MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgeq1 Structured version   Visualization version   GIF version

Theorem ditgeq1 24699
Description: Equality theorem for the directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.)
Assertion
Ref Expression
ditgeq1 (𝐴 = 𝐵 → ⨜[𝐴𝐶]𝐷 d𝑥 = ⨜[𝐵𝐶]𝐷 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶
Allowed substitution hint:   𝐷(𝑥)

Proof of Theorem ditgeq1
StepHypRef Expression
1 breq1 5042 . . 3 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
2 oveq1 7198 . . . 4 (𝐴 = 𝐵 → (𝐴(,)𝐶) = (𝐵(,)𝐶))
3 itgeq1 24624 . . . 4 ((𝐴(,)𝐶) = (𝐵(,)𝐶) → ∫(𝐴(,)𝐶)𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
42, 3syl 17 . . 3 (𝐴 = 𝐵 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
5 oveq2 7199 . . . . 5 (𝐴 = 𝐵 → (𝐶(,)𝐴) = (𝐶(,)𝐵))
6 itgeq1 24624 . . . . 5 ((𝐶(,)𝐴) = (𝐶(,)𝐵) → ∫(𝐶(,)𝐴)𝐷 d𝑥 = ∫(𝐶(,)𝐵)𝐷 d𝑥)
75, 6syl 17 . . . 4 (𝐴 = 𝐵 → ∫(𝐶(,)𝐴)𝐷 d𝑥 = ∫(𝐶(,)𝐵)𝐷 d𝑥)
87negeqd 11037 . . 3 (𝐴 = 𝐵 → -∫(𝐶(,)𝐴)𝐷 d𝑥 = -∫(𝐶(,)𝐵)𝐷 d𝑥)
91, 4, 8ifbieq12d 4453 . 2 (𝐴 = 𝐵 → if(𝐴𝐶, ∫(𝐴(,)𝐶)𝐷 d𝑥, -∫(𝐶(,)𝐴)𝐷 d𝑥) = if(𝐵𝐶, ∫(𝐵(,)𝐶)𝐷 d𝑥, -∫(𝐶(,)𝐵)𝐷 d𝑥))
10 df-ditg 24698 . 2 ⨜[𝐴𝐶]𝐷 d𝑥 = if(𝐴𝐶, ∫(𝐴(,)𝐶)𝐷 d𝑥, -∫(𝐶(,)𝐴)𝐷 d𝑥)
11 df-ditg 24698 . 2 ⨜[𝐵𝐶]𝐷 d𝑥 = if(𝐵𝐶, ∫(𝐵(,)𝐶)𝐷 d𝑥, -∫(𝐶(,)𝐵)𝐷 d𝑥)
129, 10, 113eqtr4g 2796 1 (𝐴 = 𝐵 → ⨜[𝐴𝐶]𝐷 d𝑥 = ⨜[𝐵𝐶]𝐷 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  ifcif 4425   class class class wbr 5039  (class class class)co 7191  cle 10833  -cneg 11028  (,)cioo 12900  citg 24469  cdit 24697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-n0 12056  df-z 12142  df-uz 12404  df-fz 13061  df-seq 13540  df-sum 15215  df-itg 24474  df-ditg 24698
This theorem is referenced by:  itgsubst  24900
  Copyright terms: Public domain W3C validator