MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divcn Structured version   Visualization version   GIF version

Theorem divcn 23789
Description: Complex number division is a continuous function, when the second argument is nonzero. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
addcn.j 𝐽 = (TopOpen‘ℂfld)
divcn.k 𝐾 = (𝐽t (ℂ ∖ {0}))
Assertion
Ref Expression
divcn / ∈ ((𝐽 ×t 𝐾) Cn 𝐽)

Proof of Theorem divcn
Dummy variables 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-div 11515 . . 3 / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
2 eldifsn 4715 . . . . 5 (𝑦 ∈ (ℂ ∖ {0}) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
3 divval 11517 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (𝑥 / 𝑦) = (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
4 divrec 11531 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (𝑥 / 𝑦) = (𝑥 · (1 / 𝑦)))
53, 4eqtr3d 2780 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) = (𝑥 · (1 / 𝑦)))
653expb 1122 . . . . 5 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) = (𝑥 · (1 / 𝑦)))
72, 6sylan2b 597 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) = (𝑥 · (1 / 𝑦)))
87mpoeq3ia 7308 . . 3 (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · (1 / 𝑦)))
91, 8eqtri 2766 . 2 / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · (1 / 𝑦)))
10 addcn.j . . . . . 6 𝐽 = (TopOpen‘ℂfld)
1110cnfldtopon 23704 . . . . 5 𝐽 ∈ (TopOn‘ℂ)
1211a1i 11 . . . 4 (⊤ → 𝐽 ∈ (TopOn‘ℂ))
13 divcn.k . . . . 5 𝐾 = (𝐽t (ℂ ∖ {0}))
14 difss 4061 . . . . . 6 (ℂ ∖ {0}) ⊆ ℂ
15 resttopon 22082 . . . . . 6 ((𝐽 ∈ (TopOn‘ℂ) ∧ (ℂ ∖ {0}) ⊆ ℂ) → (𝐽t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0})))
1612, 14, 15sylancl 589 . . . . 5 (⊤ → (𝐽t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0})))
1713, 16eqeltrid 2843 . . . 4 (⊤ → 𝐾 ∈ (TopOn‘(ℂ ∖ {0})))
1812, 17cnmpt1st 22589 . . . 4 (⊤ → (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ 𝑥) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
1912, 17cnmpt2nd 22590 . . . . 5 (⊤ → (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ 𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
20 eqid 2738 . . . . . . . 8 (𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)) = (𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))
21 eldifsn 4715 . . . . . . . . 9 (𝑧 ∈ (ℂ ∖ {0}) ↔ (𝑧 ∈ ℂ ∧ 𝑧 ≠ 0))
22 reccl 11522 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ 𝑧 ≠ 0) → (1 / 𝑧) ∈ ℂ)
2321, 22sylbi 220 . . . . . . . 8 (𝑧 ∈ (ℂ ∖ {0}) → (1 / 𝑧) ∈ ℂ)
2420, 23fmpti 6948 . . . . . . 7 (𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)):(ℂ ∖ {0})⟶ℂ
25 eqid 2738 . . . . . . . . . 10 (if(1 ≤ ((abs‘𝑥) · 𝑦), 1, ((abs‘𝑥) · 𝑦)) · ((abs‘𝑥) / 2)) = (if(1 ≤ ((abs‘𝑥) · 𝑦), 1, ((abs‘𝑥) · 𝑦)) · ((abs‘𝑥) / 2))
2625reccn2 15183 . . . . . . . . 9 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ ℝ+) → ∃𝑢 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((abs‘(𝑤𝑥)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑥))) < 𝑦))
27 ovres 7393 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ (ℂ ∖ {0})) → (𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) = (𝑥(abs ∘ − )𝑤))
28 eldifi 4056 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ∈ ℂ)
29 eldifi 4056 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (ℂ ∖ {0}) → 𝑤 ∈ ℂ)
30 eqid 2738 . . . . . . . . . . . . . . . . . 18 (abs ∘ − ) = (abs ∘ − )
3130cnmetdval 23692 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑥(abs ∘ − )𝑤) = (abs‘(𝑥𝑤)))
