| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divcli | Structured version Visualization version GIF version | ||
| Description: Closure law for division. (Contributed by NM, 2-Feb-1995.) (Revised by Mario Carneiro, 17-Feb-2014.) |
| Ref | Expression |
|---|---|
| divclz.1 | ⊢ 𝐴 ∈ ℂ |
| divclz.2 | ⊢ 𝐵 ∈ ℂ |
| divcl.3 | ⊢ 𝐵 ≠ 0 |
| Ref | Expression |
|---|---|
| divcli | ⊢ (𝐴 / 𝐵) ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divcl.3 | . 2 ⊢ 𝐵 ≠ 0 | |
| 2 | divclz.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
| 3 | divclz.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
| 4 | 2, 3 | divclzi 12003 | . 2 ⊢ (𝐵 ≠ 0 → (𝐴 / 𝐵) ∈ ℂ) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ (𝐴 / 𝐵) ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 ≠ wne 2939 (class class class)co 7432 ℂcc 11154 0cc0 11156 / cdiv 11921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-po 5591 df-so 5592 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 |
| This theorem is referenced by: divcan1i 12012 halfpm6th 12490 sqdivi 14225 bpoly3 16095 bpoly4 16096 cos1bnd 16224 cospi 26515 sincosq1eq 26555 tan4thpi 26557 sincos6thpi 26559 sincos3rdpi 26560 cxpsqrt 26746 1cubr 26886 quart1cl 26898 quart1lem 26899 quart1 26900 dvatan 26979 log2cnv 26988 log2tlbnd 26989 bclbnd 27325 bposlem8 27336 bposlem9 27337 dp20h 32862 dpmul10 32878 dpmul100 32880 dp3mul10 32881 dpexpp1 32891 dpadd2 32893 quad3 35676 areacirc 37721 cxpi11d 42384 tanhalfpim 42390 tan3rdpi 42391 areaquad 43233 lhe4.4ex1a 44353 stoweidlem13 46033 stoweidlem26 46046 wallispilem4 46088 wallispi 46090 dirkerper 46116 fourierdlem103 46229 fourierswlem 46250 fouriersw 46251 |
| Copyright terms: Public domain | W3C validator |