MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgex Structured version   Visualization version   GIF version

Theorem ditgex 25016
Description: A directed integral is a set. (Contributed by Mario Carneiro, 7-Sep-2014.)
Assertion
Ref Expression
ditgex ⨜[𝐴𝐵]𝐶 d𝑥 ∈ V

Proof of Theorem ditgex
StepHypRef Expression
1 df-ditg 25011 . 2 ⨜[𝐴𝐵]𝐶 d𝑥 = if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥)
2 itgex 24935 . . 3 ∫(𝐴(,)𝐵)𝐶 d𝑥 ∈ V
3 negex 11219 . . 3 -∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ V
42, 3ifex 4509 . 2 if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) ∈ V
51, 4eqeltri 2835 1 ⨜[𝐴𝐵]𝐶 d𝑥 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  Vcvv 3432  ifcif 4459   class class class wbr 5074  (class class class)co 7275  cle 11010  -cneg 11206  (,)cioo 13079  citg 24782  cdit 25010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-uni 4840  df-iota 6391  df-fv 6441  df-ov 7278  df-neg 11208  df-sum 15398  df-itg 24787  df-ditg 25011
This theorem is referenced by:  itgsubstlem  25212
  Copyright terms: Public domain W3C validator