MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divcli Structured version   Visualization version   GIF version

Theorem divcli 11960
Description: Closure law for division. (Contributed by NM, 2-Feb-1995.) (Revised by Mario Carneiro, 17-Feb-2014.)
Hypotheses
Ref Expression
divclz.1 𝐴 ∈ ℂ
divclz.2 𝐵 ∈ ℂ
divcl.3 𝐵 ≠ 0
Assertion
Ref Expression
divcli (𝐴 / 𝐵) ∈ ℂ

Proof of Theorem divcli
StepHypRef Expression
1 divcl.3 . 2 𝐵 ≠ 0
2 divclz.1 . . 3 𝐴 ∈ ℂ
3 divclz.2 . . 3 𝐵 ∈ ℂ
42, 3divclzi 11953 . 2 (𝐵 ≠ 0 → (𝐴 / 𝐵) ∈ ℂ)
51, 4ax-mp 5 1 (𝐴 / 𝐵) ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  wne 2940  (class class class)co 7411  cc 11110  0cc0 11112   / cdiv 11875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876
This theorem is referenced by:  divcan1i  11962  halfpm6th  12437  sqdivi  14153  bpoly3  16006  bpoly4  16007  cos1bnd  16134  cospi  26206  sincosq1eq  26246  sincos6thpi  26249  sincos3rdpi  26250  cxpsqrt  26435  1cubr  26571  quart1cl  26583  quart1lem  26584  quart1  26585  dvatan  26664  log2cnv  26673  log2tlbnd  26674  bclbnd  27007  bposlem8  27018  bposlem9  27019  dp20h  32300  dpmul10  32316  dpmul100  32318  dp3mul10  32319  dpexpp1  32329  dpadd2  32331  quad3  34941  areacirc  36884  areaquad  42267  lhe4.4ex1a  43390  stoweidlem13  45028  stoweidlem26  45041  wallispilem4  45083  wallispi  45085  dirkerper  45111  fourierdlem103  45224  fourierswlem  45245  fouriersw  45246
  Copyright terms: Public domain W3C validator