| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ditgex | Structured version Visualization version GIF version | ||
| Description: A directed integral is a set. (Contributed by Mario Carneiro, 7-Sep-2014.) |
| Ref | Expression |
|---|---|
| ditgex | ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ditg 25764 | . 2 ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 = if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) | |
| 2 | itgex 25687 | . . 3 ⊢ ∫(𝐴(,)𝐵)𝐶 d𝑥 ∈ V | |
| 3 | negex 11379 | . . 3 ⊢ -∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ V | |
| 4 | 2, 3 | ifex 4529 | . 2 ⊢ if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) ∈ V |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3438 ifcif 4478 class class class wbr 5095 (class class class)co 7353 ≤ cle 11169 -cneg 11366 (,)cioo 13266 ∫citg 25535 ⨜cdit 25763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-uni 4862 df-iota 6442 df-fv 6494 df-ov 7356 df-neg 11368 df-sum 15612 df-itg 25540 df-ditg 25764 |
| This theorem is referenced by: itgsubstlem 25971 |
| Copyright terms: Public domain | W3C validator |