MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditg0 Structured version   Visualization version   GIF version

Theorem ditg0 25726
Description: Value of the directed integral from a point to itself. (Contributed by Mario Carneiro, 13-Aug-2014.)
Assertion
Ref Expression
ditg0 ⨜[𝐴𝐴]𝐵 d𝑥 = 0
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ditg0
StepHypRef Expression
1 df-ditg 25720 . 2 ⨜[𝐴𝐴]𝐵 d𝑥 = if(𝐴𝐴, ∫(𝐴(,)𝐴)𝐵 d𝑥, -∫(𝐴(,)𝐴)𝐵 d𝑥)
2 iooid 13353 . . . . . 6 (𝐴(,)𝐴) = ∅
3 itgeq1 25646 . . . . . 6 ((𝐴(,)𝐴) = ∅ → ∫(𝐴(,)𝐴)𝐵 d𝑥 = ∫∅𝐵 d𝑥)
42, 3ax-mp 5 . . . . 5 ∫(𝐴(,)𝐴)𝐵 d𝑥 = ∫∅𝐵 d𝑥
5 itg0 25653 . . . . 5 ∫∅𝐵 d𝑥 = 0
64, 5eqtri 2752 . . . 4 ∫(𝐴(,)𝐴)𝐵 d𝑥 = 0
76negeqi 11452 . . . . 5 -∫(𝐴(,)𝐴)𝐵 d𝑥 = -0
8 neg0 11505 . . . . 5 -0 = 0
97, 8eqtri 2752 . . . 4 -∫(𝐴(,)𝐴)𝐵 d𝑥 = 0
10 ifeq12 4539 . . . 4 ((∫(𝐴(,)𝐴)𝐵 d𝑥 = 0 ∧ -∫(𝐴(,)𝐴)𝐵 d𝑥 = 0) → if(𝐴𝐴, ∫(𝐴(,)𝐴)𝐵 d𝑥, -∫(𝐴(,)𝐴)𝐵 d𝑥) = if(𝐴𝐴, 0, 0))
116, 9, 10mp2an 689 . . 3 if(𝐴𝐴, ∫(𝐴(,)𝐴)𝐵 d𝑥, -∫(𝐴(,)𝐴)𝐵 d𝑥) = if(𝐴𝐴, 0, 0)
12 ifid 4561 . . 3 if(𝐴𝐴, 0, 0) = 0
1311, 12eqtri 2752 . 2 if(𝐴𝐴, ∫(𝐴(,)𝐴)𝐵 d𝑥, -∫(𝐴(,)𝐴)𝐵 d𝑥) = 0
141, 13eqtri 2752 1 ⨜[𝐴𝐴]𝐵 d𝑥 = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  c0 4315  ifcif 4521   class class class wbr 5139  (class class class)co 7402  0cc0 11107  cle 11248  -cneg 11444  (,)cioo 13325  citg 25491  cdit 25719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-inf2 9633  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185  ax-addf 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-disj 5105  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-isom 6543  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-of 7664  df-ofr 7665  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8700  df-map 8819  df-pm 8820  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-sup 9434  df-inf 9435  df-oi 9502  df-dju 9893  df-card 9931  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-n0 12472  df-z 12558  df-uz 12822  df-q 12932  df-rp 12976  df-xadd 13094  df-ioo 13329  df-ico 13331  df-icc 13332  df-fz 13486  df-fzo 13629  df-fl 13758  df-seq 13968  df-exp 14029  df-hash 14292  df-cj 15048  df-re 15049  df-im 15050  df-sqrt 15184  df-abs 15185  df-clim 15434  df-sum 15635  df-xmet 21227  df-met 21228  df-ovol 25337  df-vol 25338  df-mbf 25492  df-itg1 25493  df-itg2 25494  df-itg 25496  df-0p 25543  df-ditg 25720
This theorem is referenced by:  ditgneg  25730
  Copyright terms: Public domain W3C validator