![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnflddiv | Structured version Visualization version GIF version |
Description: The division operation in the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
cnflddiv | β’ / = (/rββfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnring 21167 | . . . . . . . 8 β’ βfld β Ring | |
2 | cnfldbas 21148 | . . . . . . . . 9 β’ β = (Baseββfld) | |
3 | cnfld0 21169 | . . . . . . . . . 10 β’ 0 = (0gββfld) | |
4 | cndrng 21174 | . . . . . . . . . 10 β’ βfld β DivRing | |
5 | 2, 3, 4 | drngui 20506 | . . . . . . . . 9 β’ (β β {0}) = (Unitββfld) |
6 | eqid 2732 | . . . . . . . . 9 β’ (/rββfld) = (/rββfld) | |
7 | cnfldmul 21150 | . . . . . . . . 9 β’ Β· = (.rββfld) | |
8 | 2, 5, 6, 7 | dvrcan1 20300 | . . . . . . . 8 β’ ((βfld β Ring β§ π₯ β β β§ π¦ β (β β {0})) β ((π₯(/rββfld)π¦) Β· π¦) = π₯) |
9 | 1, 8 | mp3an1 1448 | . . . . . . 7 β’ ((π₯ β β β§ π¦ β (β β {0})) β ((π₯(/rββfld)π¦) Β· π¦) = π₯) |
10 | 9 | oveq1d 7426 | . . . . . 6 β’ ((π₯ β β β§ π¦ β (β β {0})) β (((π₯(/rββfld)π¦) Β· π¦) / π¦) = (π₯ / π¦)) |
11 | 2, 5, 6 | dvrcl 20295 | . . . . . . . 8 β’ ((βfld β Ring β§ π₯ β β β§ π¦ β (β β {0})) β (π₯(/rββfld)π¦) β β) |
12 | 1, 11 | mp3an1 1448 | . . . . . . 7 β’ ((π₯ β β β§ π¦ β (β β {0})) β (π₯(/rββfld)π¦) β β) |
13 | simpr 485 | . . . . . . . . 9 β’ ((π₯ β β β§ π¦ β (β β {0})) β π¦ β (β β {0})) | |
14 | eldifsn 4790 | . . . . . . . . 9 β’ (π¦ β (β β {0}) β (π¦ β β β§ π¦ β 0)) | |
15 | 13, 14 | sylib 217 | . . . . . . . 8 β’ ((π₯ β β β§ π¦ β (β β {0})) β (π¦ β β β§ π¦ β 0)) |
16 | 15 | simpld 495 | . . . . . . 7 β’ ((π₯ β β β§ π¦ β (β β {0})) β π¦ β β) |
17 | 15 | simprd 496 | . . . . . . 7 β’ ((π₯ β β β§ π¦ β (β β {0})) β π¦ β 0) |
18 | 12, 16, 17 | divcan4d 12000 | . . . . . 6 β’ ((π₯ β β β§ π¦ β (β β {0})) β (((π₯(/rββfld)π¦) Β· π¦) / π¦) = (π₯(/rββfld)π¦)) |
19 | 10, 18 | eqtr3d 2774 | . . . . 5 β’ ((π₯ β β β§ π¦ β (β β {0})) β (π₯ / π¦) = (π₯(/rββfld)π¦)) |
20 | simpl 483 | . . . . . 6 β’ ((π₯ β β β§ π¦ β (β β {0})) β π₯ β β) | |
21 | divval 11878 | . . . . . 6 β’ ((π₯ β β β§ π¦ β β β§ π¦ β 0) β (π₯ / π¦) = (β©π§ β β (π¦ Β· π§) = π₯)) | |
22 | 20, 16, 17, 21 | syl3anc 1371 | . . . . 5 β’ ((π₯ β β β§ π¦ β (β β {0})) β (π₯ / π¦) = (β©π§ β β (π¦ Β· π§) = π₯)) |
23 | 19, 22 | eqtr3d 2774 | . . . 4 β’ ((π₯ β β β§ π¦ β (β β {0})) β (π₯(/rββfld)π¦) = (β©π§ β β (π¦ Β· π§) = π₯)) |
24 | eqid 2732 | . . . . 5 β’ (invrββfld) = (invrββfld) | |
25 | 2, 7, 5, 24, 6 | dvrval 20294 | . . . 4 β’ ((π₯ β β β§ π¦ β (β β {0})) β (π₯(/rββfld)π¦) = (π₯ Β· ((invrββfld)βπ¦))) |
26 | 23, 25 | eqtr3d 2774 | . . 3 β’ ((π₯ β β β§ π¦ β (β β {0})) β (β©π§ β β (π¦ Β· π§) = π₯) = (π₯ Β· ((invrββfld)βπ¦))) |
27 | 26 | mpoeq3ia 7489 | . 2 β’ (π₯ β β, π¦ β (β β {0}) β¦ (β©π§ β β (π¦ Β· π§) = π₯)) = (π₯ β β, π¦ β (β β {0}) β¦ (π₯ Β· ((invrββfld)βπ¦))) |
28 | df-div 11876 | . 2 β’ / = (π₯ β β, π¦ β (β β {0}) β¦ (β©π§ β β (π¦ Β· π§) = π₯)) | |
29 | 2, 7, 5, 24, 6 | dvrfval 20293 | . 2 β’ (/rββfld) = (π₯ β β, π¦ β (β β {0}) β¦ (π₯ Β· ((invrββfld)βπ¦))) |
30 | 27, 28, 29 | 3eqtr4i 2770 | 1 β’ / = (/rββfld) |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 396 = wceq 1541 β wcel 2106 β wne 2940 β cdif 3945 {csn 4628 βcfv 6543 β©crio 7366 (class class class)co 7411 β cmpo 7413 βcc 11110 0cc0 11112 Β· cmul 11117 / cdiv 11875 Ringcrg 20127 invrcinvr 20278 /rcdvr 20291 βfldccnfld 21144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-tpos 8213 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13489 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-starv 17216 df-tset 17220 df-ple 17221 df-ds 17223 df-unif 17224 df-0g 17391 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-grp 18858 df-minusg 18859 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-cring 20130 df-oppr 20225 df-dvdsr 20248 df-unit 20249 df-invr 20279 df-dvr 20292 df-drng 20502 df-cnfld 21145 |
This theorem is referenced by: cnfldinv 21176 cnsubdrglem 21196 qsssubdrg 21204 redvr 21389 cvsdiv 24872 qrngdiv 27351 1fldgenq 32670 |
Copyright terms: Public domain | W3C validator |