32 abssub 14915 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (abs‘(𝑥𝑤)) = (abs‘(𝑤𝑥)))
3331, 32eqtrd 2778 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑥(abs ∘ − )𝑤) = (abs‘(𝑤𝑥)))
3428, 29, 33syl2an 599 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ (ℂ ∖ {0})) → (𝑥(abs ∘ − )𝑤) = (abs‘(𝑤𝑥)))
3527, 34eqtrd 2778 . . . . . . . . . . . . . 14 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ (ℂ ∖ {0})) → (𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) = (abs‘(𝑤𝑥)))
3635breq1d 5078 . . . . . . . . . . . . 13 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ (ℂ ∖ {0})) → ((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 ↔ (abs‘(𝑤𝑥)) < 𝑢))
37 oveq2 7240 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑥 → (1 / 𝑧) = (1 / 𝑥))
38 ovex 7265 . . . . . . . . . . . . . . . . 17 (1 / 𝑥) ∈ V
3937, 20, 38fvmpt 6837 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (ℂ ∖ {0}) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥) = (1 / 𝑥))
40 oveq2 7240 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑤 → (1 / 𝑧) = (1 / 𝑤))
41 ovex 7265 . . . . . . . . . . . . . . . . 17 (1 / 𝑤) ∈ V
4240, 20, 41fvmpt 6837 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (ℂ ∖ {0}) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤) = (1 / 𝑤))
4339, 42oveqan12d 7251 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ (ℂ ∖ {0})) → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) = ((1 / 𝑥)(abs ∘ − )(1 / 𝑤)))
44 eldifsn 4715 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
45 reccl 11522 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ ℂ)
4644, 45sylbi 220 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (ℂ ∖ {0}) → (1 / 𝑥) ∈ ℂ)
47 eldifsn 4715 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ (ℂ ∖ {0}) ↔ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0))
48 reccl 11522 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) → (1 / 𝑤) ∈ ℂ)
4947, 48sylbi 220 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (ℂ ∖ {0}) → (1 / 𝑤) ∈ ℂ)
5030cnmetdval 23692 . . . . . . . . . . . . . . . . 17 (((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑤) ∈ ℂ) → ((1 / 𝑥)(abs ∘ − )(1 / 𝑤)) = (abs‘((1 / 𝑥) − (1 / 𝑤))))
51 abssub 14915 . . . . . . . . . . . . . . . . 17 (((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑤) ∈ ℂ) → (abs‘((1 / 𝑥) − (1 / 𝑤))) = (abs‘((1 / 𝑤) − (1 / 𝑥))))
5250, 51eqtrd 2778 . . . . . . . . . . . . . . . 16 (((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑤) ∈ ℂ) → ((1 / 𝑥)(abs ∘ − )(1 / 𝑤)) = (abs‘((1 / 𝑤) − (1 / 𝑥))))
5346, 49, 52syl2an 599 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ (ℂ ∖ {0})) → ((1 / 𝑥)(abs ∘ − )(1 / 𝑤)) = (abs‘((1 / 𝑤) − (1 / 𝑥))))
5443, 53eqtrd 2778 . . . . . . . . . . . . . 14 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ (ℂ ∖ {0})) → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) = (abs‘((1 / 𝑤) − (1 / 𝑥))))
5554breq1d 5078 . . . . . . . . . . . . 13 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ (ℂ ∖ {0})) → ((((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) < 𝑦 ↔ (abs‘((1 / 𝑤) − (1 / 𝑥))) < 𝑦))
5636, 55imbi12d 348 . . . . . . . . . . . 12 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ (ℂ ∖ {0})) → (((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) < 𝑦) ↔ ((abs‘(𝑤𝑥)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑥))) < 𝑦)))
