ∈ ℝ → (θ‘(⌊‘𝐴)) = (θ‘𝐴))
 
Theoremchpfl 25730 The second Chebyshev function does not change off the integers. (Contributed by Mario Carneiro, 9-Apr-2016.)
(𝐴 ∈ ℝ → (ψ‘(⌊‘𝐴)) = (ψ‘𝐴))
 
Theoremppiprm 25731 The prime-counting function π at a prime. (Contributed by Mario Carneiro, 19-Sep-2014.)
((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (π‘(𝐴 + 1)) = ((π𝐴) + 1))
 
Theoremppinprm 25732 The prime-counting function π at a non-prime. (Contributed by Mario Carneiro, 19-Sep-2014.)
((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (π‘(𝐴 + 1)) = (π𝐴))
 
Theoremchtprm 25733 The Chebyshev function at a prime. (Contributed by Mario Carneiro, 22-Sep-2014.)
((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (θ‘(𝐴 + 1)) = ((θ‘𝐴) + (log‘(𝐴 + 1))))
 
Theoremchtnprm 25734 The Chebyshev function at a non-prime. (Contributed by Mario Carneiro, 19-Sep-2014.)
((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (θ‘(𝐴 + 1)) = (θ‘𝐴))
 
Theoremchpp1 25735 The second Chebyshev function at a successor. (Contributed by Mario Carneiro, 11-Apr-2016.)
(𝐴 ∈ ℕ0 → (ψ‘(𝐴 + 1)) = ((ψ‘𝐴) + (Λ‘(𝐴 + 1))))
 
Theoremchtwordi 25736 The Chebyshev function is weakly increasing. (Contributed by Mario Carneiro, 22-Sep-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (θ‘𝐴) ≤ (θ‘𝐵))
 
Theoremchpwordi 25737 The second Chebyshev function is weakly increasing. (Contributed by Mario Carneiro, 9-Apr-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (ψ‘𝐴) ≤ (ψ‘𝐵))
 
Theoremchtdif 25738* The difference of the Chebyshev function at two points sums the logarithms of the primes in an interval. (Contributed by Mario Carneiro, 22-Sep-2014.)
(𝑁 ∈ (ℤ𝑀) → ((θ‘𝑁) − (θ‘𝑀)) = Σ𝑝 ∈ (((𝑀 + 1)...𝑁) ∩ ℙ)(log‘𝑝))
 
Theoremefchtdvds 25739 The exponentiated Chebyshev function forms a divisibility chain between any two points. (Contributed by Mario Carneiro, 22-Sep-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (exp‘(θ‘𝐴)) ∥ (exp‘(θ‘𝐵)))
 
Theoremppifl 25740 The prime-counting function π does not change off the integers. (Contributed by Mario Carneiro, 18-Sep-2014.)
(𝐴 ∈ ℝ → (π‘(⌊‘𝐴)) = (π𝐴))
 
Theoremppip1le 25741 The prime-counting function π cannot locally increase faster than the identity function. (Contributed by Mario Carneiro, 21-Sep-2014.)
(𝐴 ∈ ℝ → (π‘(𝐴 + 1)) ≤ ((π𝐴) + 1))
 
Theoremppiwordi 25742 The prime-counting function π is weakly increasing. (Contributed by Mario Carneiro, 19-Sep-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (π𝐴) ≤ (π𝐵))
 
Theoremppidif 25743 The difference of the prime-counting function π at two points counts the number of primes in an interval. (Contributed by Mario Carneiro, 21-Sep-2014.)
(𝑁 ∈ (ℤ𝑀) → ((π𝑁) − (π𝑀)) = (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ)))
 
Theoremppi1 25744 The prime-counting function π at 1. (Contributed by Mario Carneiro, 21-Sep-2014.)
(π‘1) = 0
 
Theoremcht1 25745 The Chebyshev function at 1. (Contributed by Mario Carneiro, 22-Sep-2014.)
(θ‘1) = 0
 
Theoremvma1 25746 The von Mangoldt function at 1. (Contributed by Mario Carneiro, 9-Apr-2016.)
(Λ‘1) = 0
 
