Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ditgex | Structured version Visualization version GIF version |
Description: A directed integral is a set. (Contributed by Mario Carneiro, 7-Sep-2014.) |
Ref | Expression |
---|---|
ditgex | ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ditg 24916 | . 2 ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 = if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) | |
2 | itgex 24840 | . . 3 ⊢ ∫(𝐴(,)𝐵)𝐶 d𝑥 ∈ V | |
3 | negex 11149 | . . 3 ⊢ -∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ V | |
4 | 2, 3 | ifex 4506 | . 2 ⊢ if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) ∈ V |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3422 ifcif 4456 class class class wbr 5070 (class class class)co 7255 ≤ cle 10941 -cneg 11136 (,)cioo 13008 ∫citg 24687 ⨜cdit 24915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-uni 4837 df-iota 6376 df-fv 6426 df-ov 7258 df-neg 11138 df-sum 15326 df-itg 24692 df-ditg 24916 |
This theorem is referenced by: itgsubstlem 25117 |
Copyright terms: Public domain | W3C validator |