| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | df-div 11921 | . . 3
⊢  / =
(𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0})
↦ (℩𝑧
∈ ℂ (𝑦 ·
𝑧) = 𝑥)) | 
| 2 |  | eldifsn 4786 | . . . . 5
⊢ (𝑦 ∈ (ℂ ∖ {0})
↔ (𝑦 ∈ ℂ
∧ 𝑦 ≠
0)) | 
| 3 |  | divval 11924 | . . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (𝑥 / 𝑦) = (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) | 
| 4 |  | divrec 11938 | . . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (𝑥 / 𝑦) = (𝑥 · (1 / 𝑦))) | 
| 5 | 3, 4 | eqtr3d 2779 | . . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) →
(℩𝑧 ∈
ℂ (𝑦 · 𝑧) = 𝑥) = (𝑥 · (1 / 𝑦))) | 
| 6 | 5 | 3expb 1121 | . . . . 5
⊢ ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) →
(℩𝑧 ∈
ℂ (𝑦 · 𝑧) = 𝑥) = (𝑥 · (1 / 𝑦))) | 
| 7 | 2, 6 | sylan2b 594 | . . . 4
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0}))
→ (℩𝑧
∈ ℂ (𝑦 ·
𝑧) = 𝑥) = (𝑥 · (1 / 𝑦))) | 
| 8 | 7 | mpoeq3ia 7511 | . . 3
⊢ (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0})
↦ (℩𝑧
∈ ℂ (𝑦 ·
𝑧) = 𝑥)) = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · (1 / 𝑦))) | 
| 9 | 1, 8 | eqtri 2765 | . 2
⊢  / =
(𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0})
↦ (𝑥 · (1 /
𝑦))) | 
| 10 |  | addcn.j | . . . . . 6
⊢ 𝐽 =
(TopOpen‘ℂfld) | 
| 11 | 10 | cnfldtopon 24803 | . . . . 5
⊢ 𝐽 ∈
(TopOn‘ℂ) | 
| 12 | 11 | a1i 11 | . . . 4
⊢ (⊤
→ 𝐽 ∈
(TopOn‘ℂ)) | 
| 13 |  | divcnOLD.k | . . . . 5
⊢ 𝐾 = (𝐽 ↾t (ℂ ∖
{0})) | 
| 14 |  | difss 4136 | . . . . . 6
⊢ (ℂ
∖ {0}) ⊆ ℂ | 
| 15 |  | resttopon 23169 | . . . . . 6
⊢ ((𝐽 ∈ (TopOn‘ℂ)
∧ (ℂ ∖ {0}) ⊆ ℂ) → (𝐽 ↾t (ℂ ∖ {0}))
∈ (TopOn‘(ℂ ∖ {0}))) | 
| 16 | 12, 14, 15 | sylancl 586 | . . . . 5
⊢ (⊤
→ (𝐽
↾t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖
{0}))) | 
| 17 | 13, 16 | eqeltrid 2845 | . . . 4
⊢ (⊤
→ 𝐾 ∈
(TopOn‘(ℂ ∖ {0}))) | 
| 18 | 12, 17 | cnmpt1st 23676 | . . . 4
⊢ (⊤
→ (𝑥 ∈ ℂ,
𝑦 ∈ (ℂ ∖
{0}) ↦ 𝑥) ∈
((𝐽 ×t
𝐾) Cn 𝐽)) | 
| 19 | 12, 17 | cnmpt2nd 23677 | . . . . 5
⊢ (⊤
→ (𝑥 ∈ ℂ,
𝑦 ∈ (ℂ ∖
{0}) ↦ 𝑦) ∈
((𝐽 ×t
𝐾) Cn 𝐾)) | 
| 20 |  | eqid 2737 | . . . . . . . 8
⊢ (𝑧 ∈ (ℂ ∖ {0})
↦ (1 / 𝑧)) = (𝑧 ∈ (ℂ ∖ {0})
↦ (1 / 𝑧)) | 
| 21 |  | eldifsn 4786 | . . . . . . . . 9
⊢ (𝑧 ∈ (ℂ ∖ {0})
↔ (𝑧 ∈ ℂ
∧ 𝑧 ≠
0)) | 
| 22 |  | reccl 11929 | . . . . . . . . 9
⊢ ((𝑧 ∈ ℂ ∧ 𝑧 ≠ 0) → (1 / 𝑧) ∈
ℂ) | 
| 23 | 21, 22 | sylbi 217 | . . . . . . . 8
⊢ (𝑧 ∈ (ℂ ∖ {0})
