![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ditg0 | Structured version Visualization version GIF version |
Description: Value of the directed integral from a point to itself. (Contributed by Mario Carneiro, 13-Aug-2014.) |
Ref | Expression |
---|---|
ditg0 | ⊢ ⨜[𝐴 → 𝐴]𝐵 d𝑥 = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ditg 25905 | . 2 ⊢ ⨜[𝐴 → 𝐴]𝐵 d𝑥 = if(𝐴 ≤ 𝐴, ∫(𝐴(,)𝐴)𝐵 d𝑥, -∫(𝐴(,)𝐴)𝐵 d𝑥) | |
2 | iooid 13418 | . . . . . 6 ⊢ (𝐴(,)𝐴) = ∅ | |
3 | itgeq1 25831 | . . . . . 6 ⊢ ((𝐴(,)𝐴) = ∅ → ∫(𝐴(,)𝐴)𝐵 d𝑥 = ∫∅𝐵 d𝑥) | |
4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ ∫(𝐴(,)𝐴)𝐵 d𝑥 = ∫∅𝐵 d𝑥 |
5 | itg0 25838 | . . . . 5 ⊢ ∫∅𝐵 d𝑥 = 0 | |
6 | 4, 5 | eqtri 2764 | . . . 4 ⊢ ∫(𝐴(,)𝐴)𝐵 d𝑥 = 0 |
7 | 6 | negeqi 11505 | . . . . 5 ⊢ -∫(𝐴(,)𝐴)𝐵 d𝑥 = -0 |
8 | neg0 11559 | . . . . 5 ⊢ -0 = 0 | |
9 | 7, 8 | eqtri 2764 | . . . 4 ⊢ -∫(𝐴(,)𝐴)𝐵 d𝑥 = 0 |
10 | ifeq12 4550 | . . . 4 ⊢ ((∫(𝐴(,)𝐴)𝐵 d𝑥 = 0 ∧ -∫(𝐴(,)𝐴)𝐵 d𝑥 = 0) → if(𝐴 ≤ 𝐴, ∫(𝐴(,)𝐴)𝐵 d𝑥, -∫(𝐴(,)𝐴)𝐵 d𝑥) = if(𝐴 ≤ 𝐴, 0, 0)) | |
11 | 6, 9, 10 | mp2an 692 | . . 3 ⊢ if(𝐴 ≤ 𝐴, ∫(𝐴(,)𝐴)𝐵 d𝑥, -∫(𝐴(,)𝐴)𝐵 d𝑥) = if(𝐴 ≤ 𝐴, 0, 0) |
12 | ifid 4572 | . . 3 ⊢ if(𝐴 ≤ 𝐴, 0, 0) = 0 | |
13 | 11, 12 | eqtri 2764 | . 2 ⊢ if(𝐴 ≤ 𝐴, ∫(𝐴(,)𝐴)𝐵 d𝑥, -∫(𝐴(,)𝐴)𝐵 d𝑥) = 0 |
14 | 1, 13 | eqtri 2764 | 1 ⊢ ⨜[𝐴 → 𝐴]𝐵 d𝑥 = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∅c0 4340 ifcif 4532 class class class wbr 5149 (class class class)co 7435 0cc0 11159 ≤ cle 11300 -cneg 11497 (,)cioo 13390 ∫citg 25675 ⨜cdit 25904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-inf2 9685 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 ax-pre-sup 11237 ax-addf 11238 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-int 4953 df-iun 4999 df-disj 5117 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-se 5643 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-isom 6575 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-of 7701 df-ofr 7702 df-om 7892 df-1st 8019 df-2nd 8020 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-1o 8511 df-2o 8512 df-er 8750 df-map 8873 df-pm 8874 df-en 8991 df-dom 8992 df-sdom 8993 df-fin 8994 df-sup 9486 df-inf 9487 df-oi 9554 df-dju 9945 df-card 9983 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-div 11925 df-nn 12271 df-2 12333 df-3 12334 df-n0 12531 df-z 12618 df-uz 12883 df-q 12995 df-rp 13039 df-xadd 13159 df-ioo 13394 df-ico 13396 df-icc 13397 df-fz 13551 df-fzo 13698 df-fl 13835 df-seq 14046 df-exp 14106 df-hash 14373 df-cj 15141 df-re 15142 df-im 15143 df-sqrt 15277 df-abs 15278 df-clim 15527 df-sum 15726 df-xmet 21381 df-met 21382 df-ovol 25521 df-vol 25522 df-mbf 25676 df-itg1 25677 df-itg2 25678 df-itg 25680 df-0p 25727 df-ditg 25905 |
This theorem is referenced by: ditgneg 25915 |
Copyright terms: Public domain | W3C validator |