MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divcn Structured version   Visualization version   GIF version

Theorem divcn 23473
Description: Complex number division is a continuous function, when the second argument is nonzero. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
addcn.j 𝐽 = (TopOpen‘ℂfld)
divcn.k 𝐾 = (𝐽t (ℂ ∖ {0}))
Assertion
Ref Expression
divcn / ∈ ((𝐽 ×t 𝐾) Cn 𝐽)

Proof of Theorem divcn
Dummy variables 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-div 11287 . . 3 / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
2 eldifsn 4680 . . . . 5 (𝑦 ∈ (ℂ ∖ {0}) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
3 divval 11289 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (𝑥 / 𝑦) = (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
4 divrec 11303 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (𝑥 / 𝑦) = (𝑥 · (1 / 𝑦)))
53, 4eqtr3d 2835 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) = (𝑥 · (1 / 𝑦)))
653expb 1117 . . . . 5 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) = (𝑥 · (1 / 𝑦)))
72, 6sylan2b 596 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) = (𝑥 · (1 / 𝑦)))
87mpoeq3ia 7211 . . 3 (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · (1 / 𝑦)))
91, 8eqtri 2821 . 2 / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · (1 / 𝑦)))
10 addcn.j . . . . . 6 𝐽 = (TopOpen‘ℂfld)
1110cnfldtopon 23388 . . . . 5 𝐽 ∈ (TopOn‘ℂ)
1211a1i 11 . . . 4 (⊤ → 𝐽 ∈ (TopOn‘ℂ))
13 divcn.k . . . . 5 𝐾 = (𝐽t (ℂ ∖ {0}))
14 difss 4059 . . . . . 6 (ℂ ∖ {0}) ⊆ ℂ
15 resttopon 21766 . . . . . 6 ((𝐽 ∈ (TopOn‘ℂ) ∧ (ℂ ∖ {0}) ⊆ ℂ) → (𝐽t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0})))
1612, 14, 15sylancl 589 . . . . 5 (⊤ → (𝐽t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0})))
1713, 16eqeltrid 2894 . . . 4 (⊤ → 𝐾 ∈ (TopOn‘(ℂ ∖ {0})))
1812, 17cnmpt1st 22273 . . . 4 (⊤ → (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ 𝑥) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
1912, 17cnmpt2nd 22274 . . . . 5 (⊤ → (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ 𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
20 eqid 2798 . . . . . . . 8 (𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)) = (𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))
21 eldifsn 4680 . . . . . . . . 9 (𝑧 ∈ (ℂ ∖ {0}) ↔ (𝑧 ∈ ℂ ∧ 𝑧 ≠ 0))
22 reccl 11294 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ 𝑧 ≠ 0) → (1 / 𝑧) ∈ ℂ)
2321, 22sylbi 220 . . . . . . . 8 (𝑧 ∈ (ℂ ∖ {0}) → (1 / 𝑧) ∈ ℂ)
2420, 23fmpti 6853 . . . . . . 7 (𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)):(ℂ ∖ {0})⟶ℂ
25 eqid 2798 . . . . . . . . . 10 (if(1 ≤ ((abs‘𝑥) · 𝑦), 1, ((abs‘𝑥) · 𝑦)) · ((abs‘𝑥) / 2)) = (if(1 ≤ ((abs‘𝑥) · 𝑦), 1, ((abs‘𝑥) · 𝑦)) · ((abs‘𝑥) / 2))
2625reccn2 14945 . . . . . . . . 9 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ ℝ+) → ∃𝑢 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((abs‘(𝑤𝑥)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑥))) < 𝑦))
27 ovres 7294 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ (ℂ ∖ {0})) → (𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) = (𝑥(abs ∘ − )𝑤))
28 eldifi 4054 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ∈ ℂ)
29 eldifi 4054 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (ℂ ∖ {0}) → 𝑤 ∈ ℂ)
30 eqid 2798 . . . . . . . . . . . . . . . . . 18 (abs ∘ − ) = (abs ∘ − )
3130cnmetdval 23376 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑥(abs ∘ − )𝑤) = (abs‘(𝑥𝑤)))
32 abssub 14678 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (abs‘(𝑥𝑤)) = (abs‘(𝑤𝑥)))
3331, 32eqtrd 2833 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑥(abs ∘ − )𝑤) = (abs‘(𝑤𝑥)))
3428, 29, 33syl2an 598 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ (ℂ ∖ {0})) → (𝑥(abs ∘ − )𝑤) = (abs‘(𝑤𝑥)))
