MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgneg Structured version   Visualization version   GIF version

Theorem ditgneg 23829
Description: Value of the directed integral in the backward direction. (Contributed by Mario Carneiro, 13-Aug-2014.)
Hypotheses
Ref Expression
ditgpos.1 (𝜑𝐴𝐵)
ditgneg.2 (𝜑𝐴 ∈ ℝ)
ditgneg.3 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
ditgneg (𝜑 → ⨜[𝐵𝐴]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem ditgneg
StepHypRef Expression
1 ditgpos.1 . . . . 5 (𝜑𝐴𝐵)
21biantrurd 524 . . . 4 (𝜑 → (𝐵𝐴 ↔ (𝐴𝐵𝐵𝐴)))
3 ditgneg.2 . . . . 5 (𝜑𝐴 ∈ ℝ)
4 ditgneg.3 . . . . 5 (𝜑𝐵 ∈ ℝ)
53, 4letri3d 10458 . . . 4 (𝜑 → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
62, 5bitr4d 273 . . 3 (𝜑 → (𝐵𝐴𝐴 = 𝐵))
7 ditg0 23825 . . . . 5 ⨜[𝐵𝐵]𝐶 d𝑥 = 0
8 neg0 10606 . . . . 5 -0 = 0
97, 8eqtr4i 2827 . . . 4 ⨜[𝐵𝐵]𝐶 d𝑥 = -0
10 ditgeq2 23821 . . . 4 (𝐴 = 𝐵 → ⨜[𝐵𝐴]𝐶 d𝑥 = ⨜[𝐵𝐵]𝐶 d𝑥)
11 oveq1 6875 . . . . . . . 8 (𝐴 = 𝐵 → (𝐴(,)𝐵) = (𝐵(,)𝐵))
12 iooid 12415 . . . . . . . 8 (𝐵(,)𝐵) = ∅
1311, 12syl6eq 2852 . . . . . . 7 (𝐴 = 𝐵 → (𝐴(,)𝐵) = ∅)
14 itgeq1 23747 . . . . . . 7 ((𝐴(,)𝐵) = ∅ → ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫∅𝐶 d𝑥)
1513, 14syl 17 . . . . . 6 (𝐴 = 𝐵 → ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫∅𝐶 d𝑥)
16 itg0 23754 . . . . . 6 ∫∅𝐶 d𝑥 = 0
1715, 16syl6eq 2852 . . . . 5 (𝐴 = 𝐵 → ∫(𝐴(,)𝐵)𝐶 d𝑥 = 0)
1817negeqd 10554 . . . 4 (𝐴 = 𝐵 → -∫(𝐴(,)𝐵)𝐶 d𝑥 = -0)
199, 10, 183eqtr4a 2862 . . 3 (𝐴 = 𝐵 → ⨜[𝐵𝐴]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥)
206, 19syl6bi 244 . 2 (𝜑 → (𝐵𝐴 → ⨜[𝐵𝐴]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥))
21 df-ditg 23819 . . 3 ⨜[𝐵𝐴]𝐶 d𝑥 = if(𝐵𝐴, ∫(𝐵(,)𝐴)𝐶 d𝑥, -∫(𝐴(,)𝐵)𝐶 d𝑥)
22 iffalse 4282 . . 3 𝐵𝐴 → if(𝐵𝐴, ∫(𝐵(,)𝐴)𝐶 d𝑥, -∫(𝐴(,)𝐵)𝐶 d𝑥) = -∫(𝐴(,)𝐵)𝐶 d𝑥)
2321, 22syl5eq 2848 . 2 𝐵𝐴 → ⨜[𝐵𝐴]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥)
2420, 23pm2.61d1 172 1 (𝜑 → ⨜[𝐵𝐴]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1637  wcel 2155  c0 4110  ifcif 4273   class class class wbr 4837  (class class class)co 6868  cr 10214  0cc0 10215  cle 10354  -cneg 10546  (,)cioo 12387  citg 23593  cdit 23818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2067  ax-7 2103  ax-8 2157  ax-9 2164  ax-10 2184  ax-11 2200  ax-12 2213  ax-13 2419  ax-ext 2781  ax-rep 4957  ax-sep 4968  ax-nul 4977  ax-pow 5029  ax-pr 5090  ax-un 7173  