MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divcli Structured version   Visualization version   GIF version

Theorem divcli 12010
Description: Closure law for division. (Contributed by NM, 2-Feb-1995.) (Revised by Mario Carneiro, 17-Feb-2014.)
Hypotheses
Ref Expression
divclz.1 𝐴 ∈ ℂ
divclz.2 𝐵 ∈ ℂ
divcl.3 𝐵 ≠ 0
Assertion
Ref Expression
divcli (𝐴 / 𝐵) ∈ ℂ

Proof of Theorem divcli
StepHypRef Expression
1 divcl.3 . 2 𝐵 ≠ 0
2 divclz.1 . . 3 𝐴 ∈ ℂ
3 divclz.2 . . 3 𝐵 ∈ ℂ
42, 3divclzi 12003 . 2 (𝐵 ≠ 0 → (𝐴 / 𝐵) ∈ ℂ)
51, 4ax-mp 5 1 (𝐴 / 𝐵) ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  wne 2939  (class class class)co 7432  cc 11154  0cc0 11156   / cdiv 11921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-po 5591  df-so 5592  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922
This theorem is referenced by:  divcan1i  12012  halfpm6th  12490  sqdivi  14225  bpoly3  16095  bpoly4  16096  cos1bnd  16224  cospi  26515  sincosq1eq  26555  tan4thpi  26557  sincos6thpi  26559  sincos3rdpi  26560  cxpsqrt  26746  1cubr  26886  quart1cl  26898  quart1lem  26899  quart1  26900  dvatan  26979  log2cnv  26988  log2tlbnd  26989  bclbnd  27325  bposlem8  27336  bposlem9  27337  dp20h  32862  dpmul10  32878  dpmul100  32880  dp3mul10  32881  dpexpp1  32891  dpadd2  32893  quad3  35676  areacirc  37721  cxpi11d  42384  tanhalfpim  42390  tan3rdpi  42391  areaquad  43233  lhe4.4ex1a  44353  stoweidlem13  46033  stoweidlem26  46046  wallispilem4  46088  wallispi  46090  dirkerper  46116  fourierdlem103  46229  fourierswlem  46250  fouriersw  46251
  Copyright terms: Public domain W3C validator