| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divcli | Structured version Visualization version GIF version | ||
| Description: Closure law for division. (Contributed by NM, 2-Feb-1995.) (Revised by Mario Carneiro, 17-Feb-2014.) |
| Ref | Expression |
|---|---|
| divclz.1 | ⊢ 𝐴 ∈ ℂ |
| divclz.2 | ⊢ 𝐵 ∈ ℂ |
| divcl.3 | ⊢ 𝐵 ≠ 0 |
| Ref | Expression |
|---|---|
| divcli | ⊢ (𝐴 / 𝐵) ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divcl.3 | . 2 ⊢ 𝐵 ≠ 0 | |
| 2 | divclz.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
| 3 | divclz.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
| 4 | 2, 3 | divclzi 11856 | . 2 ⊢ (𝐵 ≠ 0 → (𝐴 / 𝐵) ∈ ℂ) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ (𝐴 / 𝐵) ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ≠ wne 2928 (class class class)co 7346 ℂcc 11004 0cc0 11006 / cdiv 11774 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 |
| This theorem is referenced by: divcan1i 11865 halfpm6th 12343 sqdivi 14092 bpoly3 15965 bpoly4 15966 cos1bnd 16096 cospi 26408 sincosq1eq 26448 tan4thpi 26450 sincos6thpi 26452 sincos3rdpi 26453 cxpsqrt 26639 1cubr 26779 quart1cl 26791 quart1lem 26792 quart1 26793 dvatan 26872 log2cnv 26881 log2tlbnd 26882 bclbnd 27218 bposlem8 27229 bposlem9 27230 dp20h 32859 dpmul10 32875 dpmul100 32877 dp3mul10 32878 dpexpp1 32888 dpadd2 32890 cos9thpiminplylem4 33798 cos9thpiminplylem5 33799 quad3 35714 areacirc 37763 cxpi11d 42446 tanhalfpim 42452 tan3rdpi 42455 sin2t3rdpi 42456 cos2t3rdpi 42457 sin4t3rdpi 42458 cos4t3rdpi 42459 areaquad 43319 lhe4.4ex1a 44432 stoweidlem13 46121 stoweidlem26 46134 wallispilem4 46176 wallispi 46178 dirkerper 46204 fourierdlem103 46317 fourierswlem 46338 fouriersw 46339 |
| Copyright terms: Public domain | W3C validator |