![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ditgeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for the directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.) |
Ref | Expression |
---|---|
ditgeq1 | ⊢ (𝐴 = 𝐵 → ⨜[𝐴 → 𝐶]𝐷 d𝑥 = ⨜[𝐵 → 𝐶]𝐷 d𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5150 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ≤ 𝐶 ↔ 𝐵 ≤ 𝐶)) | |
2 | oveq1 7437 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴(,)𝐶) = (𝐵(,)𝐶)) | |
3 | itgeq1 25822 | . . . 4 ⊢ ((𝐴(,)𝐶) = (𝐵(,)𝐶) → ∫(𝐴(,)𝐶)𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐴 = 𝐵 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥) |
5 | oveq2 7438 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐶(,)𝐴) = (𝐶(,)𝐵)) | |
6 | itgeq1 25822 | . . . . 5 ⊢ ((𝐶(,)𝐴) = (𝐶(,)𝐵) → ∫(𝐶(,)𝐴)𝐷 d𝑥 = ∫(𝐶(,)𝐵)𝐷 d𝑥) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝐴 = 𝐵 → ∫(𝐶(,)𝐴)𝐷 d𝑥 = ∫(𝐶(,)𝐵)𝐷 d𝑥) |
8 | 7 | negeqd 11499 | . . 3 ⊢ (𝐴 = 𝐵 → -∫(𝐶(,)𝐴)𝐷 d𝑥 = -∫(𝐶(,)𝐵)𝐷 d𝑥) |
9 | 1, 4, 8 | ifbieq12d 4558 | . 2 ⊢ (𝐴 = 𝐵 → if(𝐴 ≤ 𝐶, ∫(𝐴(,)𝐶)𝐷 d𝑥, -∫(𝐶(,)𝐴)𝐷 d𝑥) = if(𝐵 ≤ 𝐶, ∫(𝐵(,)𝐶)𝐷 d𝑥, -∫(𝐶(,)𝐵)𝐷 d𝑥)) |
10 | df-ditg 25896 | . 2 ⊢ ⨜[𝐴 → 𝐶]𝐷 d𝑥 = if(𝐴 ≤ 𝐶, ∫(𝐴(,)𝐶)𝐷 d𝑥, -∫(𝐶(,)𝐴)𝐷 d𝑥) | |
11 | df-ditg 25896 | . 2 ⊢ ⨜[𝐵 → 𝐶]𝐷 d𝑥 = if(𝐵 ≤ 𝐶, ∫(𝐵(,)𝐶)𝐷 d𝑥, -∫(𝐶(,)𝐵)𝐷 d𝑥) | |
12 | 9, 10, 11 | 3eqtr4g 2799 | 1 ⊢ (𝐴 = 𝐵 → ⨜[𝐴 → 𝐶]𝐷 d𝑥 = ⨜[𝐵 → 𝐶]𝐷 d𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ifcif 4530 class class class wbr 5147 (class class class)co 7430 ≤ cle 11293 -cneg 11490 (,)cioo 13383 ∫citg 25666 ⨜cdit 25895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-xp 5694 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-iota 6515 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-neg 11492 df-seq 14039 df-sum 15719 df-itg 25671 df-ditg 25896 |
This theorem is referenced by: itgsubst 26104 ditgeq12d 36204 |
Copyright terms: Public domain | W3C validator |