MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgneg Structured version   Visualization version   GIF version

Theorem ditgneg 25756
Description: Value of the directed integral in the backward direction. (Contributed by Mario Carneiro, 13-Aug-2014.)
Hypotheses
Ref Expression
ditgpos.1 (𝜑𝐴𝐵)
ditgneg.2 (𝜑𝐴 ∈ ℝ)
ditgneg.3 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
ditgneg (𝜑 → ⨜[𝐵𝐴]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem ditgneg
StepHypRef Expression
1 ditgpos.1 . . . . 5 (𝜑𝐴𝐵)
21biantrurd 532 . . . 4 (𝜑 → (𝐵𝐴 ↔ (𝐴𝐵𝐵𝐴)))
3 ditgneg.2 . . . . 5 (𝜑𝐴 ∈ ℝ)
4 ditgneg.3 . . . . 5 (𝜑𝐵 ∈ ℝ)
53, 4letri3d 11258 . . . 4 (𝜑 → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
62, 5bitr4d 282 . . 3 (𝜑 → (𝐵𝐴𝐴 = 𝐵))
7 ditg0 25752 . . . . 5 ⨜[𝐵𝐵]𝐶 d𝑥 = 0
8 neg0 11410 . . . . 5 -0 = 0
97, 8eqtr4i 2755 . . . 4 ⨜[𝐵𝐵]𝐶 d𝑥 = -0
10 ditgeq2 25748 . . . 4 (𝐴 = 𝐵 → ⨜[𝐵𝐴]𝐶 d𝑥 = ⨜[𝐵𝐵]𝐶 d𝑥)
11 oveq1 7356 . . . . . . . 8 (𝐴 = 𝐵 → (𝐴(,)𝐵) = (𝐵(,)𝐵))
12 iooid 13276 . . . . . . . 8 (𝐵(,)𝐵) = ∅
1311, 12eqtrdi 2780 . . . . . . 7 (𝐴 = 𝐵 → (𝐴(,)𝐵) = ∅)
14 itgeq1 25672 . . . . . . 7 ((𝐴(,)𝐵) = ∅ → ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫∅𝐶 d𝑥)
1513, 14syl 17 . . . . . 6 (𝐴 = 𝐵 → ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫∅𝐶 d𝑥)
16 itg0 25679 . . . . . 6 ∫∅𝐶 d𝑥 = 0
1715, 16eqtrdi 2780 . . . . 5 (𝐴 = 𝐵 → ∫(𝐴(,)𝐵)𝐶 d𝑥 = 0)
1817negeqd 11357 . . . 4 (𝐴 = 𝐵 → -∫(𝐴(,)𝐵)𝐶 d𝑥 = -0)
199, 10, 183eqtr4a 2790 . . 3 (𝐴 = 𝐵 → ⨜[𝐵𝐴]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥)
206, 19biimtrdi 253 . 2 (𝜑 → (𝐵𝐴 → ⨜[𝐵𝐴]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥))
21 df-ditg 25746 . . 3 ⨜[𝐵𝐴]𝐶 d𝑥 = if(𝐵𝐴, ∫(𝐵(,)𝐴)𝐶 d𝑥, -∫(𝐴(,)𝐵)𝐶 d𝑥)
22 iffalse 4485 . . 3 𝐵𝐴 → if(𝐵𝐴, ∫(𝐵(,)𝐴)𝐶 d𝑥, -∫(𝐴(,)𝐵)𝐶 d𝑥) = -∫(𝐴(,)𝐵)𝐶 d𝑥)
2321, 22eqtrid 2776 . 2 𝐵𝐴 → ⨜[𝐵𝐴]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥)
2420, 23pm2.61d1 180 1 (𝜑 → ⨜[𝐵𝐴]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  c0 4284  ifcif 4476   class class class wbr 5092  (class class class)co 7349  cr 11008  0cc0 11009  cle 11150  -cneg 11348  (,)cioo 13248  citg 25517  cdit 25745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-xadd 13015  df-ioo 13252  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-xmet 21254  df-met 21255  df-ovol 25363  df-vol 25364  df-mbf 25518  df-itg1 25519  df-itg2 25520  df-itg 25522  df-0p 25569  df-ditg 25746
This theorem is referenced by:  ditgcl  25757  ditgswap  25758
  Copyright terms: Public domain W3C validator