5756ralbidva 3118 . . . . . . . . . . 11 (𝑥 ∈ (ℂ ∖ {0}) → (∀𝑤 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) < 𝑦) ↔ ∀𝑤 ∈ (ℂ ∖ {0})((abs‘(𝑤𝑥)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑥))) < 𝑦)))
5857rexbidv 3224 . . . . . . . . . 10 (𝑥 ∈ (ℂ ∖ {0}) → (∃𝑢 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) < 𝑦) ↔ ∃𝑢 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((abs‘(𝑤𝑥)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑥))) < 𝑦)))
5958adantr 484 . . . . . . . . 9 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ ℝ+) → (∃𝑢 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) < 𝑦) ↔ ∃𝑢 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((abs‘(𝑤𝑥)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑥))) < 𝑦)))
6026, 59mpbird 260 . . . . . . . 8 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ ℝ+) → ∃𝑢 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) < 𝑦))
6160rgen2 3125 . . . . . . 7 𝑥 ∈ (ℂ ∖ {0})∀𝑦 ∈ ℝ+𝑢 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) < 𝑦)
62 cnxmet 23694 . . . . . . . . 9 (abs ∘ − ) ∈ (∞Met‘ℂ)
63 xmetres2 23283 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (ℂ ∖ {0}) ⊆ ℂ) → ((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))) ∈ (∞Met‘(ℂ ∖ {0})))
6462, 14, 63mp2an 692 . . . . . . . 8 ((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))) ∈ (∞Met‘(ℂ ∖ {0}))
65 eqid 2738 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))) = ((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))
6610cnfldtopn 23703 . . . . . . . . . . . 12 𝐽 = (MetOpen‘(abs ∘ − ))
67 eqid 2738 . . . . . . . . . . . 12 (MetOpen‘((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))) = (MetOpen‘((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))))
6865, 66, 67metrest 23446 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (ℂ ∖ {0}) ⊆ ℂ) → (𝐽t (ℂ ∖ {0})) = (MetOpen‘((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))))
6962, 14, 68mp2an 692 . . . . . . . . . 10 (𝐽t (ℂ ∖ {0})) = (MetOpen‘((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))))
7013, 69eqtri 2766 . . . . . . . . 9 𝐾 = (MetOpen‘((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))))
7170, 66metcn 23465 . . . . . . . 8 ((((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))) ∈ (∞Met‘(ℂ ∖ {0})) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)) ∈ (𝐾 Cn 𝐽) ↔ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)):(ℂ ∖ {0})⟶ℂ ∧ ∀𝑥 ∈ (ℂ ∖ {0})∀𝑦 ∈ ℝ+𝑢 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) < 𝑦))))
7264, 62, 71mp2an 692 . . . . . . 7 ((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)) ∈ (𝐾 Cn 𝐽) ↔ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)):(ℂ ∖ {0})⟶ℂ ∧ ∀𝑥 ∈ (ℂ ∖ {0})∀𝑦 ∈ ℝ+𝑢 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) < 𝑦)))
7324, 61, 72mpbir2an 711 . . . . . 6 (𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)) ∈ (𝐾 Cn 𝐽)
7473a1i 11 . . . . 5 (⊤ → (𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)) ∈ (𝐾 Cn 𝐽))
75 oveq2 7240 . . . . 5 (𝑧 = 𝑦 → (1 / 𝑧) = (1 / 𝑦))
7612, 17, 19, 17, 74, 75cnmpt21 22592 . . . 4 (⊤ → (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
7710mulcn 23788 . . . . 5 · ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
7877a1i 11 . . . 4 (⊤ → · ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
7912, 17, 18, 76, 78cnmpt22f 22596 . . 3 (⊤ → (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · (1 / 𝑦))) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
8079mptru 1550 . 2 (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · (1 / 𝑦))) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)
