![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ditgneg | Structured version Visualization version GIF version |
Description: Value of the directed integral in the backward direction. (Contributed by Mario Carneiro, 13-Aug-2014.) |
Ref | Expression |
---|---|
ditgpos.1 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
ditgneg.2 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ditgneg.3 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
ditgneg | ⊢ (𝜑 → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ditgpos.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
2 | 1 | biantrurd 532 | . . . 4 ⊢ (𝜑 → (𝐵 ≤ 𝐴 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
3 | ditgneg.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | ditgneg.3 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
5 | 3, 4 | letri3d 11432 | . . . 4 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
6 | 2, 5 | bitr4d 282 | . . 3 ⊢ (𝜑 → (𝐵 ≤ 𝐴 ↔ 𝐴 = 𝐵)) |
7 | ditg0 25908 | . . . . 5 ⊢ ⨜[𝐵 → 𝐵]𝐶 d𝑥 = 0 | |
8 | neg0 11582 | . . . . 5 ⊢ -0 = 0 | |
9 | 7, 8 | eqtr4i 2771 | . . . 4 ⊢ ⨜[𝐵 → 𝐵]𝐶 d𝑥 = -0 |
10 | ditgeq2 25904 | . . . 4 ⊢ (𝐴 = 𝐵 → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = ⨜[𝐵 → 𝐵]𝐶 d𝑥) | |
11 | oveq1 7455 | . . . . . . . 8 ⊢ (𝐴 = 𝐵 → (𝐴(,)𝐵) = (𝐵(,)𝐵)) | |
12 | iooid 13435 | . . . . . . . 8 ⊢ (𝐵(,)𝐵) = ∅ | |
13 | 11, 12 | eqtrdi 2796 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → (𝐴(,)𝐵) = ∅) |
14 | itgeq1 25828 | . . . . . . 7 ⊢ ((𝐴(,)𝐵) = ∅ → ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫∅𝐶 d𝑥) | |
15 | 13, 14 | syl 17 | . . . . . 6 ⊢ (𝐴 = 𝐵 → ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫∅𝐶 d𝑥) |
16 | itg0 25835 | . . . . . 6 ⊢ ∫∅𝐶 d𝑥 = 0 | |
17 | 15, 16 | eqtrdi 2796 | . . . . 5 ⊢ (𝐴 = 𝐵 → ∫(𝐴(,)𝐵)𝐶 d𝑥 = 0) |
18 | 17 | negeqd 11530 | . . . 4 ⊢ (𝐴 = 𝐵 → -∫(𝐴(,)𝐵)𝐶 d𝑥 = -0) |
19 | 9, 10, 18 | 3eqtr4a 2806 | . . 3 ⊢ (𝐴 = 𝐵 → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥) |
20 | 6, 19 | biimtrdi 253 | . 2 ⊢ (𝜑 → (𝐵 ≤ 𝐴 → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥)) |
21 | df-ditg 25902 | . . 3 ⊢ ⨜[𝐵 → 𝐴]𝐶 d𝑥 = if(𝐵 ≤ 𝐴, ∫(𝐵(,)𝐴)𝐶 d𝑥, -∫(𝐴(,)𝐵)𝐶 d𝑥) | |
22 | iffalse 4557 | . . 3 ⊢ (¬ 𝐵 ≤ 𝐴 → if(𝐵 ≤ 𝐴, ∫(𝐵(,)𝐴)𝐶 d𝑥, -∫(𝐴(,)𝐵)𝐶 d𝑥) = -∫(𝐴(,)𝐵)𝐶 d𝑥) | |
23 | 21, 22 | eqtrid 2792 | . 2 ⊢ (¬ 𝐵 ≤ 𝐴 → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥) |
24 | 20, 23 | pm2.61d1 180 | 1 ⊢ (𝜑 → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∅c0 4352 ifcif 4548 class class class wbr 5166 (class class class)co 7448 ℝcr 11183 0cc0 11184 ≤ cle 11325 -cneg 11521 (,)cioo 13407 ∫citg 25672 ⨜cdit 25901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-disj 5134 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-ofr 7715 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-oi 9579 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-rp 13058 df-xadd 13176 df-ioo 13411 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 df-xmet 21380 df-met 21381 df-ovol 25518 df-vol 25519 df-mbf 25673 df-itg1 25674 df-itg2 25675 df-itg 25677 df-0p 25724 df-ditg 25902 |
This theorem is referenced by: ditgcl 25913 ditgswap 25914 |
Copyright terms: Public domain | W3C validator |