→ (1 / 𝑧) ∈
ℂ) | 
| 24 | 20, 23 | fmpti 7132 | . . . . . . 7
⊢ (𝑧 ∈ (ℂ ∖ {0})
↦ (1 / 𝑧)):(ℂ
∖ {0})⟶ℂ | 
| 25 |  | eqid 2737 | . . . . . . . . . 10
⊢ (if(1
≤ ((abs‘𝑥)
· 𝑦), 1,
((abs‘𝑥) ·
𝑦)) ·
((abs‘𝑥) / 2)) =
(if(1 ≤ ((abs‘𝑥)
· 𝑦), 1,
((abs‘𝑥) ·
𝑦)) ·
((abs‘𝑥) /
2)) | 
| 26 | 25 | reccn2 15633 | . . . . . . . . 9
⊢ ((𝑥 ∈ (ℂ ∖ {0})
∧ 𝑦 ∈
ℝ+) → ∃𝑢 ∈ ℝ+ ∀𝑤 ∈ (ℂ ∖
{0})((abs‘(𝑤 −
𝑥)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑥))) < 𝑦)) | 
| 27 |  | ovres 7599 | . . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ (ℂ ∖ {0})
∧ 𝑤 ∈ (ℂ
∖ {0})) → (𝑥((abs ∘ − ) ↾ ((ℂ
∖ {0}) × (ℂ ∖ {0})))𝑤) = (𝑥(abs ∘ − )𝑤)) | 
| 28 |  | eldifi 4131 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (ℂ ∖ {0})
→ 𝑥 ∈
ℂ) | 
| 29 |  | eldifi 4131 | . . . . . . . . . . . . . . . 16
⊢ (𝑤 ∈ (ℂ ∖ {0})
→ 𝑤 ∈
ℂ) | 
| 30 |  | eqid 2737 | . . . . . . . . . . . . . . . . . 18
⊢ (abs
∘ − ) = (abs ∘ − ) | 
| 31 | 30 | cnmetdval 24791 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑥(abs ∘ − )𝑤) = (abs‘(𝑥 − 𝑤))) | 
| 32 |  | abssub 15365 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℂ) →
(abs‘(𝑥 − 𝑤)) = (abs‘(𝑤 − 𝑥))) | 
| 33 | 31, 32 | eqtrd 2777 | . . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑥(abs ∘ − )𝑤) = (abs‘(𝑤 − 𝑥))) | 
| 34 | 28, 29, 33 | syl2an 596 | . . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ (ℂ ∖ {0})
∧ 𝑤 ∈ (ℂ
∖ {0})) → (𝑥(abs
∘ − )𝑤) =
(abs‘(𝑤 − 𝑥))) | 
| 35 | 27, 34 | eqtrd 2777 | . . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ (ℂ ∖ {0})
∧ 𝑤 ∈ (ℂ
∖ {0})) → (𝑥((abs ∘ − ) ↾ ((ℂ
∖ {0}) × (ℂ ∖ {0})))𝑤) = (abs‘(𝑤 − 𝑥))) | 
| 36 | 35 | breq1d 5153 | . . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (ℂ ∖ {0})
∧ 𝑤 ∈ (ℂ
∖ {0})) → ((𝑥((abs ∘ − ) ↾ ((ℂ
∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 ↔ (abs‘(𝑤 − 𝑥)) < 𝑢)) | 
| 37 |  | oveq2 7439 | . . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑥 → (1 / 𝑧) = (1 / 𝑥)) | 
| 38 |  | ovex 7464 | . . . . . . . . . . . . . . . . 17
⊢ (1 /
𝑥) ∈
V | 
| 39 | 37, 20, 38 | fvmpt 7016 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (ℂ ∖ {0})
→ ((𝑧 ∈ (ℂ
∖ {0}) ↦ (1 / 𝑧))‘𝑥) = (1 / 𝑥)) | 
| 40 |  | oveq2 7439 | . . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑤 → (1 / 𝑧) = (1 / 𝑤)) | 
| 41 |  | ovex 7464 | . . . . . . . . . . . . . . . . 17
⊢ (1 /
𝑤) ∈
V | 
