![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ditgex | Structured version Visualization version GIF version |
Description: A directed integral is a set. (Contributed by Mario Carneiro, 7-Sep-2014.) |
Ref | Expression |
---|---|
ditgex | ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ditg 25904 | . 2 ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 = if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) | |
2 | itgex 25827 | . . 3 ⊢ ∫(𝐴(,)𝐵)𝐶 d𝑥 ∈ V | |
3 | negex 11536 | . . 3 ⊢ -∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ V | |
4 | 2, 3 | ifex 4598 | . 2 ⊢ if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) ∈ V |
5 | 1, 4 | eqeltri 2840 | 1 ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 ifcif 4548 class class class wbr 5166 (class class class)co 7450 ≤ cle 11327 -cneg 11523 (,)cioo 13409 ∫citg 25674 ⨜cdit 25903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-uni 4932 df-iota 6527 df-fv 6583 df-ov 7453 df-neg 11525 df-sum 15737 df-itg 25679 df-ditg 25904 |
This theorem is referenced by: itgsubstlem 26111 |
Copyright terms: Public domain | W3C validator |