Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvditg | Structured version Visualization version GIF version |
Description: Change bound variable in a directed integral. (Contributed by Mario Carneiro, 7-Sep-2014.) |
Ref | Expression |
---|---|
cbvditg.1 | ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) |
cbvditg.2 | ⊢ Ⅎ𝑦𝐶 |
cbvditg.3 | ⊢ Ⅎ𝑥𝐷 |
Ref | Expression |
---|---|
cbvditg | ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 = ⨜[𝐴 → 𝐵]𝐷 d𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 260 | . . 3 ⊢ (𝐴 ≤ 𝐵 ↔ 𝐴 ≤ 𝐵) | |
2 | cbvditg.1 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) | |
3 | cbvditg.2 | . . . 4 ⊢ Ⅎ𝑦𝐶 | |
4 | cbvditg.3 | . . . 4 ⊢ Ⅎ𝑥𝐷 | |
5 | 2, 3, 4 | cbvitg 24936 | . . 3 ⊢ ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐷 d𝑦 |
6 | 2, 3, 4 | cbvitg 24936 | . . . 4 ⊢ ∫(𝐵(,)𝐴)𝐶 d𝑥 = ∫(𝐵(,)𝐴)𝐷 d𝑦 |
7 | 6 | negeqi 11212 | . . 3 ⊢ -∫(𝐵(,)𝐴)𝐶 d𝑥 = -∫(𝐵(,)𝐴)𝐷 d𝑦 |
8 | 1, 5, 7 | ifbieq12i 4492 | . 2 ⊢ if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) = if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐷 d𝑦, -∫(𝐵(,)𝐴)𝐷 d𝑦) |
9 | df-ditg 25007 | . 2 ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 = if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) | |
10 | df-ditg 25007 | . 2 ⊢ ⨜[𝐴 → 𝐵]𝐷 d𝑦 = if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐷 d𝑦, -∫(𝐵(,)𝐴)𝐷 d𝑦) | |
11 | 8, 9, 10 | 3eqtr4i 2778 | 1 ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 = ⨜[𝐴 → 𝐵]𝐷 d𝑦 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 Ⅎwnfc 2889 ifcif 4465 class class class wbr 5079 (class class class)co 7269 ≤ cle 11009 -cneg 11204 (,)cioo 13076 ∫citg 24778 ⨜cdit 25006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10926 ax-resscn 10927 ax-1cn 10928 ax-icn 10929 ax-addcl 10930 ax-addrcl 10931 ax-mulcl 10932 ax-mulrcl 10933 ax-mulcom 10934 ax-addass 10935 ax-mulass 10936 ax-distr 10937 ax-i2m1 10938 ax-1ne0 10939 ax-1rid 10940 ax-rnegex 10941 ax-rrecex 10942 ax-cnre 10943 ax-pre-lttri 10944 ax-pre-lttrn 10945 ax-pre-ltadd 10946 ax-pre-mulgt0 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7705 df-1st 7822 df-2nd 7823 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-er 8479 df-en 8715 df-dom 8716 df-sdom 8717 df-pnf 11010 df-mnf 11011 df-xr 11012 df-ltxr 11013 df-le 11014 df-sub 11205 df-neg 11206 df-nn 11972 df-n0 12232 df-z 12318 df-uz 12580 df-fz 13237 df-seq 13718 df-sum 15394 df-itg 24783 df-ditg 25007 |
This theorem is referenced by: cbvditgv 25015 itgsubst 25209 itgsubsticclem 43485 |
Copyright terms: Public domain | W3C validator |