MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgeq1 Structured version   Visualization version   GIF version

Theorem ditgeq1 25799
Description: Equality theorem for the directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.)
Assertion
Ref Expression
ditgeq1 (𝐴 = 𝐵 → ⨜[𝐴𝐶]𝐷 d𝑥 = ⨜[𝐵𝐶]𝐷 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶
Allowed substitution hint:   𝐷(𝑥)

Proof of Theorem ditgeq1
StepHypRef Expression
1 breq1 5122 . . 3 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
2 oveq1 7410 . . . 4 (𝐴 = 𝐵 → (𝐴(,)𝐶) = (𝐵(,)𝐶))
3 itgeq1 25724 . . . 4 ((𝐴(,)𝐶) = (𝐵(,)𝐶) → ∫(𝐴(,)𝐶)𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
42, 3syl 17 . . 3 (𝐴 = 𝐵 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
5 oveq2 7411 . . . . 5 (𝐴 = 𝐵 → (𝐶(,)𝐴) = (𝐶(,)𝐵))
6 itgeq1 25724 . . . . 5 ((𝐶(,)𝐴) = (𝐶(,)𝐵) → ∫(𝐶(,)𝐴)𝐷 d𝑥 = ∫(𝐶(,)𝐵)𝐷 d𝑥)
75, 6syl 17 . . . 4 (𝐴 = 𝐵 → ∫(𝐶(,)𝐴)𝐷 d𝑥 = ∫(𝐶(,)𝐵)𝐷 d𝑥)
87negeqd 11474 . . 3 (𝐴 = 𝐵 → -∫(𝐶(,)𝐴)𝐷 d𝑥 = -∫(𝐶(,)𝐵)𝐷 d𝑥)
91, 4, 8ifbieq12d 4529 . 2 (𝐴 = 𝐵 → if(𝐴𝐶, ∫(𝐴(,)𝐶)𝐷 d𝑥, -∫(𝐶(,)𝐴)𝐷 d𝑥) = if(𝐵𝐶, ∫(𝐵(,)𝐶)𝐷 d𝑥, -∫(𝐶(,)𝐵)𝐷 d𝑥))
10 df-ditg 25798 . 2 ⨜[𝐴𝐶]𝐷 d𝑥 = if(𝐴𝐶, ∫(𝐴(,)𝐶)𝐷 d𝑥, -∫(𝐶(,)𝐴)𝐷 d𝑥)
11 df-ditg 25798 . 2 ⨜[𝐵𝐶]𝐷 d𝑥 = if(𝐵𝐶, ∫(𝐵(,)𝐶)𝐷 d𝑥, -∫(𝐶(,)𝐵)𝐷 d𝑥)
129, 10, 113eqtr4g 2795 1 (𝐴 = 𝐵 → ⨜[𝐴𝐶]𝐷 d𝑥 = ⨜[𝐵𝐶]𝐷 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  ifcif 4500   class class class wbr 5119  (class class class)co 7403  cle 11268  -cneg 11465  (,)cioo 13360  citg 25569  cdit 25797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-xp 5660  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-iota 6483  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-neg 11467  df-seq 14018  df-sum 15701  df-itg 25574  df-ditg 25798
This theorem is referenced by:  itgsubst  26006  ditgeq12d  36186
  Copyright terms: Public domain W3C validator