| 42 | 40, 20, 41 | fvmpt 7016 | . . . . . . . . . . . . . . . 16
⊢ (𝑤 ∈ (ℂ ∖ {0})
→ ((𝑧 ∈ (ℂ
∖ {0}) ↦ (1 / 𝑧))‘𝑤) = (1 / 𝑤)) | 
| 43 | 39, 42 | oveqan12d 7450 | . . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ (ℂ ∖ {0})
∧ 𝑤 ∈ (ℂ
∖ {0})) → (((𝑧
∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 /
𝑧))‘𝑤)) = ((1 / 𝑥)(abs ∘ − )(1 / 𝑤))) | 
| 44 |  | eldifsn 4786 | . . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (ℂ ∖ {0})
↔ (𝑥 ∈ ℂ
∧ 𝑥 ≠
0)) | 
| 45 |  | reccl 11929 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈
ℂ) | 
| 46 | 44, 45 | sylbi 217 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (ℂ ∖ {0})
→ (1 / 𝑥) ∈
ℂ) | 
| 47 |  | eldifsn 4786 | . . . . . . . . . . . . . . . . 17
⊢ (𝑤 ∈ (ℂ ∖ {0})
↔ (𝑤 ∈ ℂ
∧ 𝑤 ≠
0)) | 
| 48 |  | reccl 11929 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) → (1 / 𝑤) ∈
ℂ) | 
| 49 | 47, 48 | sylbi 217 | . . . . . . . . . . . . . . . 16
⊢ (𝑤 ∈ (ℂ ∖ {0})
→ (1 / 𝑤) ∈
ℂ) | 
| 50 | 30 | cnmetdval 24791 | . . . . . . . . . . . . . . . . 17
⊢ (((1 /
𝑥) ∈ ℂ ∧ (1
/ 𝑤) ∈ ℂ) →
((1 / 𝑥)(abs ∘
− )(1 / 𝑤)) =
(abs‘((1 / 𝑥) −
(1 / 𝑤)))) | 
| 51 |  | abssub 15365 | . . . . . . . . . . . . . . . . 17
⊢ (((1 /
𝑥) ∈ ℂ ∧ (1
/ 𝑤) ∈ ℂ) →
(abs‘((1 / 𝑥) −
(1 / 𝑤))) = (abs‘((1
/ 𝑤) − (1 / 𝑥)))) | 
| 52 | 50, 51 | eqtrd 2777 | . . . . . . . . . . . . . . . 16
⊢ (((1 /
𝑥) ∈ ℂ ∧ (1
/ 𝑤) ∈ ℂ) →
((1 / 𝑥)(abs ∘
− )(1 / 𝑤)) =
(abs‘((1 / 𝑤) −
(1 / 𝑥)))) | 
| 53 | 46, 49, 52 | syl2an 596 | . . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ (ℂ ∖ {0})
∧ 𝑤 ∈ (ℂ
∖ {0})) → ((1 / 𝑥)(abs ∘ − )(1 / 𝑤)) = (abs‘((1 / 𝑤) − (1 / 𝑥)))) | 
| 54 | 43, 53 | eqtrd 2777 | . . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ (ℂ ∖ {0})
∧ 𝑤 ∈ (ℂ
∖ {0})) → (((𝑧
∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 /
𝑧))‘𝑤)) = (abs‘((1 / 𝑤) − (1 / 𝑥)))) | 
| 55 | 54 | breq1d 5153 | . . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (ℂ ∖ {0})
∧ 𝑤 ∈ (ℂ
∖ {0})) → ((((𝑧
∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 /
𝑧))‘𝑤)) < 𝑦 ↔ (abs‘((1 / 𝑤) − (1 / 𝑥))) < 𝑦)) | 
| 56 | 36, 55 | imbi12d 344 | . . . . . . . . . . . 12
⊢ ((𝑥 ∈ (ℂ ∖ {0})
∧ 𝑤 ∈ (ℂ
∖ {0})) → (((𝑥((abs ∘ − ) ↾ ((ℂ
∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 /
𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0})
↦ (1 / 𝑧))‘𝑤)) < 𝑦) ↔ ((abs‘(𝑤 − 𝑥)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑥))) < 𝑦))) | 
