Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnflddiv | Structured version Visualization version GIF version |
Description: The division operation in the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
cnflddiv | ⊢ / = (/r‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnring 20648 | . . . . . . . 8 ⊢ ℂfld ∈ Ring | |
2 | cnfldbas 20629 | . . . . . . . . 9 ⊢ ℂ = (Base‘ℂfld) | |
3 | cnfld0 20650 | . . . . . . . . . 10 ⊢ 0 = (0g‘ℂfld) | |
4 | cndrng 20655 | . . . . . . . . . 10 ⊢ ℂfld ∈ DivRing | |
5 | 2, 3, 4 | drngui 20025 | . . . . . . . . 9 ⊢ (ℂ ∖ {0}) = (Unit‘ℂfld) |
6 | eqid 2733 | . . . . . . . . 9 ⊢ (/r‘ℂfld) = (/r‘ℂfld) | |
7 | cnfldmul 20631 | . . . . . . . . 9 ⊢ · = (.r‘ℂfld) | |
8 | 2, 5, 6, 7 | dvrcan1 19961 | . . . . . . . 8 ⊢ ((ℂfld ∈ Ring ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑥(/r‘ℂfld)𝑦) · 𝑦) = 𝑥) |
9 | 1, 8 | mp3an1 1446 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑥(/r‘ℂfld)𝑦) · 𝑦) = 𝑥) |
10 | 9 | oveq1d 7310 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (((𝑥(/r‘ℂfld)𝑦) · 𝑦) / 𝑦) = (𝑥 / 𝑦)) |
11 | 2, 5, 6 | dvrcl 19956 | . . . . . . . 8 ⊢ ((ℂfld ∈ Ring ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥(/r‘ℂfld)𝑦) ∈ ℂ) |
12 | 1, 11 | mp3an1 1446 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥(/r‘ℂfld)𝑦) ∈ ℂ) |
13 | simpr 484 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ (ℂ ∖ {0})) | |
14 | eldifsn 4723 | . . . . . . . . 9 ⊢ (𝑦 ∈ (ℂ ∖ {0}) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) | |
15 | 13, 14 | sylib 217 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) |
16 | 15 | simpld 494 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ ℂ) |
17 | 15 | simprd 495 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ≠ 0) |
18 | 12, 16, 17 | divcan4d 11785 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (((𝑥(/r‘ℂfld)𝑦) · 𝑦) / 𝑦) = (𝑥(/r‘ℂfld)𝑦)) |
19 | 10, 18 | eqtr3d 2775 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 / 𝑦) = (𝑥(/r‘ℂfld)𝑦)) |
20 | simpl 482 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑥 ∈ ℂ) | |
21 | divval 11663 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (𝑥 / 𝑦) = (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) | |
22 | 20, 16, 17, 21 | syl3anc 1369 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 / 𝑦) = (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) |
23 | 19, 22 | eqtr3d 2775 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥(/r‘ℂfld)𝑦) = (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) |
24 | eqid 2733 | . . . . 5 ⊢ (invr‘ℂfld) = (invr‘ℂfld) | |
25 | 2, 7, 5, 24, 6 | dvrval 19955 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥(/r‘ℂfld)𝑦) = (𝑥 · ((invr‘ℂfld)‘𝑦))) |
26 | 23, 25 | eqtr3d 2775 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) = (𝑥 · ((invr‘ℂfld)‘𝑦))) |
27 | 26 | mpoeq3ia 7373 | . 2 ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · ((invr‘ℂfld)‘𝑦))) |
28 | df-div 11661 | . 2 ⊢ / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) | |
29 | 2, 7, 5, 24, 6 | dvrfval 19954 | . 2 ⊢ (/r‘ℂfld) = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · ((invr‘ℂfld)‘𝑦))) |
30 | 27, 28, 29 | 3eqtr4i 2771 | 1 ⊢ / = (/r‘ℂfld) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2101 ≠ wne 2938 ∖ cdif 3886 {csn 4564 ‘cfv 6447 ℩crio 7251 (class class class)co 7295 ∈ cmpo 7297 ℂcc 10897 0cc0 10899 · cmul 10904 / cdiv 11660 Ringcrg 19811 invrcinvr 19941 /rcdvr 19952 ℂfldccnfld 20625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 ax-addf 10978 ax-mulf 10979 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-tp 4569 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-1st 7851 df-2nd 7852 df-tpos 8062 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-1o 8317 df-er 8518 df-en 8754 df-dom 8755 df-sdom 8756 df-fin 8757 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-div 11661 df-nn 12002 df-2 12064 df-3 12065 df-4 12066 df-5 12067 df-6 12068 df-7 12069 df-8 12070 df-9 12071 df-n0 12262 df-z 12348 df-dec 12466 df-uz 12611 df-fz 13268 df-struct 16876 df-sets 16893 df-slot 16911 df-ndx 16923 df-base 16941 df-ress 16970 df-plusg 17003 df-mulr 17004 df-starv 17005 df-tset 17009 df-ple 17010 df-ds 17012 df-unif 17013 df-0g 17180 df-mgm 18354 df-sgrp 18403 df-mnd 18414 df-grp 18608 df-minusg 18609 df-cmn 19416 df-mgp 19749 df-ur 19766 df-ring 19813 df-cring 19814 df-oppr 19890 df-dvdsr 19911 df-unit 19912 df-invr 19942 df-dvr 19953 df-drng 20021 df-cnfld 20626 |
This theorem is referenced by: cnfldinv 20657 cnsubdrglem 20677 qsssubdrg 20685 redvr 20850 cvsdiv 24323 qrngdiv 26800 |
Copyright terms: Public domain | W3C validator |