| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divcli | Structured version Visualization version GIF version | ||
| Description: Closure law for division. (Contributed by NM, 2-Feb-1995.) (Revised by Mario Carneiro, 17-Feb-2014.) |
| Ref | Expression |
|---|---|
| divclz.1 | ⊢ 𝐴 ∈ ℂ |
| divclz.2 | ⊢ 𝐵 ∈ ℂ |
| divcl.3 | ⊢ 𝐵 ≠ 0 |
| Ref | Expression |
|---|---|
| divcli | ⊢ (𝐴 / 𝐵) ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divcl.3 | . 2 ⊢ 𝐵 ≠ 0 | |
| 2 | divclz.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
| 3 | divclz.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
| 4 | 2, 3 | divclzi 11893 | . 2 ⊢ (𝐵 ≠ 0 → (𝐴 / 𝐵) ∈ ℂ) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ (𝐴 / 𝐵) ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ≠ wne 2925 (class class class)co 7369 ℂcc 11042 0cc0 11044 / cdiv 11811 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 |
| This theorem is referenced by: divcan1i 11902 halfpm6th 12380 sqdivi 14126 bpoly3 16000 bpoly4 16001 cos1bnd 16131 cospi 26414 sincosq1eq 26454 tan4thpi 26456 sincos6thpi 26458 sincos3rdpi 26459 cxpsqrt 26645 1cubr 26785 quart1cl 26797 quart1lem 26798 quart1 26799 dvatan 26878 log2cnv 26887 log2tlbnd 26888 bclbnd 27224 bposlem8 27235 bposlem9 27236 dp20h 32849 dpmul10 32865 dpmul100 32867 dp3mul10 32868 dpexpp1 32878 dpadd2 32880 cos9thpiminplylem4 33768 cos9thpiminplylem5 33769 quad3 35650 areacirc 37700 cxpi11d 42324 tanhalfpim 42330 tan3rdpi 42333 sin2t3rdpi 42334 cos2t3rdpi 42335 sin4t3rdpi 42336 cos4t3rdpi 42337 areaquad 43198 lhe4.4ex1a 44311 stoweidlem13 46004 stoweidlem26 46017 wallispilem4 46059 wallispi 46061 dirkerper 46087 fourierdlem103 46200 fourierswlem 46221 fouriersw 46222 |
| Copyright terms: Public domain | W3C validator |