Theoremchp1 25747 The second Chebyshev function at 1. (Contributed by Mario Carneiro, 9-Apr-2016.)
(ψ‘1) = 0
 
Theoremppi1i 25748 Inference form of ppiprm 25731. (Contributed by Mario Carneiro, 21-Sep-2014.)
𝑀 ∈ ℕ0    &   𝑁 = (𝑀 + 1)    &   (π𝑀) = 𝐾    &   𝑁 ∈ ℙ       (π𝑁) = (𝐾 + 1)
 
Theoremppi2i 25749 Inference form of ppinprm 25732. (Contributed by Mario Carneiro, 21-Sep-2014.)
𝑀 ∈ ℕ0    &   𝑁 = (𝑀 + 1)    &   (π𝑀) = 𝐾    &    ¬ 𝑁 ∈ ℙ       (π𝑁) = 𝐾
 
Theoremppi2 25750 The prime-counting function π at 2. (Contributed by Mario Carneiro, 21-Sep-2014.)
(π‘2) = 1
 
Theoremppi3 25751 The prime-counting function π at 3. (Contributed by Mario Carneiro, 21-Sep-2014.)
(π‘3) = 2
 
Theoremcht2 25752 The Chebyshev function at 2. (Contributed by Mario Carneiro, 22-Sep-2014.)
(θ‘2) = (log‘2)
 
Theoremcht3 25753 The Chebyshev function at 3. (Contributed by Mario Carneiro, 22-Sep-2014.)
(θ‘3) = (log‘6)
 
Theoremppinncl 25754 Closure of the prime-counting function π in the positive integers. (Contributed by Mario Carneiro, 21-Sep-2014.)
((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (π𝐴) ∈ ℕ)
 
Theoremchtrpcl 25755 Closure of the Chebyshev function in the positive reals. (Contributed by Mario Carneiro, 22-Sep-2014.)
((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (θ‘𝐴) ∈ ℝ+)
 
Theoremppieq0 25756 The prime-counting function π is zero iff its argument is less than 2. (Contributed by Mario Carneiro, 22-Sep-2014.)
(𝐴 ∈ ℝ → ((π𝐴) = 0 ↔ 𝐴 < 2))
 
Theoremppiltx 25757 The prime-counting function π is strictly less than the identity. (Contributed by Mario Carneiro, 22-Sep-2014.)
(𝐴 ∈ ℝ+ → (π𝐴) < 𝐴)
 
Theoremprmorcht 25758 Relate the primorial (product of the first 𝑛 primes) to the Chebyshev function. (Contributed by Mario Carneiro, 22-Sep-2014.)
𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1))       (𝐴 ∈ ℕ → (exp‘(θ‘𝐴)) = (seq1( · , 𝐹)‘𝐴))
 
Theoremmumullem1 25759 Lemma for mumul 25761. A multiple of a non-squarefree number is non-squarefree. (Contributed by Mario Carneiro, 3-Oct-2014.)
(((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (μ‘𝐴) = 0) → (μ‘(𝐴 · 𝐵)) = 0)
 
Theoremmumullem2 25760 Lemma for mumul 25761. The product of two coprime squarefree numbers is squarefree. (Contributed by Mario Carneiro, 3-Oct-2014.)
(((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘(𝐴 · 𝐵)) ≠ 0)
 
Theoremmumul 25761 The Möbius function is a multiplicative function. This is one of the primary interests of the Möbius function as an arithmetic function. (Contributed by Mario Carneiro, 3-Oct-2014.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (μ‘(𝐴 · 𝐵)) = ((μ‘𝐴) · (μ‘𝐵)))
 
