![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ditgeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for the directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.) |
Ref | Expression |
---|---|
ditgeq1 | ⊢ (𝐴 = 𝐵 → ⨜[𝐴 → 𝐶]𝐷 d𝑥 = ⨜[𝐵 → 𝐶]𝐷 d𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5169 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ≤ 𝐶 ↔ 𝐵 ≤ 𝐶)) | |
2 | oveq1 7455 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴(,)𝐶) = (𝐵(,)𝐶)) | |
3 | itgeq1 25828 | . . . 4 ⊢ ((𝐴(,)𝐶) = (𝐵(,)𝐶) → ∫(𝐴(,)𝐶)𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐴 = 𝐵 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥) |
5 | oveq2 7456 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐶(,)𝐴) = (𝐶(,)𝐵)) | |
6 | itgeq1 25828 | . . . . 5 ⊢ ((𝐶(,)𝐴) = (𝐶(,)𝐵) → ∫(𝐶(,)𝐴)𝐷 d𝑥 = ∫(𝐶(,)𝐵)𝐷 d𝑥) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝐴 = 𝐵 → ∫(𝐶(,)𝐴)𝐷 d𝑥 = ∫(𝐶(,)𝐵)𝐷 d𝑥) |
8 | 7 | negeqd 11530 | . . 3 ⊢ (𝐴 = 𝐵 → -∫(𝐶(,)𝐴)𝐷 d𝑥 = -∫(𝐶(,)𝐵)𝐷 d𝑥) |
9 | 1, 4, 8 | ifbieq12d 4576 | . 2 ⊢ (𝐴 = 𝐵 → if(𝐴 ≤ 𝐶, ∫(𝐴(,)𝐶)𝐷 d𝑥, -∫(𝐶(,)𝐴)𝐷 d𝑥) = if(𝐵 ≤ 𝐶, ∫(𝐵(,)𝐶)𝐷 d𝑥, -∫(𝐶(,)𝐵)𝐷 d𝑥)) |
10 | df-ditg 25902 | . 2 ⊢ ⨜[𝐴 → 𝐶]𝐷 d𝑥 = if(𝐴 ≤ 𝐶, ∫(𝐴(,)𝐶)𝐷 d𝑥, -∫(𝐶(,)𝐴)𝐷 d𝑥) | |
11 | df-ditg 25902 | . 2 ⊢ ⨜[𝐵 → 𝐶]𝐷 d𝑥 = if(𝐵 ≤ 𝐶, ∫(𝐵(,)𝐶)𝐷 d𝑥, -∫(𝐶(,)𝐵)𝐷 d𝑥) | |
12 | 9, 10, 11 | 3eqtr4g 2805 | 1 ⊢ (𝐴 = 𝐵 → ⨜[𝐴 → 𝐶]𝐷 d𝑥 = ⨜[𝐵 → 𝐶]𝐷 d𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ifcif 4548 class class class wbr 5166 (class class class)co 7448 ≤ cle 11325 -cneg 11521 (,)cioo 13407 ∫citg 25672 ⨜cdit 25901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-xp 5706 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-iota 6525 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-neg 11523 df-seq 14053 df-sum 15735 df-itg 25677 df-ditg 25902 |
This theorem is referenced by: itgsubst 26110 ditgeq12d 36188 |
Copyright terms: Public domain | W3C validator |