819, 80eqeltri 2835 1 / ∈ ((𝐽 ×t 𝐾) Cn 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wtru 1544  wcel 2111  wne 2941  wral 3062  wrex 3063  cdif 3878  wss 3881  ifcif 4454  {csn 4556   class class class wbr 5068  cmpt 5150   × cxp 5564  cres 5568  ccom 5570  wf 6394  cfv 6398  crio 7188  (class class class)co 7232  cmpo 7234  cc 10752  0cc0 10754  1c1 10755   · cmul 10759   < clt 10892  cle 10893  cmin 11087   / cdiv 11514  2c2 11910  +crp 12611  abscabs 14822  t crest 16950  TopOpenctopn 16951  ∞Metcxmet 20373  MetOpencmopn 20378  fldccnfld 20388  TopOnctopon 21831   Cn ccn 22145   ×t ctx 22481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5194  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542  ax-cnex 10810  ax-resscn 10811  ax-1cn 10812  ax-icn 10813  ax-addcl 10814  ax-addrcl 10815  ax-mulcl 10816  ax-mulrcl 10817  ax-mulcom 10818  ax-addass 10819  ax-mulass 10820  ax-distr 10821  ax-i2m1 10822  ax-1ne0 10823  ax-1rid 10824  ax-rnegex 10825  ax-rrecex 10826  ax-cnre 10827  ax-pre-lttri 10828  ax-pre-lttrn 10829  ax-pre-ltadd 10830  ax-pre-mulgt0 10831  ax-pre-sup 10832  ax-mulf 10834
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-tp 4561  df-op 4563  df-uni 4835  df-int 4875  df-iun 4921  df-iin 4922  df-br 5069  df-opab 5131  df-mpt 5151  df-tr 5177  df-id 5470  df-eprel 5475  df-po 5483  df-so 5484  df-fr 5524  df-se 5525  df-we 5526  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-pred 6176  df-ord 6234  df-on 6235  df-lim 6236  df-suc 6237  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-isom 6407  df-riota 7189  df-ov 7235  df-oprab 7236  df-mpo 7237  df-of 7488  df-om 7664  df-1st 7780  df-2nd 7781  df-supp 7925  df-wrecs 8068  df-recs 8129  df-rdg 8167  df-1o 8223  df-2o 8224  df-er 8412  df-map 8531  df-ixp 8600  df-en 8648  df-dom 8649  df-sdom 8650  df-fin 8651  df-fsupp 9011  df-fi 9052  df-sup 9083  df-inf 9084  df-oi 9151  df-card 9580  df-pnf 10894  df-mnf 10895  df-xr 10896  df-ltxr 10897  df-le 10898  df-sub 11089  df-neg 11090  df-div 11515  df-nn 11856  df-2 11918  df-3 11919  df-4 11920  df-5 11921  df-6 11922  df-7 11923  df-8 11924  df-9 11925  df-n0 12116  df-z 12202  df-dec 12319  df-uz 12464  df-q 12570  df-rp 12612  df-xneg 12729  df-xadd 12730  df-xmul 12731  df-icc 12967  df-fz 13121  df-fzo 13264  df-seq 13600  df-exp 13661  df-hash 13922  df-cj 14687  df-re 14688  df-im 14689  df-sqrt 14823  df-abs 14824  df-struct 16725  df-sets 16742  df-slot 16760  df-ndx 16770  df-base 16786  df-ress 16810  df-plusg 16840  df-mulr 16841  df-starv 16842  df-sca 16843  df-vsca 16844  df-ip 16845  df-tset 16846  df-ple 16847  df-ds 16849  df-unif 16850  df-hom 16851  df-cco 16852  df-rest 16952  df-topn 16953  df-0g 16971  df-gsum 16972  df-topgen 16973  df-pt 16974  df-prds 16977  df-xrs 17032  df-qtop 17037  df-imas 17038  df-xps 17040  df-mre 17114  df-mrc 17115  df-acs 17117  df-mgm 18139  df-sgrp 18188  df-mnd 18199  df-submnd 18244  df-mulg 18514  df-cntz 18736  df-cmn 19197  df-psmet 20380  df-xmet 20381  df-met 20382  df-bl 20383  df-mopn 20384  df-cnfld 20389  df-top 21815  df-topon 21832  df-topsp 21854  df-bases 21867  df-cn 22148  df-cnp 22149  df-tx 22483  df-hmeo 22676  df-xms 23242  df-ms 23243  df-tms 23244
This theorem is referenced by:  cdivcncf  23842  evth  23880  dvcnvlem  24897  lhop1lem  24934
  Copyright terms: Public domain W3C validator