MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgex Structured version   Visualization version   GIF version

Theorem ditgex 25781
Description: A directed integral is a set. (Contributed by Mario Carneiro, 7-Sep-2014.)
Assertion
Ref Expression
ditgex ⨜[𝐴𝐵]𝐶 d𝑥 ∈ V

Proof of Theorem ditgex
StepHypRef Expression
1 df-ditg 25776 . 2 ⨜[𝐴𝐵]𝐶 d𝑥 = if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥)
2 itgex 25699 . . 3 ∫(𝐴(,)𝐵)𝐶 d𝑥 ∈ V
3 negex 11365 . . 3 -∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ V
42, 3ifex 4525 . 2 if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) ∈ V
51, 4eqeltri 2829 1 ⨜[𝐴𝐵]𝐶 d𝑥 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2113  Vcvv 3437  ifcif 4474   class class class wbr 5093  (class class class)co 7352  cle 11154  -cneg 11352  (,)cioo 13247  citg 25547  cdit 25775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5246
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-uni 4859  df-iota 6442  df-fv 6494  df-ov 7355  df-neg 11354  df-sum 15596  df-itg 25552  df-ditg 25776
This theorem is referenced by:  itgsubstlem  25983
  Copyright terms: Public domain W3C validator