MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnflddiv Structured version   Visualization version   GIF version

Theorem cnflddiv 21362
Description: The division operation in the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) Avoid ax-mulf 11225. (Revised by GG, 30-Apr-2025.)
Assertion
Ref Expression
cnflddiv / = (/r‘ℂfld)

Proof of Theorem cnflddiv
Dummy variables 𝑥 𝑦 𝑧 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnring 21352 . . . . . . . . . 10 fld ∈ Ring
2 cnfldbas 21317 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
3 cnfld0 21354 . . . . . . . . . . . 12 0 = (0g‘ℂfld)
4 cndrng 21360 . . . . . . . . . . . 12 fld ∈ DivRing
52, 3, 4drngui 20659 . . . . . . . . . . 11 (ℂ ∖ {0}) = (Unit‘ℂfld)
6 eqid 2725 . . . . . . . . . . 11 (/r‘ℂfld) = (/r‘ℂfld)
72, 5, 6dvrcl 20372 . . . . . . . . . 10 ((ℂfld ∈ Ring ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥(/r‘ℂfld)𝑦) ∈ ℂ)
81, 7mp3an1 1444 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥(/r‘ℂfld)𝑦) ∈ ℂ)
9 difssd 4129 . . . . . . . . . 10 (𝑥 ∈ ℂ → (ℂ ∖ {0}) ⊆ ℂ)
109sselda 3976 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ ℂ)
11 ovmpot 7582 . . . . . . . . 9 (((𝑥(/r‘ℂfld)𝑦) ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥(/r‘ℂfld)𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = ((𝑥(/r‘ℂfld)𝑦) · 𝑦))
128, 10, 11syl2anc 582 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑥(/r‘ℂfld)𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = ((𝑥(/r‘ℂfld)𝑦) · 𝑦))
13 mpocnfldmul 21320 . . . . . . . . . 10 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld)
142, 5, 6, 13dvrcan1 20377 . . . . . . . . 9 ((ℂfld ∈ Ring ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑥(/r‘ℂfld)𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = 𝑥)
151, 14mp3an1 1444 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑥(/r‘ℂfld)𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = 𝑥)
1612, 15eqtr3d 2767 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑥(/r‘ℂfld)𝑦) · 𝑦) = 𝑥)
1716oveq1d 7434 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (((𝑥(/r‘ℂfld)𝑦) · 𝑦) / 𝑦) = (𝑥 / 𝑦))
18 eldifsni 4795 . . . . . . . 8 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ≠ 0)
1918adantl 480 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ≠ 0)
208, 10, 19divcan4d 12034 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (((𝑥(/r‘ℂfld)𝑦) · 𝑦) / 𝑦) = (𝑥(/r‘ℂfld)𝑦))
2117, 20eqtr3d 2767 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 / 𝑦) = (𝑥(/r‘ℂfld)𝑦))
22 simpl 481 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑥 ∈ ℂ)
23 divval 11912 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (𝑥 / 𝑦) = (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
2422, 10, 19, 23syl3anc 1368 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 / 𝑦) = (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
2521, 24eqtr3d 2767 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥(/r‘ℂfld)𝑦) = (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
26 eqid 2725 . . . . 5 (.r‘ℂfld) = (.r‘ℂfld)
27 eqid 2725 . . . . 5 (invr‘ℂfld) = (invr‘ℂfld)
282, 26, 5, 27, 6dvrval 20371 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥(/r‘ℂfld)𝑦) = (𝑥(.r‘ℂfld)((invr‘ℂfld)‘𝑦)))
2925, 28eqtr3d 2767 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) = (𝑥(.r‘ℂfld)((invr‘ℂfld)‘𝑦)))
3029mpoeq3ia 7498 . 2 (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥(.r‘ℂfld)((invr‘ℂfld)‘𝑦)))
31 df-div 11909 . 2 / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
322, 26, 5, 27, 6dvrfval 20370 . 2 (/r‘ℂfld) = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥(.r‘ℂfld)((invr‘ℂfld)‘𝑦)))
3330, 31, 323eqtr4i 2763 1 / = (/r‘ℂfld)
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1533  wcel 2098  wne 2929  cdif 3941  {csn 4630  cfv 6549  crio 7374  (class class class)co 7419  cmpo 7421  cc 11143  0cc0 11145   · cmul 11150   / cdiv 11908  .rcmulr 17253  Ringcrg 20202  invrcinvr 20355  /rcdvr 20368  fldccnfld 21313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222  ax-addf 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-div 11909  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-fz 13525  df-struct 17135  df-sets 17152  df-slot 17170  df-ndx 17182  df-base 17200  df-ress 17229  df-plusg 17265  df-mulr 17266  df-starv 17267  df-tset 17271  df-ple 17272  df-ds 17274  df-unif 17275  df-0g 17442  df-mgm 18619  df-sgrp 18698  df-mnd 18714  df-grp 18917  df-minusg 18918  df-cmn 19766  df-abl 19767  df-mgp 20104  df-rng 20122  df-ur 20151  df-ring 20204  df-cring 20205  df-oppr 20302  df-dvdsr 20325  df-unit 20326  df-invr 20356  df-dvr 20369  df-drng 20655  df-cnfld 21314
This theorem is referenced by:  cnfldinv  21364  cnsubdrglem  21385  qsssubdrg  21393  redvr  21583  cvsdiv  25120  qrngdiv  27622  1fldgenq  33129
  Copyright terms: Public domain W3C validator