MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divcn Structured version   Visualization version   GIF version

Theorem divcn 24911
Description: Complex number division is a continuous function, when the second argument is nonzero. (Contributed by Mario Carneiro, 12-Aug-2014.) Avoid ax-mulf 11264. (Revised by GG, 16-Mar-2025.)
Hypotheses
Ref Expression
mpomulcn.j 𝐽 = (TopOpen‘ℂfld)
divcn.k 𝐾 = (𝐽t (ℂ ∖ {0}))
Assertion
Ref Expression
divcn / ∈ ((𝐽 ×t 𝐾) Cn 𝐽)

Proof of Theorem divcn
Dummy variables 𝑎 𝑢 𝑣 𝑤 𝑧 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-div 11948 . . 3 / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
2 eldifsn 4811 . . . . 5 (𝑦 ∈ (ℂ ∖ {0}) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
3 divval 11951 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (𝑥 / 𝑦) = (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
4 divrec 11965 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (𝑥 / 𝑦) = (𝑥 · (1 / 𝑦)))
53, 4eqtr3d 2782 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) = (𝑥 · (1 / 𝑦)))
653expb 1120 . . . . 5 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) = (𝑥 · (1 / 𝑦)))
72, 6sylan2b 593 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) = (𝑥 · (1 / 𝑦)))
87mpoeq3ia 7528 . . 3 (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · (1 / 𝑦)))
91, 8eqtri 2768 . 2 / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · (1 / 𝑦)))
10 mpomulcn.j . . . . . 6 𝐽 = (TopOpen‘ℂfld)
1110cnfldtopon 24824 . . . . 5 𝐽 ∈ (TopOn‘ℂ)
1211a1i 11 . . . 4 (⊤ → 𝐽 ∈ (TopOn‘ℂ))
13 divcn.k . . . . 5 𝐾 = (𝐽t (ℂ ∖ {0}))
14 difss 4159 . . . . . 6 (ℂ ∖ {0}) ⊆ ℂ
15 resttopon 23190 . . . . . 6 ((𝐽 ∈ (TopOn‘ℂ) ∧ (ℂ ∖ {0}) ⊆ ℂ) → (𝐽t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0})))
1612, 14, 15sylancl 585 . . . . 5 (⊤ → (𝐽t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0})))
1713, 16eqeltrid 2848 . . . 4 (⊤ → 𝐾 ∈ (TopOn‘(ℂ ∖ {0})))
1812, 17cnmpt1st 23697 . . . 4 (⊤ → (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ 𝑥) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
1912, 17cnmpt2nd 23698 . . . . 5 (⊤ → (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ 𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
20 eqid 2740 . . . . . . . 8 (𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)) = (𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))
21 eldifi 4154 . . . . . . . . 9 (𝑧 ∈ (ℂ ∖ {0}) → 𝑧 ∈ ℂ)
22 eldifsni 4815 . . . . . . . . 9 (𝑧 ∈ (ℂ ∖ {0}) → 𝑧 ≠ 0)
2321, 22reccld 12063 . . . . . . . 8 (𝑧 ∈ (ℂ ∖ {0}) → (1 / 𝑧) ∈ ℂ)
2420, 23fmpti 7146 . . . . . . 7 (𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)):(ℂ ∖ {0})⟶ℂ
25 eqid 2740 . . . . . . . . . 10 (if(1 ≤ ((abs‘𝑥) · 𝑤), 1, ((abs‘𝑥) · 𝑤)) · ((abs‘𝑥) / 2)) = (if(1 ≤ ((abs‘𝑥) · 𝑤), 1, ((abs‘𝑥) · 𝑤)) · ((abs‘𝑥) / 2))
2625reccn2 15643 . . . . . . . . 9 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ ℝ+) → ∃𝑎 ∈ ℝ+𝑦 ∈ (ℂ ∖ {0})((abs‘(𝑦𝑥)) < 𝑎 → (abs‘((1 / 𝑦) − (1 / 𝑥))) < 𝑤))
27 ovres 7616 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑦) = (𝑥(abs ∘ − )𝑦))
28 eldifi 4154 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ∈ ℂ)
29 eldifi 4154 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ∈ ℂ)
30 eqid 2740 . . . . . . . . . . . . . . . . . 18 (abs ∘ − ) = (abs ∘ − )
3130cnmetdval 24812 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑥𝑦)))
32 abssub 15375 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥𝑦)) = (abs‘(𝑦𝑥)))
3331, 32eqtrd 2780 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑦𝑥)))
3428, 29, 33syl2an 595 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑦𝑥)))
