MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgex Structured version   Visualization version   GIF version

Theorem ditgex 25753
Description: A directed integral is a set. (Contributed by Mario Carneiro, 7-Sep-2014.)
Assertion
Ref Expression
ditgex ⨜[𝐴𝐵]𝐶 d𝑥 ∈ V

Proof of Theorem ditgex
StepHypRef Expression
1 df-ditg 25748 . 2 ⨜[𝐴𝐵]𝐶 d𝑥 = if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥)
2 itgex 25671 . . 3 ∫(𝐴(,)𝐵)𝐶 d𝑥 ∈ V
3 negex 11419 . . 3 -∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ V
42, 3ifex 4539 . 2 if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) ∈ V
51, 4eqeltri 2824 1 ⨜[𝐴𝐵]𝐶 d𝑥 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3447  ifcif 4488   class class class wbr 5107  (class class class)co 7387  cle 11209  -cneg 11406  (,)cioo 13306  citg 25519  cdit 25747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-uni 4872  df-iota 6464  df-fv 6519  df-ov 7390  df-neg 11408  df-sum 15653  df-itg 25524  df-ditg 25748
This theorem is referenced by:  itgsubstlem  25955
  Copyright terms: Public domain W3C validator