Theoremsqff1o 25762* There is a bijection from the squarefree divisors of a number 𝑁 to the powerset of the prime divisors of 𝑁. Among other things, this implies that a number has 2↑𝑘 squarefree divisors where 𝑘 is the number of prime divisors, and a squarefree number has 2↑𝑘 divisors (because all divisors of a squarefree number are squarefree). The inverse function to 𝐹 takes the product of all the primes in some subset of prime divisors of 𝑁. (Contributed by Mario Carneiro, 1-Jul-2015.)
𝑆 = {𝑥 ∈ ℕ ∣ ((μ‘𝑥) ≠ 0 ∧ 𝑥𝑁)}    &   𝐹 = (𝑛𝑆 ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑛})    &   𝐺 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))       (𝑁 ∈ ℕ → 𝐹:𝑆1-1-onto→𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})
 
Theoremfsumdvdsdiaglem 25763* A "diagonal commutation" of divisor sums analogous to fsum0diag 15135. (Contributed by Mario Carneiro, 2-Jul-2015.) (Revised by Mario Carneiro, 8-Apr-2016.)
(𝜑𝑁 ∈ ℕ)       (𝜑 → ((𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)}) → (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)})))
 
Theoremfsumdvdsdiag 25764* A "diagonal commutation" of divisor sums analogous to fsum0diag 15135. (Contributed by Mario Carneiro, 2-Jul-2015.) (Revised by Mario Carneiro, 8-Apr-2016.)
(𝜑𝑁 ∈ ℕ)    &   ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝐴 ∈ ℂ)       (𝜑 → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)}𝐴 = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}𝐴)
 
Theoremfsumdvdscom 25765* A double commutation of divisor sums based on fsumdvdsdiag 25764. Note that 𝐴 depends on both 𝑗 and 𝑘. (Contributed by Mario Carneiro, 13-May-2016.)
(𝜑𝑁 ∈ ℕ)    &   (𝑗 = (𝑘 · 𝑚) → 𝐴 = 𝐵)    &   ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗})) → 𝐴 ∈ ℂ)       (𝜑 → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴 = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}𝐵)
 
Theoremdvdsppwf1o 25766* A bijection from the divisors of a prime power to the integers less than the prime count. (Contributed by Mario Carneiro, 5-May-2016.)
𝐹 = (𝑛 ∈ (0...𝐴) ↦ (𝑃𝑛))       ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐹:(0...𝐴)–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)})
 
Theoremdvdsflf1o 25767* A bijection from the numbers less than 𝑁 / 𝐴 to the multiples of 𝐴 less than 𝑁. Useful for some sum manipulations. (Contributed by Mario Carneiro, 3-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝑁 ∈ ℕ)    &   𝐹 = (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ↦ (𝑁 · 𝑛))       (𝜑𝐹:(1...(⌊‘(𝐴 / 𝑁)))–1-1-onto→{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})
 
Theoremdvdsflsumcom 25768* A sum commutation from Σ𝑛𝐴, Σ𝑑𝑛, 𝐵(𝑛, 𝑑) to Σ𝑑𝐴, Σ𝑚𝐴 / 𝑑, 𝐵(𝑛, 𝑑𝑚). (Contributed by Mario Carneiro, 4-May-2016.)
(𝑛 = (𝑑 · 𝑚) → 𝐵 = 𝐶)    &   (𝜑𝐴 ∈ ℝ)    &   ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → 𝐵 ∈ ℂ)       (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}𝐵 = Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))𝐶)
 
Theoremfsumfldivdiaglem 25769* Lemma for fsumfldivdiag 25770. (Contributed by Mario Carneiro, 10-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛)))) → (𝑚 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑚))))))
 
Theoremfsumfldivdiag 25770* The right-hand side of dvdsflsumcom 25768 is commutative in the variables, because it can be written as the manifestly symmetric sum over those 𝑚, 𝑛 such that 𝑚 · 𝑛𝐴. (Contributed by Mario Carneiro, 4-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝐵 ∈ ℂ)       (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛)))𝐵 = Σ𝑚 ∈ (1...(⌊‘𝐴))Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑚)))𝐵)
 
Theoremmusum 25771* The sum of the Möbius function over the divisors of 𝑁 gives one if 𝑁 = 1, but otherwise always sums to zero. Theorem 2.1 in [ApostolNT] p. 25. This makes the Möbius function useful for inverting divisor sums; see also muinv 25773. (Contributed by Mario Carneiro, 2-Jul-2015.)
(𝑁 ∈ ℕ → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁} (μ‘𝑘) = if(𝑁 = 1, 1, 0))
 