3527, 34eqtrd 2780 . . . . . . . . . . . . . 14 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑦) = (abs‘(𝑦𝑥)))
3635breq1d 5176 . . . . . . . . . . . . 13 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑦) < 𝑎 ↔ (abs‘(𝑦𝑥)) < 𝑎))
37 oveq2 7456 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑥 → (1 / 𝑧) = (1 / 𝑥))
38 ovex 7481 . . . . . . . . . . . . . . . . 17 (1 / 𝑥) ∈ V
3937, 20, 38fvmpt 7029 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (ℂ ∖ {0}) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥) = (1 / 𝑥))
40 oveq2 7456 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑦 → (1 / 𝑧) = (1 / 𝑦))
41 ovex 7481 . . . . . . . . . . . . . . . . 17 (1 / 𝑦) ∈ V
4240, 20, 41fvmpt 7029 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (ℂ ∖ {0}) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑦) = (1 / 𝑦))
4339, 42oveqan12d 7467 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑦)) = ((1 / 𝑥)(abs ∘ − )(1 / 𝑦)))
44 eldifsni 4815 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ≠ 0)
4528, 44reccld 12063 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (ℂ ∖ {0}) → (1 / 𝑥) ∈ ℂ)
46 eldifsni 4815 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ≠ 0)
4729, 46reccld 12063 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (ℂ ∖ {0}) → (1 / 𝑦) ∈ ℂ)
4830cnmetdval 24812 . . . . . . . . . . . . . . . . 17 (((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑦) ∈ ℂ) → ((1 / 𝑥)(abs ∘ − )(1 / 𝑦)) = (abs‘((1 / 𝑥) − (1 / 𝑦))))
49 abssub 15375 . . . . . . . . . . . . . . . . 17 (((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑦) ∈ ℂ) → (abs‘((1 / 𝑥) − (1 / 𝑦))) = (abs‘((1 / 𝑦) − (1 / 𝑥))))
5048, 49eqtrd 2780 . . . . . . . . . . . . . . . 16 (((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑦) ∈ ℂ) → ((1 / 𝑥)(abs ∘ − )(1 / 𝑦)) = (abs‘((1 / 𝑦) − (1 / 𝑥))))
5145, 47, 50syl2an 595 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((1 / 𝑥)(abs ∘ − )(1 / 𝑦)) = (abs‘((1 / 𝑦) − (1 / 𝑥))))
5243, 51eqtrd 2780 . . . . . . . . . . . . . 14 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑦)) = (abs‘((1 / 𝑦) − (1 / 𝑥))))
5352breq1d 5176 . . . . . . . . . . . . 13 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑦)) < 𝑤 ↔ (abs‘((1 / 𝑦) − (1 / 𝑥))) < 𝑤))
5436, 53imbi12d 344 . . . . . . . . . . . 12 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑦) < 𝑎 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑦)) < 𝑤) ↔ ((abs‘(𝑦𝑥)) < 𝑎 → (abs‘((1 / 𝑦) − (1 / 𝑥))) < 𝑤)))
5554ralbidva 3182 . . . . . . . . . . 11 (𝑥 ∈ (ℂ ∖ {0}) → (∀𝑦 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑦) < 𝑎 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑦)) < 𝑤) ↔ ∀𝑦 ∈ (ℂ ∖ {0})((abs‘(𝑦𝑥)) < 𝑎 → (abs‘((1 / 𝑦) − (1 / 𝑥))) < 𝑤)))
5655rexbidv 3185 . . . . . . . . . 10 (𝑥 ∈ (ℂ ∖ {0}) → (∃𝑎 ∈ ℝ+𝑦 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑦) < 𝑎 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑦)) < 𝑤) ↔ ∃𝑎 ∈ ℝ+𝑦 ∈ (ℂ ∖ {0})((abs‘(𝑦𝑥)) < 𝑎 → (abs‘((1 / 𝑦) − (1 / 𝑥))) < 𝑤)))
5756adantr 480 . . . . . . . . 9 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ ℝ+) → (∃𝑎 ∈ ℝ+𝑦 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑦) < 𝑎 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑦)) < 𝑤) ↔ ∃𝑎 ∈ ℝ+𝑦 ∈ (ℂ ∖ {0})((abs‘(𝑦𝑥)) < 𝑎 → (abs‘((1 / 𝑦) − (1 / 𝑥))) < 𝑤)))
5826, 57mpbird 257 . . . . . . . 8 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ ℝ+) → ∃𝑎 ∈ ℝ+𝑦 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑦) < 𝑎 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑦)) < 𝑤))
5958rgen2 3205 . . . . . . 7 𝑥 ∈ (ℂ ∖ {0})∀𝑤 ∈ ℝ+𝑎 ∈ ℝ+𝑦 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑦) < 𝑎 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑦)) < 𝑤)
