| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnflddiv | Structured version Visualization version GIF version | ||
| Description: The division operation in the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) Avoid ax-mulf 11207. (Revised by GG, 30-Apr-2025.) |
| Ref | Expression |
|---|---|
| cnflddiv | ⊢ / = (/r‘ℂfld) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnring 21351 | . . . . . . . . . 10 ⊢ ℂfld ∈ Ring | |
| 2 | cnfldbas 21317 | . . . . . . . . . . 11 ⊢ ℂ = (Base‘ℂfld) | |
| 3 | cnfld0 21353 | . . . . . . . . . . . 12 ⊢ 0 = (0g‘ℂfld) | |
| 4 | cndrng 21359 | . . . . . . . . . . . 12 ⊢ ℂfld ∈ DivRing | |
| 5 | 2, 3, 4 | drngui 20693 | . . . . . . . . . . 11 ⊢ (ℂ ∖ {0}) = (Unit‘ℂfld) |
| 6 | eqid 2735 | . . . . . . . . . . 11 ⊢ (/r‘ℂfld) = (/r‘ℂfld) | |
| 7 | 2, 5, 6 | dvrcl 20362 | . . . . . . . . . 10 ⊢ ((ℂfld ∈ Ring ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥(/r‘ℂfld)𝑦) ∈ ℂ) |
| 8 | 1, 7 | mp3an1 1450 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥(/r‘ℂfld)𝑦) ∈ ℂ) |
| 9 | difssd 4112 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℂ → (ℂ ∖ {0}) ⊆ ℂ) | |
| 10 | 9 | sselda 3958 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ ℂ) |
| 11 | ovmpot 7566 | . . . . . . . . 9 ⊢ (((𝑥(/r‘ℂfld)𝑦) ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥(/r‘ℂfld)𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = ((𝑥(/r‘ℂfld)𝑦) · 𝑦)) | |
| 12 | 8, 10, 11 | syl2anc 584 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑥(/r‘ℂfld)𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = ((𝑥(/r‘ℂfld)𝑦) · 𝑦)) |
| 13 | mpocnfldmul 21320 | . . . . . . . . . 10 ⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld) | |
| 14 | 2, 5, 6, 13 | dvrcan1 20367 | . . . . . . . . 9 ⊢ ((ℂfld ∈ Ring ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑥(/r‘ℂfld)𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = 𝑥) |
| 15 | 1, 14 | mp3an1 1450 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑥(/r‘ℂfld)𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = 𝑥) |
| 16 | 12, 15 | eqtr3d 2772 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑥(/r‘ℂfld)𝑦) · 𝑦) = 𝑥) |
| 17 | 16 | oveq1d 7418 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (((𝑥(/r‘ℂfld)𝑦) · 𝑦) / 𝑦) = (𝑥 / 𝑦)) |
| 18 | eldifsni 4766 | . . . . . . . 8 ⊢ (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ≠ 0) | |
| 19 | 18 | adantl 481 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ≠ 0) |
| 20 | 8, 10, 19 | divcan4d 12021 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (((𝑥(/r‘ℂfld)𝑦) · 𝑦) / 𝑦) = (𝑥(/r‘ℂfld)𝑦)) |
| 21 | 17, 20 | eqtr3d 2772 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 / 𝑦) = (𝑥(/r‘ℂfld)𝑦)) |
| 22 | simpl 482 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑥 ∈ ℂ) | |
| 23 | divval 11896 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (𝑥 / 𝑦) = (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) | |
| 24 | 22, 10, 19, 23 | syl3anc 1373 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 / 𝑦) = (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) |
| 25 | 21, 24 | eqtr3d 2772 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥(/r‘ℂfld)𝑦) = (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) |
| 26 | eqid 2735 | . . . . 5 ⊢ (.r‘ℂfld) = (.r‘ℂfld) | |
| 27 | eqid 2735 | . . . . 5 ⊢ (invr‘ℂfld) = (invr‘ℂfld) | |
| 28 | 2, 26, 5, 27, 6 | dvrval 20361 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥(/r‘ℂfld)𝑦) = (𝑥(.r‘ℂfld)((invr‘ℂfld)‘𝑦))) |
| 29 | 25, 28 | eqtr3d 2772 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) = (𝑥(.r‘ℂfld)((invr‘ℂfld)‘𝑦))) |
| 30 | 29 | mpoeq3ia 7483 | . 2 ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥(.r‘ℂfld)((invr‘ℂfld)‘𝑦))) |
| 31 | df-div 11893 | . 2 ⊢ / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) | |
| 32 | 2, 26, 5, 27, 6 | dvrfval 20360 | . 2 ⊢ (/r‘ℂfld) = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥(.r‘ℂfld)((invr‘ℂfld)‘𝑦))) |
| 33 | 30, 31, 32 | 3eqtr4i 2768 | 1 ⊢ / = (/r‘ℂfld) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∖ cdif 3923 {csn 4601 ‘cfv 6530 ℩crio 7359 (class class class)co 7403 ∈ cmpo 7405 ℂcc 11125 0cc0 11127 · cmul 11132 / cdiv 11892 .rcmulr 17270 Ringcrg 20191 invrcinvr 20345 /rcdvr 20358 ℂfldccnfld 21313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-addf 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-tpos 8223 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-fz 13523 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-starv 17284 df-tset 17288 df-ple 17289 df-ds 17291 df-unif 17292 df-0g 17453 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-grp 18917 df-minusg 18918 df-cmn 19761 df-abl 19762 df-mgp 20099 df-rng 20111 df-ur 20140 df-ring 20193 df-cring 20194 df-oppr 20295 df-dvdsr 20315 df-unit 20316 df-invr 20346 df-dvr 20359 df-drng 20689 df-cnfld 21314 |
| This theorem is referenced by: cnfldinv 21363 cnsubdrglem 21384 qsssubdrg 21392 redvr 21575 cvsdiv 25081 qrngdiv 27585 1fldgenq 33262 constrelextdg2 33727 |
| Copyright terms: Public domain | W3C validator |