Theoremmusumsum 25772* Evaluate a collapsing sum over the Möbius function. (Contributed by Mario Carneiro, 4-May-2016.)
(𝑚 = 1 → 𝐵 = 𝐶)    &   (𝜑𝐴 ∈ Fin)    &   (𝜑𝐴 ⊆ ℕ)    &   (𝜑 → 1 ∈ 𝐴)    &   ((𝜑𝑚𝐴) → 𝐵 ∈ ℂ)       (𝜑 → Σ𝑚𝐴 Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} ((μ‘𝑘) · 𝐵) = 𝐶)
 
Theoremmuinv 25773* The Möbius inversion formula. If 𝐺(𝑛) = Σ𝑘𝑛𝐹(𝑘) for every 𝑛 ∈ ℕ, then 𝐹(𝑛) = Σ𝑘𝑛 μ(𝑘)𝐺(𝑛 / 𝑘) = Σ𝑘𝑛μ(𝑛 / 𝑘)𝐺(𝑘), i.e. the Möbius function is the Dirichlet convolution inverse of the constant function 1. Theorem 2.9 in [ApostolNT] p. 32. (Contributed by Mario Carneiro, 2-Jul-2015.)
(𝜑𝐹:ℕ⟶ℂ)    &   (𝜑𝐺 = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (𝐹𝑘)))       (𝜑𝐹 = (𝑚 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((μ‘𝑗) · (𝐺‘(𝑚 / 𝑗)))))
 
Theoremdvdsmulf1o 25774* If 𝑀 and 𝑁 are two coprime integers, multiplication forms a bijection from the set of pairs 𝑗, 𝑘 where 𝑗𝑀 and 𝑘𝑁, to the set of divisors of 𝑀 · 𝑁. (Contributed by Mario Carneiro, 2-Jul-2015.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑 → (𝑀 gcd 𝑁) = 1)    &   𝑋 = {𝑥 ∈ ℕ ∣ 𝑥𝑀}    &   𝑌 = {𝑥 ∈ ℕ ∣ 𝑥𝑁}    &   𝑍 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)}       (𝜑 → ( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1-onto𝑍)
 
Theoremfsumdvdsmul 25775* Product of two divisor sums. (This is also the main part of the proof that "Σ𝑘𝑁𝐹(𝑘) is a multiplicative function if 𝐹 is".) (Contributed by Mario Carneiro, 2-Jul-2015.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑 → (𝑀 gcd 𝑁) = 1)    &   𝑋 = {𝑥 ∈ ℕ ∣ 𝑥𝑀}    &   𝑌 = {𝑥 ∈ ℕ ∣ 𝑥𝑁}    &   𝑍 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)}    &   ((𝜑𝑗𝑋) → 𝐴 ∈ ℂ)    &   ((𝜑𝑘𝑌) → 𝐵 ∈ ℂ)    &   ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → (𝐴 · 𝐵) = 𝐷)    &   (𝑖 = (𝑗 · 𝑘) → 𝐶 = 𝐷)       (𝜑 → (Σ𝑗𝑋 𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑖𝑍 𝐶)
 
Theoremsgmppw 25776* The value of the divisor function at a prime power. (Contributed by Mario Carneiro, 17-May-2016.)
((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝐴 σ (𝑃𝑁)) = Σ𝑘 ∈ (0...𝑁)((𝑃𝑐𝐴)↑𝑘))
 
Theorem0sgmppw 25777 A prime power 𝑃𝐾 has 𝐾 + 1 divisors. (Contributed by Mario Carneiro, 17-May-2016.)
((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0) → (0 σ (𝑃𝐾)) = (𝐾 + 1))
 
Theorem1sgmprm 25778 The sum of divisors for a prime is 𝑃 + 1 because the only divisors are 1 and 𝑃. (Contributed by Mario Carneiro, 17-May-2016.)
(𝑃 ∈ ℙ → (1 σ 𝑃) = (𝑃 + 1))
 
