MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgeq2 Structured version   Visualization version   GIF version

Theorem ditgeq2 25884
Description: Equality theorem for the directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.)
Assertion
Ref Expression
ditgeq2 (𝐴 = 𝐵 → ⨜[𝐶𝐴]𝐷 d𝑥 = ⨜[𝐶𝐵]𝐷 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶
Allowed substitution hint:   𝐷(𝑥)

Proof of Theorem ditgeq2
StepHypRef Expression
1 breq2 5147 . . 3 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
2 oveq2 7439 . . . 4 (𝐴 = 𝐵 → (𝐶(,)𝐴) = (𝐶(,)𝐵))
3 itgeq1 25808 . . . 4 ((𝐶(,)𝐴) = (𝐶(,)𝐵) → ∫(𝐶(,)𝐴)𝐷 d𝑥 = ∫(𝐶(,)𝐵)𝐷 d𝑥)
42, 3syl 17 . . 3 (𝐴 = 𝐵 → ∫(𝐶(,)𝐴)𝐷 d𝑥 = ∫(𝐶(,)𝐵)𝐷 d𝑥)
5 oveq1 7438 . . . . 5 (𝐴 = 𝐵 → (𝐴(,)𝐶) = (𝐵(,)𝐶))
6 itgeq1 25808 . . . . 5 ((𝐴(,)𝐶) = (𝐵(,)𝐶) → ∫(𝐴(,)𝐶)𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
75, 6syl 17 . . . 4 (𝐴 = 𝐵 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
87negeqd 11502 . . 3 (𝐴 = 𝐵 → -∫(𝐴(,)𝐶)𝐷 d𝑥 = -∫(𝐵(,)𝐶)𝐷 d𝑥)
91, 4, 8ifbieq12d 4554 . 2 (𝐴 = 𝐵 → if(𝐶𝐴, ∫(𝐶(,)𝐴)𝐷 d𝑥, -∫(𝐴(,)𝐶)𝐷 d𝑥) = if(𝐶𝐵, ∫(𝐶(,)𝐵)𝐷 d𝑥, -∫(𝐵(,)𝐶)𝐷 d𝑥))
10 df-ditg 25882 . 2 ⨜[𝐶𝐴]𝐷 d𝑥 = if(𝐶𝐴, ∫(𝐶(,)𝐴)𝐷 d𝑥, -∫(𝐴(,)𝐶)𝐷 d𝑥)
11 df-ditg 25882 . 2 ⨜[𝐶𝐵]𝐷 d𝑥 = if(𝐶𝐵, ∫(𝐶(,)𝐵)𝐷 d𝑥, -∫(𝐵(,)𝐶)𝐷 d𝑥)
129, 10, 113eqtr4g 2802 1 (𝐴 = 𝐵 → ⨜[𝐶𝐴]𝐷 d𝑥 = ⨜[𝐶𝐵]𝐷 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  ifcif 4525   class class class wbr 5143  (class class class)co 7431  cle 11296  -cneg 11493  (,)cioo 13387  citg 25653  cdit 25881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-xp 5691  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-iota 6514  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-neg 11495  df-seq 14043  df-sum 15723  df-itg 25658  df-ditg 25882
This theorem is referenced by:  ditgneg  25892  itgsubstlem  26089  itgsubst  26090  ditgeq12d  36223
  Copyright terms: Public domain W3C validator