| 57 | 56 | ralbidva 3176 | . . . . . . . . . . 11
⊢ (𝑥 ∈ (ℂ ∖ {0})
→ (∀𝑤 ∈
(ℂ ∖ {0})((𝑥((abs ∘ − ) ↾ ((ℂ
∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 /
𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0})
↦ (1 / 𝑧))‘𝑤)) < 𝑦) ↔ ∀𝑤 ∈ (ℂ ∖
{0})((abs‘(𝑤 −
𝑥)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑥))) < 𝑦))) | 
| 58 | 57 | rexbidv 3179 | . . . . . . . . . 10
⊢ (𝑥 ∈ (ℂ ∖ {0})
→ (∃𝑢 ∈
ℝ+ ∀𝑤 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾
((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 /
𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0})
↦ (1 / 𝑧))‘𝑤)) < 𝑦) ↔ ∃𝑢 ∈ ℝ+ ∀𝑤 ∈ (ℂ ∖
{0})((abs‘(𝑤 −
𝑥)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑥))) < 𝑦))) | 
| 59 | 58 | adantr 480 | . . . . . . . . 9
⊢ ((𝑥 ∈ (ℂ ∖ {0})
∧ 𝑦 ∈
ℝ+) → (∃𝑢 ∈ ℝ+ ∀𝑤 ∈ (ℂ ∖
{0})((𝑥((abs ∘
− ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 /
𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0})
↦ (1 / 𝑧))‘𝑤)) < 𝑦) ↔ ∃𝑢 ∈ ℝ+ ∀𝑤 ∈ (ℂ ∖
{0})((abs‘(𝑤 −
𝑥)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑥))) < 𝑦))) | 
| 60 | 26, 59 | mpbird 257 | . . . . . . . 8
⊢ ((𝑥 ∈ (ℂ ∖ {0})
∧ 𝑦 ∈
ℝ+) → ∃𝑢 ∈ ℝ+ ∀𝑤 ∈ (ℂ ∖
{0})((𝑥((abs ∘
− ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 /
𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0})
↦ (1 / 𝑧))‘𝑤)) < 𝑦)) | 
| 61 | 60 | rgen2 3199 | . . . . . . 7
⊢
∀𝑥 ∈
(ℂ ∖ {0})∀𝑦 ∈ ℝ+ ∃𝑢 ∈ ℝ+
∀𝑤 ∈ (ℂ
∖ {0})((𝑥((abs
∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖
{0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 /
𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0})
↦ (1 / 𝑧))‘𝑤)) < 𝑦) | 
| 62 |  | cnxmet 24793 | . . . . . . . . 9
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) | 
| 63 |  | xmetres2 24371 | . . . . . . . . 9
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ (ℂ ∖ {0})
⊆ ℂ) → ((abs ∘ − ) ↾ ((ℂ ∖ {0})
× (ℂ ∖ {0}))) ∈ (∞Met‘(ℂ ∖
{0}))) | 
| 64 | 62, 14, 63 | mp2an 692 | . . . . . . . 8
⊢ ((abs
∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖
{0}))) ∈ (∞Met‘(ℂ ∖ {0})) | 
| 65 |  | eqid 2737 | . . . . . . . . . . . 12
⊢ ((abs
∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖
{0}))) = ((abs ∘ − ) ↾ ((ℂ ∖ {0}) ×
(ℂ ∖ {0}))) | 
| 66 | 10 | cnfldtopn 24802 | . . . . . . . . . . . 12
⊢ 𝐽 = (MetOpen‘(abs ∘
− )) | 