Theorem1sgm2ppw 25779 The sum of the divisors of 2↑(𝑁 − 1). (Contributed by Mario Carneiro, 17-May-2016.)
(𝑁 ∈ ℕ → (1 σ (2↑(𝑁 − 1))) = ((2↑𝑁) − 1))
 
Theoremsgmmul 25780 The divisor function for fixed parameter 𝐴 is a multiplicative function. (Contributed by Mario Carneiro, 2-Jul-2015.)
((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (𝐴 σ (𝑀 · 𝑁)) = ((𝐴 σ 𝑀) · (𝐴 σ 𝑁)))
 
Theoremppiublem1 25781 Lemma for ppiub 25783. (Contributed by Mario Carneiro, 12-Mar-2014.)
(𝑁 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (𝑁...5) → (𝑃 mod 6) ∈ {1, 5})))    &   𝑀 ∈ ℕ0    &   𝑁 = (𝑀 + 1)    &   (2 ∥ 𝑀 ∨ 3 ∥ 𝑀𝑀 ∈ {1, 5})       (𝑀 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (𝑀...5) → (𝑃 mod 6) ∈ {1, 5})))
 
Theoremppiublem2 25782 A prime greater than 3 does not divide 2 or 3, so its residue mod 6 is 1 or 5. (Contributed by Mario Carneiro, 12-Mar-2014.)
((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (𝑃 mod 6) ∈ {1, 5})
 
Theoremppiub 25783 An upper bound on the prime-counting function π, which counts the number of primes less than 𝑁. (Contributed by Mario Carneiro, 13-Mar-2014.)
((𝑁 ∈ ℝ ∧ 0 ≤ 𝑁) → (π𝑁) ≤ ((𝑁 / 3) + 2))
 
Theoremvmalelog 25784 The von Mangoldt function is less than the natural log. (Contributed by Mario Carneiro, 7-Apr-2016.)
(𝐴 ∈ ℕ → (Λ‘𝐴) ≤ (log‘𝐴))
 
Theoremchtlepsi 25785 The first Chebyshev function is less than the second. (Contributed by Mario Carneiro, 7-Apr-2016.)
(𝐴 ∈ ℝ → (θ‘𝐴) ≤ (ψ‘𝐴))
 
Theoremchprpcl 25786 Closure of the second Chebyshev function in the positive reals. (Contributed by Mario Carneiro, 8-Apr-2016.)
((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (ψ‘𝐴) ∈ ℝ+)
 
Theoremchpeq0 25787 The second Chebyshev function is zero iff its argument is less than 2. (Contributed by Mario Carneiro, 9-Apr-2016.)
(𝐴 ∈ ℝ → ((ψ‘𝐴) = 0 ↔ 𝐴 < 2))
 
Theoremchteq0 25788 The first Chebyshev function is zero iff its argument is less than 2. (Contributed by Mario Carneiro, 9-Apr-2016.)
(𝐴 ∈ ℝ → ((θ‘𝐴) = 0 ↔ 𝐴 < 2))
 
Theoremchtleppi 25789 Upper bound on the θ function. (Contributed by Mario Carneiro, 22-Sep-2014.)
(𝐴 ∈ ℝ+ → (θ‘𝐴) ≤ ((π𝐴) · (log‘𝐴)))
 
Theoremchtublem 25790 Lemma for chtub 25791. (Contributed by Mario Carneiro, 13-Mar-2014.)
(𝑁 ∈ ℕ → (θ‘((2 · 𝑁) − 1)) ≤ ((θ‘𝑁) + ((log‘4) · (𝑁 − 1))))
 
Theoremchtub 25791 An upper bound on the Chebyshev function. (Contributed by Mario Carneiro, 13-Mar-2014.) (Revised 22-Sep-2014.)
((𝑁 ∈ ℝ ∧ 2 < 𝑁) → (θ‘𝑁) < ((log‘2) · ((2 · 𝑁) − 3)))
 