3527, 34eqtrd 2833 . . . . . . . . . . . . . 14 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ (ℂ ∖ {0})) → (𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) = (abs‘(𝑤𝑥)))
3635breq1d 5040 . . . . . . . . . . . . 13 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ (ℂ ∖ {0})) → ((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 ↔ (abs‘(𝑤𝑥)) < 𝑢))
37 oveq2 7143 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑥 → (1 / 𝑧) = (1 / 𝑥))
38 ovex 7168 . . . . . . . . . . . . . . . . 17 (1 / 𝑥) ∈ V
3937, 20, 38fvmpt 6745 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (ℂ ∖ {0}) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥) = (1 / 𝑥))
40 oveq2 7143 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑤 → (1 / 𝑧) = (1 / 𝑤))
41 ovex 7168 . . . . . . . . . . . . . . . . 17 (1 / 𝑤) ∈ V
4240, 20, 41fvmpt 6745 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (ℂ ∖ {0}) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤) = (1 / 𝑤))
4339, 42oveqan12d 7154 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ (ℂ ∖ {0})) → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) = ((1 / 𝑥)(abs ∘ − )(1 / 𝑤)))
44 eldifsn 4680 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
45 reccl 11294 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ ℂ)
4644, 45sylbi 220 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (ℂ ∖ {0}) → (1 / 𝑥) ∈ ℂ)
47 eldifsn 4680 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ (ℂ ∖ {0}) ↔ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0))
48 reccl 11294 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) → (1 / 𝑤) ∈ ℂ)
4947, 48sylbi 220 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (ℂ ∖ {0}) → (1 / 𝑤) ∈ ℂ)
5030cnmetdval 23376 . . . . . . . . . . . . . . . . 17 (((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑤) ∈ ℂ) → ((1 / 𝑥)(abs ∘ − )(1 / 𝑤)) = (abs‘((1 / 𝑥) − (1 / 𝑤))))
51 abssub 14678 . . . . . . . . . . . . . . . . 17 (((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑤) ∈ ℂ) → (abs‘((1 / 𝑥) − (1 / 𝑤))) = (abs‘((1 / 𝑤) − (1 / 𝑥))))
5250, 51eqtrd 2833 . . . . . . . . . . . . . . . 16 (((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑤) ∈ ℂ) → ((1 / 𝑥)(abs ∘ − )(1 / 𝑤)) = (abs‘((1 / 𝑤) − (1 / 𝑥))))
5346, 49, 52syl2an 598 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ (ℂ ∖ {0})) → ((1 / 𝑥)(abs ∘ − )(1 / 𝑤)) = (abs‘((1 / 𝑤) − (1 / 𝑥))))
5443, 53eqtrd 2833 . . . . . . . . . . . . . 14 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ (ℂ ∖ {0})) → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) = (abs‘((1 / 𝑤) − (1 / 𝑥))))
5554breq1d 5040 . . . . . . . . . . . . 13 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ (ℂ ∖ {0})) → ((((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) < 𝑦 ↔ (abs‘((1 / 𝑤) − (1 / 𝑥))) < 𝑦))
5636, 55imbi12d 348 . . . . . . . . . . . 12 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ (ℂ ∖ {0})) → (((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) < 𝑦) ↔ ((abs‘(𝑤𝑥)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑥))) < 𝑦)))
5756ralbidva 3161 . . . . . . . . . . 11 (𝑥 ∈ (ℂ ∖ {0}) → (∀𝑤 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) < 𝑦) ↔ ∀𝑤 ∈ (ℂ ∖ {0})((abs‘(𝑤𝑥)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑥))) < 𝑦)))
5857rexbidv 3256 . . . . . . . . . 10 (𝑥 ∈ (ℂ ∖ {0}) → (∃𝑢 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) < 𝑦) ↔ ∃𝑢 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((abs‘(𝑤𝑥)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑥))) < 𝑦)))
5958adantr 484 . . . . . . . . 9 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ ℝ+) → (∃𝑢 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) < 𝑦) ↔ ∃𝑢 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((abs‘(𝑤𝑥)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑥))) < 𝑦)))
