| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ditgeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| Ref | Expression |
|---|---|
| ditgeq2 | ⊢ (𝐴 = 𝐵 → ⨜[𝐶 → 𝐴]𝐷 d𝑥 = ⨜[𝐶 → 𝐵]𝐷 d𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5123 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐶 ≤ 𝐴 ↔ 𝐶 ≤ 𝐵)) | |
| 2 | oveq2 7411 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐶(,)𝐴) = (𝐶(,)𝐵)) | |
| 3 | itgeq1 25724 | . . . 4 ⊢ ((𝐶(,)𝐴) = (𝐶(,)𝐵) → ∫(𝐶(,)𝐴)𝐷 d𝑥 = ∫(𝐶(,)𝐵)𝐷 d𝑥) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐴 = 𝐵 → ∫(𝐶(,)𝐴)𝐷 d𝑥 = ∫(𝐶(,)𝐵)𝐷 d𝑥) |
| 5 | oveq1 7410 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴(,)𝐶) = (𝐵(,)𝐶)) | |
| 6 | itgeq1 25724 | . . . . 5 ⊢ ((𝐴(,)𝐶) = (𝐵(,)𝐶) → ∫(𝐴(,)𝐶)𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝐴 = 𝐵 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥) |
| 8 | 7 | negeqd 11474 | . . 3 ⊢ (𝐴 = 𝐵 → -∫(𝐴(,)𝐶)𝐷 d𝑥 = -∫(𝐵(,)𝐶)𝐷 d𝑥) |
| 9 | 1, 4, 8 | ifbieq12d 4529 | . 2 ⊢ (𝐴 = 𝐵 → if(𝐶 ≤ 𝐴, ∫(𝐶(,)𝐴)𝐷 d𝑥, -∫(𝐴(,)𝐶)𝐷 d𝑥) = if(𝐶 ≤ 𝐵, ∫(𝐶(,)𝐵)𝐷 d𝑥, -∫(𝐵(,)𝐶)𝐷 d𝑥)) |
| 10 | df-ditg 25798 | . 2 ⊢ ⨜[𝐶 → 𝐴]𝐷 d𝑥 = if(𝐶 ≤ 𝐴, ∫(𝐶(,)𝐴)𝐷 d𝑥, -∫(𝐴(,)𝐶)𝐷 d𝑥) | |
| 11 | df-ditg 25798 | . 2 ⊢ ⨜[𝐶 → 𝐵]𝐷 d𝑥 = if(𝐶 ≤ 𝐵, ∫(𝐶(,)𝐵)𝐷 d𝑥, -∫(𝐵(,)𝐶)𝐷 d𝑥) | |
| 12 | 9, 10, 11 | 3eqtr4g 2795 | 1 ⊢ (𝐴 = 𝐵 → ⨜[𝐶 → 𝐴]𝐷 d𝑥 = ⨜[𝐶 → 𝐵]𝐷 d𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ifcif 4500 class class class wbr 5119 (class class class)co 7403 ≤ cle 11268 -cneg 11465 (,)cioo 13360 ∫citg 25569 ⨜cdit 25797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-xp 5660 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-iota 6483 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-neg 11467 df-seq 14018 df-sum 15701 df-itg 25574 df-ditg 25798 |
| This theorem is referenced by: ditgneg 25808 itgsubstlem 26005 itgsubst 26006 ditgeq12d 36186 |
| Copyright terms: Public domain | W3C validator |