![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ditgneg | Structured version Visualization version GIF version |
Description: Value of the directed integral in the backward direction. (Contributed by Mario Carneiro, 13-Aug-2014.) |
Ref | Expression |
---|---|
ditgpos.1 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
ditgneg.2 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ditgneg.3 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
ditgneg | ⊢ (𝜑 → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ditgpos.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
2 | 1 | biantrurd 528 | . . . 4 ⊢ (𝜑 → (𝐵 ≤ 𝐴 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
3 | ditgneg.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | ditgneg.3 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
5 | 3, 4 | letri3d 10498 | . . . 4 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
6 | 2, 5 | bitr4d 274 | . . 3 ⊢ (𝜑 → (𝐵 ≤ 𝐴 ↔ 𝐴 = 𝐵)) |
7 | ditg0 24016 | . . . . 5 ⊢ ⨜[𝐵 → 𝐵]𝐶 d𝑥 = 0 | |
8 | neg0 10648 | . . . . 5 ⊢ -0 = 0 | |
9 | 7, 8 | eqtr4i 2852 | . . . 4 ⊢ ⨜[𝐵 → 𝐵]𝐶 d𝑥 = -0 |
10 | ditgeq2 24012 | . . . 4 ⊢ (𝐴 = 𝐵 → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = ⨜[𝐵 → 𝐵]𝐶 d𝑥) | |
11 | oveq1 6912 | . . . . . . . 8 ⊢ (𝐴 = 𝐵 → (𝐴(,)𝐵) = (𝐵(,)𝐵)) | |
12 | iooid 12491 | . . . . . . . 8 ⊢ (𝐵(,)𝐵) = ∅ | |
13 | 11, 12 | syl6eq 2877 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → (𝐴(,)𝐵) = ∅) |
14 | itgeq1 23938 | . . . . . . 7 ⊢ ((𝐴(,)𝐵) = ∅ → ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫∅𝐶 d𝑥) | |
15 | 13, 14 | syl 17 | . . . . . 6 ⊢ (𝐴 = 𝐵 → ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫∅𝐶 d𝑥) |
16 | itg0 23945 | . . . . . 6 ⊢ ∫∅𝐶 d𝑥 = 0 | |
17 | 15, 16 | syl6eq 2877 | . . . . 5 ⊢ (𝐴 = 𝐵 → ∫(𝐴(,)𝐵)𝐶 d𝑥 = 0) |
18 | 17 | negeqd 10595 | . . . 4 ⊢ (𝐴 = 𝐵 → -∫(𝐴(,)𝐵)𝐶 d𝑥 = -0) |
19 | 9, 10, 18 | 3eqtr4a 2887 | . . 3 ⊢ (𝐴 = 𝐵 → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥) |
20 | 6, 19 | syl6bi 245 | . 2 ⊢ (𝜑 → (𝐵 ≤ 𝐴 → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥)) |
21 | df-ditg 24010 | . . 3 ⊢ ⨜[𝐵 → 𝐴]𝐶 d𝑥 = if(𝐵 ≤ 𝐴, ∫(𝐵(,)𝐴)𝐶 d𝑥, -∫(𝐴(,)𝐵)𝐶 d𝑥) | |
22 | iffalse 4315 | . . 3 ⊢ (¬ 𝐵 ≤ 𝐴 → if(𝐵 ≤ 𝐴, ∫(𝐵(,)𝐴)𝐶 d𝑥, -∫(𝐴(,)𝐵)𝐶 d𝑥) = -∫(𝐴(,)𝐵)𝐶 d𝑥) | |
23 | 21, 22 | syl5eq 2873 | . 2 ⊢ (¬ 𝐵 ≤ 𝐴 → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥) |
24 | 20, 23 | pm2.61d1 173 | 1 ⊢ (𝜑 → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ∅c0 4144 ifcif 4306 class class class wbr 4873 (class class class)co 6905 ℝcr 10251 0cc0 10252 ≤ cle 10392 -cneg 10586 (,)cioo 12463 ∫citg 23784 ⨜cdit 24009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-inf2 8815 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 ax-pre-sup 10330 ax-addf 10331 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-fal 1670 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-disj 4842 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-se 5302 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-isom 6132 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-of 7157 df-ofr 7158 df-om 7327 df-1st 7428 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-2o 7827 df-oadd 7830 df-er 8009 df-map 8124 df-pm 8125 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-sup 8617 df-inf 8618 df-oi 8684 df-card 9078 df-cda 9305 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-div 11010 df-nn 11351 df-2 11414 df-3 11415 df-n0 11619 df-z 11705 df-uz 11969 df-q 12072 df-rp 12113 df-xadd 12233 df-ioo 12467 df-ico 12469 df-icc 12470 df-fz 12620 df-fzo 12761 df-fl 12888 df-seq 13096 df-exp 13155 df-hash 13411 df-cj 14216 df-re 14217 df-im 14218 df-sqrt 14352 df-abs 14353 df-clim 14596 df-sum 14794 df-xmet 20099 df-met 20100 df-ovol 23630 df-vol 23631 df-mbf 23785 df-itg1 23786 df-itg2 23787 df-itg 23789 df-0p 23836 df-ditg 24010 |
This theorem is referenced by: ditgcl 24021 ditgswap 24022 |
Copyright terms: Public domain | W3C validator |