Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > divcli | Structured version Visualization version GIF version |
Description: Closure law for division. (Contributed by NM, 2-Feb-1995.) (Revised by Mario Carneiro, 17-Feb-2014.) |
Ref | Expression |
---|---|
divclz.1 | ⊢ 𝐴 ∈ ℂ |
divclz.2 | ⊢ 𝐵 ∈ ℂ |
divcl.3 | ⊢ 𝐵 ≠ 0 |
Ref | Expression |
---|---|
divcli | ⊢ (𝐴 / 𝐵) ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divcl.3 | . 2 ⊢ 𝐵 ≠ 0 | |
2 | divclz.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
3 | divclz.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
4 | 2, 3 | divclzi 11803 | . 2 ⊢ (𝐵 ≠ 0 → (𝐴 / 𝐵) ∈ ℂ) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ (𝐴 / 𝐵) ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 ≠ wne 2940 (class class class)co 7329 ℂcc 10962 0cc0 10964 / cdiv 11725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-po 5526 df-so 5527 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-div 11726 |
This theorem is referenced by: divcan1i 11812 halfpm6th 12287 sqdivi 13995 bpoly3 15859 bpoly4 15860 cos1bnd 15987 cospi 25727 sincosq1eq 25767 sincos6thpi 25770 sincos3rdpi 25771 cxpsqrt 25956 1cubr 26090 quart1cl 26102 quart1lem 26103 quart1 26104 dvatan 26183 log2cnv 26192 log2tlbnd 26193 bclbnd 26526 bposlem8 26537 bposlem9 26538 dp20h 31381 dpmul10 31397 dpmul100 31399 dp3mul10 31400 dpexpp1 31410 dpadd2 31412 quad3 33868 areacirc 35968 areaquad 41298 lhe4.4ex1a 42257 stoweidlem13 43879 stoweidlem26 43892 wallispilem4 43934 wallispi 43936 dirkerper 43962 fourierdlem103 44075 fourierswlem 44096 fouriersw 44097 |
Copyright terms: Public domain | W3C validator |