![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvditg | Structured version Visualization version GIF version |
Description: Change bound variable in a directed integral. (Contributed by Mario Carneiro, 7-Sep-2014.) |
Ref | Expression |
---|---|
cbvditg.1 | ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) |
cbvditg.2 | ⊢ Ⅎ𝑦𝐶 |
cbvditg.3 | ⊢ Ⅎ𝑥𝐷 |
Ref | Expression |
---|---|
cbvditg | ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 = ⨜[𝐴 → 𝐵]𝐷 d𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 261 | . . 3 ⊢ (𝐴 ≤ 𝐵 ↔ 𝐴 ≤ 𝐵) | |
2 | cbvditg.1 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) | |
3 | cbvditg.2 | . . . 4 ⊢ Ⅎ𝑦𝐶 | |
4 | cbvditg.3 | . . . 4 ⊢ Ⅎ𝑥𝐷 | |
5 | 2, 3, 4 | cbvitg 25626 | . . 3 ⊢ ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐷 d𝑦 |
6 | 2, 3, 4 | cbvitg 25626 | . . . 4 ⊢ ∫(𝐵(,)𝐴)𝐶 d𝑥 = ∫(𝐵(,)𝐴)𝐷 d𝑦 |
7 | 6 | negeqi 11460 | . . 3 ⊢ -∫(𝐵(,)𝐴)𝐶 d𝑥 = -∫(𝐵(,)𝐴)𝐷 d𝑦 |
8 | 1, 5, 7 | ifbieq12i 4555 | . 2 ⊢ if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) = if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐷 d𝑦, -∫(𝐵(,)𝐴)𝐷 d𝑦) |
9 | df-ditg 25697 | . 2 ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 = if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) | |
10 | df-ditg 25697 | . 2 ⊢ ⨜[𝐴 → 𝐵]𝐷 d𝑦 = if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐷 d𝑦, -∫(𝐵(,)𝐴)𝐷 d𝑦) | |
11 | 8, 9, 10 | 3eqtr4i 2769 | 1 ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 = ⨜[𝐴 → 𝐵]𝐷 d𝑦 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 Ⅎwnfc 2882 ifcif 4528 class class class wbr 5148 (class class class)co 7412 ≤ cle 11256 -cneg 11452 (,)cioo 13331 ∫citg 25468 ⨜cdit 25696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-n0 12480 df-z 12566 df-uz 12830 df-fz 13492 df-seq 13974 df-sum 15640 df-itg 25473 df-ditg 25697 |
This theorem is referenced by: cbvditgv 25705 itgsubst 25905 itgsubsticclem 45153 |
Copyright terms: Public domain | W3C validator |