MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgeq1 Structured version   Visualization version   GIF version

Theorem ditgeq1 25747
Description: Equality theorem for the directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.)
Assertion
Ref Expression
ditgeq1 (𝐴 = 𝐵 → ⨜[𝐴𝐶]𝐷 d𝑥 = ⨜[𝐵𝐶]𝐷 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶
Allowed substitution hint:   𝐷(𝑥)

Proof of Theorem ditgeq1
StepHypRef Expression
1 breq1 5095 . . 3 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
2 oveq1 7356 . . . 4 (𝐴 = 𝐵 → (𝐴(,)𝐶) = (𝐵(,)𝐶))
3 itgeq1 25672 . . . 4 ((𝐴(,)𝐶) = (𝐵(,)𝐶) → ∫(𝐴(,)𝐶)𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
42, 3syl 17 . . 3 (𝐴 = 𝐵 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
5 oveq2 7357 . . . . 5 (𝐴 = 𝐵 → (𝐶(,)𝐴) = (𝐶(,)𝐵))
6 itgeq1 25672 . . . . 5 ((𝐶(,)𝐴) = (𝐶(,)𝐵) → ∫(𝐶(,)𝐴)𝐷 d𝑥 = ∫(𝐶(,)𝐵)𝐷 d𝑥)
75, 6syl 17 . . . 4 (𝐴 = 𝐵 → ∫(𝐶(,)𝐴)𝐷 d𝑥 = ∫(𝐶(,)𝐵)𝐷 d𝑥)
87negeqd 11357 . . 3 (𝐴 = 𝐵 → -∫(𝐶(,)𝐴)𝐷 d𝑥 = -∫(𝐶(,)𝐵)𝐷 d𝑥)
91, 4, 8ifbieq12d 4505 . 2 (𝐴 = 𝐵 → if(𝐴𝐶, ∫(𝐴(,)𝐶)𝐷 d𝑥, -∫(𝐶(,)𝐴)𝐷 d𝑥) = if(𝐵𝐶, ∫(𝐵(,)𝐶)𝐷 d𝑥, -∫(𝐶(,)𝐵)𝐷 d𝑥))
10 df-ditg 25746 . 2 ⨜[𝐴𝐶]𝐷 d𝑥 = if(𝐴𝐶, ∫(𝐴(,)𝐶)𝐷 d𝑥, -∫(𝐶(,)𝐴)𝐷 d𝑥)
11 df-ditg 25746 . 2 ⨜[𝐵𝐶]𝐷 d𝑥 = if(𝐵𝐶, ∫(𝐵(,)𝐶)𝐷 d𝑥, -∫(𝐶(,)𝐵)𝐷 d𝑥)
129, 10, 113eqtr4g 2789 1 (𝐴 = 𝐵 → ⨜[𝐴𝐶]𝐷 d𝑥 = ⨜[𝐵𝐶]𝐷 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  ifcif 4476   class class class wbr 5092  (class class class)co 7349  cle 11150  -cneg 11348  (,)cioo 13248  citg 25517  cdit 25745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-xp 5625  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-iota 6438  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-neg 11350  df-seq 13909  df-sum 15594  df-itg 25522  df-ditg 25746
This theorem is referenced by:  itgsubst  25954  ditgeq12d  36206
  Copyright terms: Public domain W3C validator