ax-inf2 8779  ax-cnex 10271  ax-resscn 10272  ax-1cn 10273  ax-icn 10274  ax-addcl 10275  ax-addrcl 10276  ax-mulcl 10277  ax-mulrcl 10278  ax-mulcom 10279  ax-addass 10280  ax-mulass 10281  ax-distr 10282  ax-i2m1 10283  ax-1ne0 10284  ax-1rid 10285  ax-rnegex 10286  ax-rrecex 10287  ax-cnre 10288  ax-pre-lttri 10289  ax-pre-lttrn 10290  ax-pre-ltadd 10291  ax-pre-mulgt0 10292  ax-pre-sup 10293  ax-addf 10294
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2060  df-eu 2633  df-mo 2634  df-clab 2789  df-cleq 2795  df-clel 2798  df-nfc 2933  df-ne 2975  df-nel 3078  df-ral 3097  df-rex 3098  df-reu 3099  df-rmo 3100  df-rab 3101  df-v 3389  df-sbc 3628  df-csb 3723  df-dif 3766  df-un 3768  df-in 3770  df-ss 3777  df-pss 3779  df-nul 4111  df-if 4274  df-pw 4347  df-sn 4365  df-pr 4367  df-tp 4369  df-op 4371  df-uni 4624  df-int 4663  df-iun 4707  df-disj 4806  df-br 4838  df-opab 4900  df-mpt 4917  df-tr 4940  df-id 5213  df-eprel 5218  df-po 5226  df-so 5227  df-fr 5264  df-se 5265  df-we 5266  df-xp 5311  df-rel 5312  df-cnv 5313  df-co 5314  df-dm 5315  df-rn 5316  df-res 5317  df-ima 5318  df-pred 5887  df-ord 5933  df-on 5934  df-lim 5935  df-suc 5936  df-iota 6058  df-fun 6097  df-fn 6098  df-f 6099  df-f1 6100  df-fo 6101  df-f1o 6102  df-fv 6103  df-isom 6104  df-riota 6829  df-ov 6871  df-oprab 6872  df-mpt2 6873  df-of 7121  df-ofr 7122  df-om 7290  df-1st 7392  df-2nd 7393  df-wrecs 7636  df-recs 7698  df-rdg 7736  df-1o 7790  df-2o 7791  df-oadd 7794  df-er 7973  df-map 8088  df-pm 8089  df-en 8187  df-dom 8188  df-sdom 8189  df-fin 8190  df-sup 8581  df-inf 8582  df-oi 8648  df-card 9042  df-cda 9269  df-pnf 10355  df-mnf 10356  df-xr 10357  df-ltxr 10358  df-le 10359  df-sub 10547  df-neg 10548  df-div 10964  df-nn 11300  df-2 11358  df-3 11359  df-n0 11554  df-z 11638  df-uz 11899  df-q 12002  df-rp 12041  df-xadd 12157  df-ioo 12391  df-ico 12393  df-icc 12394  df-fz 12544  df-fzo 12684  df-fl 12811  df-seq 13019  df-exp 13078  df-hash 13332  df-cj 14056  df-re 14057  df-im 14058  df-sqrt 14192  df-abs 14193  df-clim 14436  df-sum 14634  df-xmet 19941  df-met 19942  df-ovol 23439  df-vol 23440  df-mbf 23594  df-itg1 23595  df-itg2 23596  df-itg 23598  df-0p 23645  df-ditg 23819
This theorem is referenced by:  ditgcl  23830  ditgswap  23831
  Copyright terms: Public domain W3C validator