![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divcli | Structured version Visualization version GIF version |
Description: Closure law for division. (Contributed by NM, 2-Feb-1995.) (Revised by Mario Carneiro, 17-Feb-2014.) |
Ref | Expression |
---|---|
divclz.1 | ⊢ 𝐴 ∈ ℂ |
divclz.2 | ⊢ 𝐵 ∈ ℂ |
divcl.3 | ⊢ 𝐵 ≠ 0 |
Ref | Expression |
---|---|
divcli | ⊢ (𝐴 / 𝐵) ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divcl.3 | . 2 ⊢ 𝐵 ≠ 0 | |
2 | divclz.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
3 | divclz.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
4 | 2, 3 | divclzi 11182 | . 2 ⊢ (𝐵 ≠ 0 → (𝐴 / 𝐵) ∈ ℂ) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ (𝐴 / 𝐵) ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2051 ≠ wne 2969 (class class class)co 6982 ℂcc 10339 0cc0 10341 / cdiv 11104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2752 ax-sep 5064 ax-nul 5071 ax-pow 5123 ax-pr 5190 ax-un 7285 ax-resscn 10398 ax-1cn 10399 ax-icn 10400 ax-addcl 10401 ax-addrcl 10402 ax-mulcl 10403 ax-mulrcl 10404 ax-mulcom 10405 ax-addass 10406 ax-mulass 10407 ax-distr 10408 ax-i2m1 10409 ax-1ne0 10410 ax-1rid 10411 ax-rnegex 10412 ax-rrecex 10413 ax-cnre 10414 ax-pre-lttri 10415 ax-pre-lttrn 10416 ax-pre-ltadd 10417 ax-pre-mulgt0 10418 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2551 df-eu 2589 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3419 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4182 df-if 4354 df-pw 4427 df-sn 4445 df-pr 4447 df-op 4451 df-uni 4718 df-br 4935 df-opab 4997 df-mpt 5014 df-id 5316 df-po 5330 df-so 5331 df-xp 5417 df-rel 5418 df-cnv 5419 df-co 5420 df-dm 5421 df-rn 5422 df-res 5423 df-ima 5424 df-iota 6157 df-fun 6195 df-fn 6196 df-f 6197 df-f1 6198 df-fo 6199 df-f1o 6200 df-fv 6201 df-riota 6943 df-ov 6985 df-oprab 6986 df-mpo 6987 df-er 8095 df-en 8313 df-dom 8314 df-sdom 8315 df-pnf 10482 df-mnf 10483 df-xr 10484 df-ltxr 10485 df-le 10486 df-sub 10678 df-neg 10679 df-div 11105 |
This theorem is referenced by: divcan1i 11191 halfpm6th 11674 sqdivi 13369 bpoly3 15278 bpoly4 15279 cos1bnd 15406 cospi 24776 sinhalfpip 24796 sinhalfpim 24797 coshalfpip 24798 coshalfpim 24799 sincosq1eq 24816 sincos6thpi 24819 sincos3rdpi 24820 cxpsqrt 25002 1cubr 25136 quart1cl 25148 quart1lem 25149 quart1 25150 dvatan 25229 log2cnv 25239 log2tlbnd 25240 bclbnd 25573 bposlem8 25584 bposlem9 25585 dp20h 30325 dpmul10 30341 dpmul100 30343 dp3mul10 30344 dpexpp1 30354 dpadd2 30356 quad3 32473 areacirc 34468 areaquad 39260 lhe4.4ex1a 40118 stoweidlem13 41764 stoweidlem26 41777 wallispilem4 41819 wallispi 41821 dirkerper 41847 fourierdlem103 41960 fourierswlem 41981 fouriersw 41982 |
Copyright terms: Public domain | W3C validator |