MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgex Structured version   Visualization version   GIF version

Theorem ditgex 24921
Description: A directed integral is a set. (Contributed by Mario Carneiro, 7-Sep-2014.)
Assertion
Ref Expression
ditgex ⨜[𝐴𝐵]𝐶 d𝑥 ∈ V

Proof of Theorem ditgex
StepHypRef Expression
1 df-ditg 24916 . 2 ⨜[𝐴𝐵]𝐶 d𝑥 = if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥)
2 itgex 24840 . . 3 ∫(𝐴(,)𝐵)𝐶 d𝑥 ∈ V
3 negex 11149 . . 3 -∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ V
42, 3ifex 4506 . 2 if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) ∈ V
51, 4eqeltri 2835 1 ⨜[𝐴𝐵]𝐶 d𝑥 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Vcvv 3422  ifcif 4456   class class class wbr 5070  (class class class)co 7255  cle 10941  -cneg 11136  (,)cioo 13008  citg 24687  cdit 24915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-uni 4837  df-iota 6376  df-fv 6426  df-ov 7258  df-neg 11138  df-sum 15326  df-itg 24692  df-ditg 24916
This theorem is referenced by:  itgsubstlem  25117
  Copyright terms: Public domain W3C validator