MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  redivcli Structured version   Visualization version   GIF version

Theorem redivcli 11410
Description: Closure law for division of reals. (Contributed by NM, 9-May-1999.)
Hypotheses
Ref Expression
redivcl.1 𝐴 ∈ ℝ
redivcl.2 𝐵 ∈ ℝ
redivcl.3 𝐵 ≠ 0
Assertion
Ref Expression
redivcli (𝐴 / 𝐵) ∈ ℝ

Proof of Theorem redivcli
StepHypRef Expression
1 redivcl.3 . 2 𝐵 ≠ 0
2 redivcl.1 . . 3 𝐴 ∈ ℝ
3 redivcl.2 . . 3 𝐵 ∈ ℝ
42, 3redivclzi 11409 . 2 (𝐵 ≠ 0 → (𝐴 / 𝐵) ∈ ℝ)
51, 4ax-mp 5 1 (𝐴 / 𝐵) ∈ ℝ
Colors of variables: wff setvar class
Syntax hints:  wcel 2113  wne 3019  (class class class)co 7159  cr 10539  0cc0 10540   / cdiv 11300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-po 5477  df-so 5478  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301
This theorem is referenced by:  0.999...  15240  cos2bnd  15544  cos01gt0  15547  flodddiv4  15767  sincos4thpi  25102  sincos6thpi  25104  pige3ALT  25108  log2le1  25531  basellem8  25668  basellem9  25669  ppiub  25783  bposlem7  25869  bposlem8  25870  bposlem9  25871  chebbnd1lem3  26050  dp2lt10  30564  dp2ltsuc  30566  dp2ltc  30567  dplti  30585  threehalves  30595  hgt750lem  31926  isosctrlem1ALT  41274  stoweidlem26  42318  fourierswlem  42522
  Copyright terms: Public domain W3C validator