![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ditgex | Structured version Visualization version GIF version |
Description: A directed integral is a set. (Contributed by Mario Carneiro, 7-Sep-2014.) |
Ref | Expression |
---|---|
ditgex | ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ditg 25905 | . 2 ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 = if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) | |
2 | itgex 25828 | . . 3 ⊢ ∫(𝐴(,)𝐵)𝐶 d𝑥 ∈ V | |
3 | negex 11510 | . . 3 ⊢ -∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ V | |
4 | 2, 3 | ifex 4582 | . 2 ⊢ if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) ∈ V |
5 | 1, 4 | eqeltri 2836 | 1 ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 Vcvv 3479 ifcif 4532 class class class wbr 5149 (class class class)co 7435 ≤ cle 11300 -cneg 11497 (,)cioo 13390 ∫citg 25675 ⨜cdit 25904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-nul 5313 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1541 df-fal 1551 df-ex 1778 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-v 3481 df-dif 3967 df-un 3969 df-ss 3981 df-nul 4341 df-if 4533 df-sn 4633 df-pr 4635 df-uni 4914 df-iota 6519 df-fv 6574 df-ov 7438 df-neg 11499 df-sum 15726 df-itg 25680 df-ditg 25905 |
This theorem is referenced by: itgsubstlem 26112 |
Copyright terms: Public domain | W3C validator |