![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divcli | Structured version Visualization version GIF version |
Description: Closure law for division. (Contributed by NM, 2-Feb-1995.) (Revised by Mario Carneiro, 17-Feb-2014.) |
Ref | Expression |
---|---|
divclz.1 | ⊢ 𝐴 ∈ ℂ |
divclz.2 | ⊢ 𝐵 ∈ ℂ |
divcl.3 | ⊢ 𝐵 ≠ 0 |
Ref | Expression |
---|---|
divcli | ⊢ (𝐴 / 𝐵) ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divcl.3 | . 2 ⊢ 𝐵 ≠ 0 | |
2 | divclz.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
3 | divclz.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
4 | 2, 3 | divclzi 12000 | . 2 ⊢ (𝐵 ≠ 0 → (𝐴 / 𝐵) ∈ ℂ) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ (𝐴 / 𝐵) ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ≠ wne 2938 (class class class)co 7431 ℂcc 11151 0cc0 11153 / cdiv 11918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 |
This theorem is referenced by: divcan1i 12009 halfpm6th 12485 sqdivi 14221 bpoly3 16091 bpoly4 16092 cos1bnd 16220 cospi 26529 sincosq1eq 26569 tan4thpi 26571 sincos6thpi 26573 sincos3rdpi 26574 cxpsqrt 26760 1cubr 26900 quart1cl 26912 quart1lem 26913 quart1 26914 dvatan 26993 log2cnv 27002 log2tlbnd 27003 bclbnd 27339 bposlem8 27350 bposlem9 27351 dp20h 32846 dpmul10 32862 dpmul100 32864 dp3mul10 32865 dpexpp1 32875 dpadd2 32877 quad3 35655 areacirc 37700 cxpi11d 42358 tanhalfpim 42364 tan3rdpi 42365 areaquad 43205 lhe4.4ex1a 44325 stoweidlem13 45969 stoweidlem26 45982 wallispilem4 46024 wallispi 46026 dirkerper 46052 fourierdlem103 46165 fourierswlem 46186 fouriersw 46187 |
Copyright terms: Public domain | W3C validator |