| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ditgeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| Ref | Expression |
|---|---|
| ditgeq1 | ⊢ (𝐴 = 𝐵 → ⨜[𝐴 → 𝐶]𝐷 d𝑥 = ⨜[𝐵 → 𝐶]𝐷 d𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5092 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ≤ 𝐶 ↔ 𝐵 ≤ 𝐶)) | |
| 2 | oveq1 7353 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴(,)𝐶) = (𝐵(,)𝐶)) | |
| 3 | itgeq1 25701 | . . . 4 ⊢ ((𝐴(,)𝐶) = (𝐵(,)𝐶) → ∫(𝐴(,)𝐶)𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐴 = 𝐵 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥) |
| 5 | oveq2 7354 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐶(,)𝐴) = (𝐶(,)𝐵)) | |
| 6 | itgeq1 25701 | . . . . 5 ⊢ ((𝐶(,)𝐴) = (𝐶(,)𝐵) → ∫(𝐶(,)𝐴)𝐷 d𝑥 = ∫(𝐶(,)𝐵)𝐷 d𝑥) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝐴 = 𝐵 → ∫(𝐶(,)𝐴)𝐷 d𝑥 = ∫(𝐶(,)𝐵)𝐷 d𝑥) |
| 8 | 7 | negeqd 11354 | . . 3 ⊢ (𝐴 = 𝐵 → -∫(𝐶(,)𝐴)𝐷 d𝑥 = -∫(𝐶(,)𝐵)𝐷 d𝑥) |
| 9 | 1, 4, 8 | ifbieq12d 4501 | . 2 ⊢ (𝐴 = 𝐵 → if(𝐴 ≤ 𝐶, ∫(𝐴(,)𝐶)𝐷 d𝑥, -∫(𝐶(,)𝐴)𝐷 d𝑥) = if(𝐵 ≤ 𝐶, ∫(𝐵(,)𝐶)𝐷 d𝑥, -∫(𝐶(,)𝐵)𝐷 d𝑥)) |
| 10 | df-ditg 25775 | . 2 ⊢ ⨜[𝐴 → 𝐶]𝐷 d𝑥 = if(𝐴 ≤ 𝐶, ∫(𝐴(,)𝐶)𝐷 d𝑥, -∫(𝐶(,)𝐴)𝐷 d𝑥) | |
| 11 | df-ditg 25775 | . 2 ⊢ ⨜[𝐵 → 𝐶]𝐷 d𝑥 = if(𝐵 ≤ 𝐶, ∫(𝐵(,)𝐶)𝐷 d𝑥, -∫(𝐶(,)𝐵)𝐷 d𝑥) | |
| 12 | 9, 10, 11 | 3eqtr4g 2791 | 1 ⊢ (𝐴 = 𝐵 → ⨜[𝐴 → 𝐶]𝐷 d𝑥 = ⨜[𝐵 → 𝐶]𝐷 d𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ifcif 4472 class class class wbr 5089 (class class class)co 7346 ≤ cle 11147 -cneg 11345 (,)cioo 13245 ∫citg 25546 ⨜cdit 25774 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-xp 5620 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-iota 6437 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-neg 11347 df-seq 13909 df-sum 15594 df-itg 25551 df-ditg 25775 |
| This theorem is referenced by: itgsubst 25983 ditgeq12d 36266 |
| Copyright terms: Public domain | W3C validator |