| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ditgeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| Ref | Expression |
|---|---|
| ditgeq2 | ⊢ (𝐴 = 𝐵 → ⨜[𝐶 → 𝐴]𝐷 d𝑥 = ⨜[𝐶 → 𝐵]𝐷 d𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5147 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐶 ≤ 𝐴 ↔ 𝐶 ≤ 𝐵)) | |
| 2 | oveq2 7439 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐶(,)𝐴) = (𝐶(,)𝐵)) | |
| 3 | itgeq1 25808 | . . . 4 ⊢ ((𝐶(,)𝐴) = (𝐶(,)𝐵) → ∫(𝐶(,)𝐴)𝐷 d𝑥 = ∫(𝐶(,)𝐵)𝐷 d𝑥) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐴 = 𝐵 → ∫(𝐶(,)𝐴)𝐷 d𝑥 = ∫(𝐶(,)𝐵)𝐷 d𝑥) |
| 5 | oveq1 7438 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴(,)𝐶) = (𝐵(,)𝐶)) | |
| 6 | itgeq1 25808 | . . . . 5 ⊢ ((𝐴(,)𝐶) = (𝐵(,)𝐶) → ∫(𝐴(,)𝐶)𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝐴 = 𝐵 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥) |
| 8 | 7 | negeqd 11502 | . . 3 ⊢ (𝐴 = 𝐵 → -∫(𝐴(,)𝐶)𝐷 d𝑥 = -∫(𝐵(,)𝐶)𝐷 d𝑥) |
| 9 | 1, 4, 8 | ifbieq12d 4554 | . 2 ⊢ (𝐴 = 𝐵 → if(𝐶 ≤ 𝐴, ∫(𝐶(,)𝐴)𝐷 d𝑥, -∫(𝐴(,)𝐶)𝐷 d𝑥) = if(𝐶 ≤ 𝐵, ∫(𝐶(,)𝐵)𝐷 d𝑥, -∫(𝐵(,)𝐶)𝐷 d𝑥)) |
| 10 | df-ditg 25882 | . 2 ⊢ ⨜[𝐶 → 𝐴]𝐷 d𝑥 = if(𝐶 ≤ 𝐴, ∫(𝐶(,)𝐴)𝐷 d𝑥, -∫(𝐴(,)𝐶)𝐷 d𝑥) | |
| 11 | df-ditg 25882 | . 2 ⊢ ⨜[𝐶 → 𝐵]𝐷 d𝑥 = if(𝐶 ≤ 𝐵, ∫(𝐶(,)𝐵)𝐷 d𝑥, -∫(𝐵(,)𝐶)𝐷 d𝑥) | |
| 12 | 9, 10, 11 | 3eqtr4g 2802 | 1 ⊢ (𝐴 = 𝐵 → ⨜[𝐶 → 𝐴]𝐷 d𝑥 = ⨜[𝐶 → 𝐵]𝐷 d𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ifcif 4525 class class class wbr 5143 (class class class)co 7431 ≤ cle 11296 -cneg 11493 (,)cioo 13387 ∫citg 25653 ⨜cdit 25881 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-xp 5691 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-iota 6514 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-neg 11495 df-seq 14043 df-sum 15723 df-itg 25658 df-ditg 25882 |
| This theorem is referenced by: ditgneg 25892 itgsubstlem 26089 itgsubst 26090 ditgeq12d 36223 |
| Copyright terms: Public domain | W3C validator |