| 67 |  | eqid 2737 | . . . . . . . . . . . 12
⊢
(MetOpen‘((abs ∘ − ) ↾ ((ℂ ∖ {0})
× (ℂ ∖ {0})))) = (MetOpen‘((abs ∘ − )
↾ ((ℂ ∖ {0}) × (ℂ ∖
{0})))) | 
| 68 | 65, 66, 67 | metrest 24537 | . . . . . . . . . . 11
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ (ℂ ∖ {0})
⊆ ℂ) → (𝐽
↾t (ℂ ∖ {0})) = (MetOpen‘((abs ∘
− ) ↾ ((ℂ ∖ {0}) × (ℂ ∖
{0}))))) | 
| 69 | 62, 14, 68 | mp2an 692 | . . . . . . . . . 10
⊢ (𝐽 ↾t (ℂ
∖ {0})) = (MetOpen‘((abs ∘ − ) ↾ ((ℂ
∖ {0}) × (ℂ ∖ {0})))) | 
| 70 | 13, 69 | eqtri 2765 | . . . . . . . . 9
⊢ 𝐾 = (MetOpen‘((abs ∘
− ) ↾ ((ℂ ∖ {0}) × (ℂ ∖
{0})))) | 
| 71 | 70, 66 | metcn 24556 | . . . . . . . 8
⊢ ((((abs
∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖
{0}))) ∈ (∞Met‘(ℂ ∖ {0})) ∧ (abs ∘
− ) ∈ (∞Met‘ℂ)) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 /
𝑧)) ∈ (𝐾 Cn 𝐽) ↔ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 /
𝑧)):(ℂ ∖
{0})⟶ℂ ∧ ∀𝑥 ∈ (ℂ ∖ {0})∀𝑦 ∈ ℝ+
∃𝑢 ∈
ℝ+ ∀𝑤 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾
((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 /
𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0})
↦ (1 / 𝑧))‘𝑤)) < 𝑦)))) | 
| 72 | 64, 62, 71 | mp2an 692 | . . . . . . 7
⊢ ((𝑧 ∈ (ℂ ∖ {0})
↦ (1 / 𝑧)) ∈
(𝐾 Cn 𝐽) ↔ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 /
𝑧)):(ℂ ∖
{0})⟶ℂ ∧ ∀𝑥 ∈ (ℂ ∖ {0})∀𝑦 ∈ ℝ+
∃𝑢 ∈
ℝ+ ∀𝑤 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾
((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 /
𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0})
↦ (1 / 𝑧))‘𝑤)) < 𝑦))) | 
| 73 | 24, 61, 72 | mpbir2an 711 | . . . . . 6
⊢ (𝑧 ∈ (ℂ ∖ {0})
↦ (1 / 𝑧)) ∈
(𝐾 Cn 𝐽) | 
| 74 | 73 | a1i 11 | . . . . 5
⊢ (⊤
→ (𝑧 ∈ (ℂ
∖ {0}) ↦ (1 / 𝑧)) ∈ (𝐾 Cn 𝐽)) | 
| 75 |  | oveq2 7439 | . . . . 5
⊢ (𝑧 = 𝑦 → (1 / 𝑧) = (1 / 𝑦)) | 
| 76 | 12, 17, 19, 17, 74, 75 | cnmpt21 23679 | . . . 4
⊢ (⊤
→ (𝑥 ∈ ℂ,
𝑦 ∈ (ℂ ∖
{0}) ↦ (1 / 𝑦))
∈ ((𝐽
×t 𝐾) Cn
𝐽)) | 
| 77 | 10 | mulcn 24889 | . . . . 5
⊢  ·
∈ ((𝐽
×t 𝐽) Cn
𝐽) | 
| 78 | 77 | a1i 11 | . . . 4
⊢ (⊤
→ · ∈ ((𝐽
×t 𝐽) Cn
𝐽)) | 
| 79 | 12, 17, 18, 76, 78 | cnmpt22f 23683 | . . 3
⊢ (⊤
→ (𝑥 ∈ ℂ,
𝑦 ∈ (ℂ ∖
{0}) ↦ (𝑥 · (1
/ 𝑦))) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)) | 
| 80 | 79 | mptru 1547 | . 2
⊢ (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0})
↦ (𝑥 · (1 /
𝑦))) ∈ ((𝐽 ×t 𝐾) Cn 𝐽) | 
| 81 | 9, 80 | eqeltri 2837 | 1
⊢  / ∈
((𝐽 ×t
𝐾) Cn 𝐽) |