MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgeq2 Structured version   Visualization version   GIF version

Theorem ditgeq2 24441
Description: Equality theorem for the directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.)
Assertion
Ref Expression
ditgeq2 (𝐴 = 𝐵 → ⨜[𝐶𝐴]𝐷 d𝑥 = ⨜[𝐶𝐵]𝐷 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶
Allowed substitution hint:   𝐷(𝑥)

Proof of Theorem ditgeq2
StepHypRef Expression
1 breq2 5063 . . 3 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
2 oveq2 7158 . . . 4 (𝐴 = 𝐵 → (𝐶(,)𝐴) = (𝐶(,)𝐵))
3 itgeq1 24367 . . . 4 ((𝐶(,)𝐴) = (𝐶(,)𝐵) → ∫(𝐶(,)𝐴)𝐷 d𝑥 = ∫(𝐶(,)𝐵)𝐷 d𝑥)
42, 3syl 17 . . 3 (𝐴 = 𝐵 → ∫(𝐶(,)𝐴)𝐷 d𝑥 = ∫(𝐶(,)𝐵)𝐷 d𝑥)
5 oveq1 7157 . . . . 5 (𝐴 = 𝐵 → (𝐴(,)𝐶) = (𝐵(,)𝐶))
6 itgeq1 24367 . . . . 5 ((𝐴(,)𝐶) = (𝐵(,)𝐶) → ∫(𝐴(,)𝐶)𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
75, 6syl 17 . . . 4 (𝐴 = 𝐵 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
87negeqd 10874 . . 3 (𝐴 = 𝐵 → -∫(𝐴(,)𝐶)𝐷 d𝑥 = -∫(𝐵(,)𝐶)𝐷 d𝑥)
91, 4, 8ifbieq12d 4494 . 2 (𝐴 = 𝐵 → if(𝐶𝐴, ∫(𝐶(,)𝐴)𝐷 d𝑥, -∫(𝐴(,)𝐶)𝐷 d𝑥) = if(𝐶𝐵, ∫(𝐶(,)𝐵)𝐷 d𝑥, -∫(𝐵(,)𝐶)𝐷 d𝑥))
10 df-ditg 24439 . 2 ⨜[𝐶𝐴]𝐷 d𝑥 = if(𝐶𝐴, ∫(𝐶(,)𝐴)𝐷 d𝑥, -∫(𝐴(,)𝐶)𝐷 d𝑥)
11 df-ditg 24439 . 2 ⨜[𝐶𝐵]𝐷 d𝑥 = if(𝐶𝐵, ∫(𝐶(,)𝐵)𝐷 d𝑥, -∫(𝐵(,)𝐶)𝐷 d𝑥)
129, 10, 113eqtr4g 2881 1 (𝐴 = 𝐵 → ⨜[𝐶𝐴]𝐷 d𝑥 = ⨜[𝐶𝐵]𝐷 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  ifcif 4467   class class class wbr 5059  (class class class)co 7150  cle 10670  -cneg 10865  (,)cioo 12732  citg 24213  cdit 24438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-seq 13364  df-sum 15037  df-itg 24218  df-ditg 24439
This theorem is referenced by:  ditgneg  24449  itgsubstlem  24639  itgsubst  24640
  Copyright terms: Public domain W3C validator