Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ditgex | Structured version Visualization version GIF version |
Description: A directed integral is a set. (Contributed by Mario Carneiro, 7-Sep-2014.) |
Ref | Expression |
---|---|
ditgex | ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ditg 25109 | . 2 ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 = if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) | |
2 | itgex 25033 | . . 3 ⊢ ∫(𝐴(,)𝐵)𝐶 d𝑥 ∈ V | |
3 | negex 11312 | . . 3 ⊢ -∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ V | |
4 | 2, 3 | ifex 4522 | . 2 ⊢ if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) ∈ V |
5 | 1, 4 | eqeltri 2833 | 1 ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 Vcvv 3441 ifcif 4472 class class class wbr 5089 (class class class)co 7329 ≤ cle 11103 -cneg 11299 (,)cioo 13172 ∫citg 24880 ⨜cdit 25108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-nul 5247 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-uni 4852 df-iota 6425 df-fv 6481 df-ov 7332 df-neg 11301 df-sum 15489 df-itg 24885 df-ditg 25109 |
This theorem is referenced by: itgsubstlem 25310 |
Copyright terms: Public domain | W3C validator |