Theoremfsumvma 25792* Rewrite a sum over the von Mangoldt function as a sum over prime powers. (Contributed by Mario Carneiro, 15-Apr-2016.)
(𝑥 = (𝑝𝑘) → 𝐵 = 𝐶)    &   (𝜑𝐴 ∈ Fin)    &   (𝜑𝐴 ⊆ ℕ)    &   (𝜑𝑃 ∈ Fin)    &   (𝜑 → ((𝑝𝑃𝑘𝐾) ↔ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝𝑘) ∈ 𝐴)))    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑 ∧ (𝑥𝐴 ∧ (Λ‘𝑥) = 0)) → 𝐵 = 0)       (𝜑 → Σ𝑥𝐴 𝐵 = Σ𝑝𝑃 Σ𝑘𝐾 𝐶)
 
Theoremfsumvma2 25793* Apply fsumvma 25792 for the common case of all numbers less than a real number 𝐴. (Contributed by Mario Carneiro, 30-Apr-2016.)
(𝑥 = (𝑝𝑘) → 𝐵 = 𝐶)    &   (𝜑𝐴 ∈ ℝ)    &   ((𝜑𝑥 ∈ (1...(⌊‘𝐴))) → 𝐵 ∈ ℂ)    &   ((𝜑 ∧ (𝑥 ∈ (1...(⌊‘𝐴)) ∧ (Λ‘𝑥) = 0)) → 𝐵 = 0)       (𝜑 → Σ𝑥 ∈ (1...(⌊‘𝐴))𝐵 = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))𝐶)
 
Theorempclogsum 25794* The logarithmic analogue of pcprod 16234. The sum of the logarithms of the primes dividing 𝐴 multiplied by their powers yields the logarithm of 𝐴. (Contributed by Mario Carneiro, 15-Apr-2016.)
(𝐴 ∈ ℕ → Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)((𝑝 pCnt 𝐴) · (log‘𝑝)) = (log‘𝐴))
 
Theoremvmasum 25795* The sum of the von Mangoldt function over the divisors of 𝑛. Equation 9.2.4 of [Shapiro], p. 328 and theorem 2.10 in [ApostolNT] p. 32. (Contributed by Mario Carneiro, 15-Apr-2016.)
(𝐴 ∈ ℕ → Σ𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐴} (Λ‘𝑛) = (log‘𝐴))
 
Theoremlogfac2 25796* Another expression for the logarithm of a factorial, in terms of the von Mangoldt function. Equation 9.2.7 of [Shapiro], p. 329. (Contributed by Mario Carneiro, 15-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log‘(!‘(⌊‘𝐴))) = Σ𝑘 ∈ (1...(⌊‘𝐴))((Λ‘𝑘) · (⌊‘(𝐴 / 𝑘))))
 
Theoremchpval2 25797* Express the second Chebyshev function directly as a sum over the primes less than 𝐴 (instead of indirectly through the von Mangoldt function). (Contributed by Mario Carneiro, 8-Apr-2016.)
(𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
 
Theoremchpchtsum 25798* The second Chebyshev function is the sum of the theta function at arguments quickly approaching zero. (This is usually stated as an infinite sum, but after a certain point, the terms are all zero, and it is easier for us to use an explicit finite sum.) (Contributed by Mario Carneiro, 7-Apr-2016.)
(𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑘 ∈ (1...(⌊‘𝐴))(θ‘(𝐴𝑐(1 / 𝑘))))
 
Theoremchpub 25799 An upper bound on the second Chebyshev function. (Contributed by Mario Carneiro, 8-Apr-2016.)
((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (ψ‘𝐴) ≤ ((θ‘𝐴) + ((√‘𝐴) · (log‘𝐴))))
 
Theoremlogfacubnd 25800 A simple upper bound on the logarithm of a factorial. (Contributed by Mario Carneiro, 16-Apr-2016.)
((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘(!‘(⌊‘𝐴))) ≤ (𝐴 · (log‘𝐴)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-44913
  Copyright terms: Public domain < Previous  Next >