60 cnxmet 24814 . . . . . . . . 9 (abs ∘ − ) ∈ (∞Met‘ℂ)
61 xmetres2 24392 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (ℂ ∖ {0}) ⊆ ℂ) → ((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))) ∈ (∞Met‘(ℂ ∖ {0})))
6260, 14, 61mp2an 691 . . . . . . . 8 ((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))) ∈ (∞Met‘(ℂ ∖ {0}))
63 eqid 2740 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))) = ((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))
6410cnfldtopn 24823 . . . . . . . . . . . 12 𝐽 = (MetOpen‘(abs ∘ − ))
65 eqid 2740 . . . . . . . . . . . 12 (MetOpen‘((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))) = (MetOpen‘((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))))
6663, 64, 65metrest 24558 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (ℂ ∖ {0}) ⊆ ℂ) → (𝐽t (ℂ ∖ {0})) = (MetOpen‘((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))))
6760, 14, 66mp2an 691 . . . . . . . . . 10 (𝐽t (ℂ ∖ {0})) = (MetOpen‘((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))))
6813, 67eqtri 2768 . . . . . . . . 9 𝐾 = (MetOpen‘((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))))
6968, 64metcn 24577 . . . . . . . 8 ((((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))) ∈ (∞Met‘(ℂ ∖ {0})) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)) ∈ (𝐾 Cn 𝐽) ↔ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)):(ℂ ∖ {0})⟶ℂ ∧ ∀𝑥 ∈ (ℂ ∖ {0})∀𝑤 ∈ ℝ+𝑎 ∈ ℝ+𝑦 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑦) < 𝑎 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑦)) < 𝑤))))
7062, 60, 69mp2an 691 . . . . . . 7 ((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)) ∈ (𝐾 Cn 𝐽) ↔ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)):(ℂ ∖ {0})⟶ℂ ∧ ∀𝑥 ∈ (ℂ ∖ {0})∀𝑤 ∈ ℝ+𝑎 ∈ ℝ+𝑦 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑦) < 𝑎 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑦)) < 𝑤)))
7124, 59, 70mpbir2an 710 . . . . . 6 (𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)) ∈ (𝐾 Cn 𝐽)
7271a1i 11 . . . . 5 (⊤ → (𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)) ∈ (𝐾 Cn 𝐽))
7312, 17, 19, 17, 72, 40cnmpt21 23700 . . . 4 (⊤ → (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
7410mpomulcn 24910 . . . . 5 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
7574a1i 11 . . . 4 (⊤ → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
76 oveq12 7457 . . . 4 ((𝑢 = 𝑥𝑣 = (1 / 𝑦)) → (𝑢 · 𝑣) = (𝑥 · (1 / 𝑦)))
7712, 17, 18, 73, 12, 12, 75, 76cnmpt22 23703 . . 3 (⊤ → (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · (1 / 𝑦))) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
7877mptru 1544 . 2 (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · (1 / 𝑦))) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)
799, 78eqeltri 2840 1 / ∈ ((𝐽 ×t 𝐾) Cn 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wtru 1538  wcel 2108  wne 2946  wral 3067  wrex 3076  cdif 3973  wss 3976  ifcif 4548  {csn 4648   class class class wbr 5166  cmpt 5249   × cxp 5698  cres 5702  ccom 5704  wf 6569  cfv 6573  crio 7403  (class class class)co 7448  cmpo 7450  cc 11182  0cc0 11184  1c1 11185   · cmul 11189   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  2c2 12348  +crp 13057  abscabs 15283  t crest 17480  TopOpenctopn 17481  ∞Metcxmet 21372  MetOpencmopn 21377  fldccnfld 21387  TopOnctopon 22937   Cn ccn 23253   ×t ctx 23589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cn 23256  df-cnp 23257  df-tx 23591  df-hmeo 23784  df-xms 24351  df-ms 24352  df-tms 24353
This theorem is referenced by:  cdivcncf  24966  evth  25010  dvcnvlem  26034  lhop1lem  26072
  Copyright terms: Public domain W3C validator