MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgeq2 Structured version   Visualization version   GIF version

Theorem ditgeq2 25904
Description: Equality theorem for the directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.)
Assertion
Ref Expression
ditgeq2 (𝐴 = 𝐵 → ⨜[𝐶𝐴]𝐷 d𝑥 = ⨜[𝐶𝐵]𝐷 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶
Allowed substitution hint:   𝐷(𝑥)

Proof of Theorem ditgeq2
StepHypRef Expression
1 breq2 5170 . . 3 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
2 oveq2 7456 . . . 4 (𝐴 = 𝐵 → (𝐶(,)𝐴) = (𝐶(,)𝐵))
3 itgeq1 25828 . . . 4 ((𝐶(,)𝐴) = (𝐶(,)𝐵) → ∫(𝐶(,)𝐴)𝐷 d𝑥 = ∫(𝐶(,)𝐵)𝐷 d𝑥)
42, 3syl 17 . . 3 (𝐴 = 𝐵 → ∫(𝐶(,)𝐴)𝐷 d𝑥 = ∫(𝐶(,)𝐵)𝐷 d𝑥)
5 oveq1 7455 . . . . 5 (𝐴 = 𝐵 → (𝐴(,)𝐶) = (𝐵(,)𝐶))
6 itgeq1 25828 . . . . 5 ((𝐴(,)𝐶) = (𝐵(,)𝐶) → ∫(𝐴(,)𝐶)𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
75, 6syl 17 . . . 4 (𝐴 = 𝐵 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
87negeqd 11530 . . 3 (𝐴 = 𝐵 → -∫(𝐴(,)𝐶)𝐷 d𝑥 = -∫(𝐵(,)𝐶)𝐷 d𝑥)
91, 4, 8ifbieq12d 4576 . 2 (𝐴 = 𝐵 → if(𝐶𝐴, ∫(𝐶(,)𝐴)𝐷 d𝑥, -∫(𝐴(,)𝐶)𝐷 d𝑥) = if(𝐶𝐵, ∫(𝐶(,)𝐵)𝐷 d𝑥, -∫(𝐵(,)𝐶)𝐷 d𝑥))
10 df-ditg 25902 . 2 ⨜[𝐶𝐴]𝐷 d𝑥 = if(𝐶𝐴, ∫(𝐶(,)𝐴)𝐷 d𝑥, -∫(𝐴(,)𝐶)𝐷 d𝑥)
11 df-ditg 25902 . 2 ⨜[𝐶𝐵]𝐷 d𝑥 = if(𝐶𝐵, ∫(𝐶(,)𝐵)𝐷 d𝑥, -∫(𝐵(,)𝐶)𝐷 d𝑥)
129, 10, 113eqtr4g 2805 1 (𝐴 = 𝐵 → ⨜[𝐶𝐴]𝐷 d𝑥 = ⨜[𝐶𝐵]𝐷 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  ifcif 4548   class class class wbr 5166  (class class class)co 7448  cle 11325  -cneg 11521  (,)cioo 13407  citg 25672  cdit 25901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-xp 5706  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-iota 6525  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-neg 11523  df-seq 14053  df-sum 15735  df-itg 25677  df-ditg 25902
This theorem is referenced by:  ditgneg  25912  itgsubstlem  26109  itgsubst  26110  ditgeq12d  36188
  Copyright terms: Public domain W3C validator