6026, 59mpbird 260 . . . . . . . 8 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ ℝ+) → ∃𝑢 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) < 𝑦))
6160rgen2 3168 . . . . . . 7 𝑥 ∈ (ℂ ∖ {0})∀𝑦 ∈ ℝ+𝑢 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) < 𝑦)
62 cnxmet 23378 . . . . . . . . 9 (abs ∘ − ) ∈ (∞Met‘ℂ)
63 xmetres2 22968 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (ℂ ∖ {0}) ⊆ ℂ) → ((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))) ∈ (∞Met‘(ℂ ∖ {0})))
6462, 14, 63mp2an 691 . . . . . . . 8 ((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))) ∈ (∞Met‘(ℂ ∖ {0}))
65 eqid 2798 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))) = ((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))
6610cnfldtopn 23387 . . . . . . . . . . . 12 𝐽 = (MetOpen‘(abs ∘ − ))
67 eqid 2798 . . . . . . . . . . . 12 (MetOpen‘((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))) = (MetOpen‘((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))))
6865, 66, 67metrest 23131 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (ℂ ∖ {0}) ⊆ ℂ) → (𝐽t (ℂ ∖ {0})) = (MetOpen‘((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))))
6962, 14, 68mp2an 691 . . . . . . . . . 10 (𝐽t (ℂ ∖ {0})) = (MetOpen‘((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))))
7013, 69eqtri 2821 . . . . . . . . 9 𝐾 = (MetOpen‘((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))))
7170, 66metcn 23150 . . . . . . . 8 ((((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))) ∈ (∞Met‘(ℂ ∖ {0})) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)) ∈ (𝐾 Cn 𝐽) ↔ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)):(ℂ ∖ {0})⟶ℂ ∧ ∀𝑥 ∈ (ℂ ∖ {0})∀𝑦 ∈ ℝ+𝑢 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) < 𝑦))))
7264, 62, 71mp2an 691 . . . . . . 7 ((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)) ∈ (𝐾 Cn 𝐽) ↔ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)):(ℂ ∖ {0})⟶ℂ ∧ ∀𝑥 ∈ (ℂ ∖ {0})∀𝑦 ∈ ℝ+𝑢 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) < 𝑦)))
7324, 61, 72mpbir2an 710 . . . . . 6 (𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)) ∈ (𝐾 Cn 𝐽)
7473a1i 11 . . . . 5 (⊤ → (𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)) ∈ (𝐾 Cn 𝐽))
75 oveq2 7143 . . . . 5 (𝑧 = 𝑦 → (1 / 𝑧) = (1 / 𝑦))
7612, 17, 19, 17, 74, 75cnmpt21 22276 . . . 4 (⊤ → (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
7710mulcn 23472 . . . . 5 · ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
7877a1i 11 . . . 4 (⊤ → · ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
7912, 17, 18, 76, 78cnmpt22f 22280 . . 3 (⊤ → (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · (1 / 𝑦))) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
8079mptru 1545 . 2 (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · (1 / 𝑦))) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)
819, 80eqeltri 2886 1 / ∈ ((𝐽 ×t 𝐾) Cn 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wtru 1539  wcel 2111  wne 2987  wral 3106  wrex 3107  cdif 3878  wss 3881  ifcif 4425  {csn 4525   class class class wbr 5030  cmpt 5110   × cxp 5517  cres 5521  ccom 5523  wf 6320  cfv 6324  crio 7092  (class class class)co 7135  cmpo 7137  cc 10524  0cc0 10526  1c1 10527   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  2c2 11680  +crp 12377  abscabs 14585  t crest 16686  TopOpenctopn 16687  ∞Metcxmet 20076  MetOpencmopn 20081  fldccnfld 20091  TopOnctopon 21515   Cn ccn 21829   ×t ctx 22165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cn 21832  df-cnp 21833  df-tx 22167  df-hmeo 22360  df-xms 22927  df-ms 22928  df-tms 22929
This theorem is referenced by:  cdivcncf  23526  evth  23564  dvcnvlem  24579  lhop1lem  24616
  Copyright terms: Public domain W3C validator