| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ditgneg | Structured version Visualization version GIF version | ||
| Description: Value of the directed integral in the backward direction. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| Ref | Expression |
|---|---|
| ditgpos.1 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| ditgneg.2 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ditgneg.3 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Ref | Expression |
|---|---|
| ditgneg | ⊢ (𝜑 → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ditgpos.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 2 | 1 | biantrurd 532 | . . . 4 ⊢ (𝜑 → (𝐵 ≤ 𝐴 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
| 3 | ditgneg.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 4 | ditgneg.3 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 5 | 3, 4 | letri3d 11255 | . . . 4 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
| 6 | 2, 5 | bitr4d 282 | . . 3 ⊢ (𝜑 → (𝐵 ≤ 𝐴 ↔ 𝐴 = 𝐵)) |
| 7 | ditg0 25781 | . . . . 5 ⊢ ⨜[𝐵 → 𝐵]𝐶 d𝑥 = 0 | |
| 8 | neg0 11407 | . . . . 5 ⊢ -0 = 0 | |
| 9 | 7, 8 | eqtr4i 2757 | . . . 4 ⊢ ⨜[𝐵 → 𝐵]𝐶 d𝑥 = -0 |
| 10 | ditgeq2 25777 | . . . 4 ⊢ (𝐴 = 𝐵 → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = ⨜[𝐵 → 𝐵]𝐶 d𝑥) | |
| 11 | oveq1 7353 | . . . . . . . 8 ⊢ (𝐴 = 𝐵 → (𝐴(,)𝐵) = (𝐵(,)𝐵)) | |
| 12 | iooid 13273 | . . . . . . . 8 ⊢ (𝐵(,)𝐵) = ∅ | |
| 13 | 11, 12 | eqtrdi 2782 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → (𝐴(,)𝐵) = ∅) |
| 14 | itgeq1 25701 | . . . . . . 7 ⊢ ((𝐴(,)𝐵) = ∅ → ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫∅𝐶 d𝑥) | |
| 15 | 13, 14 | syl 17 | . . . . . 6 ⊢ (𝐴 = 𝐵 → ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫∅𝐶 d𝑥) |
| 16 | itg0 25708 | . . . . . 6 ⊢ ∫∅𝐶 d𝑥 = 0 | |
| 17 | 15, 16 | eqtrdi 2782 | . . . . 5 ⊢ (𝐴 = 𝐵 → ∫(𝐴(,)𝐵)𝐶 d𝑥 = 0) |
| 18 | 17 | negeqd 11354 | . . . 4 ⊢ (𝐴 = 𝐵 → -∫(𝐴(,)𝐵)𝐶 d𝑥 = -0) |
| 19 | 9, 10, 18 | 3eqtr4a 2792 | . . 3 ⊢ (𝐴 = 𝐵 → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥) |
| 20 | 6, 19 | biimtrdi 253 | . 2 ⊢ (𝜑 → (𝐵 ≤ 𝐴 → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥)) |
| 21 | df-ditg 25775 | . . 3 ⊢ ⨜[𝐵 → 𝐴]𝐶 d𝑥 = if(𝐵 ≤ 𝐴, ∫(𝐵(,)𝐴)𝐶 d𝑥, -∫(𝐴(,)𝐵)𝐶 d𝑥) | |
| 22 | iffalse 4481 | . . 3 ⊢ (¬ 𝐵 ≤ 𝐴 → if(𝐵 ≤ 𝐴, ∫(𝐵(,)𝐴)𝐶 d𝑥, -∫(𝐴(,)𝐵)𝐶 d𝑥) = -∫(𝐴(,)𝐵)𝐶 d𝑥) | |
| 23 | 21, 22 | eqtrid 2778 | . 2 ⊢ (¬ 𝐵 ≤ 𝐴 → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥) |
| 24 | 20, 23 | pm2.61d1 180 | 1 ⊢ (𝜑 → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∅c0 4280 ifcif 4472 class class class wbr 5089 (class class class)co 7346 ℝcr 11005 0cc0 11006 ≤ cle 11147 -cneg 11345 (,)cioo 13245 ∫citg 25546 ⨜cdit 25774 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-disj 5057 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-xadd 13012 df-ioo 13249 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-xmet 21284 df-met 21285 df-ovol 25392 df-vol 25393 df-mbf 25547 df-itg1 25548 df-itg2 25549 df-itg 25551 df-0p 25598 df-ditg 25775 |
| This theorem is referenced by: ditgcl 25786 ditgswap 25787 |
| Copyright terms: Public domain | W3C validator |