| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divcli | Structured version Visualization version GIF version | ||
| Description: Closure law for division. (Contributed by NM, 2-Feb-1995.) (Revised by Mario Carneiro, 17-Feb-2014.) |
| Ref | Expression |
|---|---|
| divclz.1 | ⊢ 𝐴 ∈ ℂ |
| divclz.2 | ⊢ 𝐵 ∈ ℂ |
| divcl.3 | ⊢ 𝐵 ≠ 0 |
| Ref | Expression |
|---|---|
| divcli | ⊢ (𝐴 / 𝐵) ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divcl.3 | . 2 ⊢ 𝐵 ≠ 0 | |
| 2 | divclz.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
| 3 | divclz.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
| 4 | 2, 3 | divclzi 11981 | . 2 ⊢ (𝐵 ≠ 0 → (𝐴 / 𝐵) ∈ ℂ) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ (𝐴 / 𝐵) ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ≠ wne 2933 (class class class)co 7410 ℂcc 11132 0cc0 11134 / cdiv 11899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 |
| This theorem is referenced by: divcan1i 11990 halfpm6th 12468 sqdivi 14208 bpoly3 16079 bpoly4 16080 cos1bnd 16210 cospi 26438 sincosq1eq 26478 tan4thpi 26480 sincos6thpi 26482 sincos3rdpi 26483 cxpsqrt 26669 1cubr 26809 quart1cl 26821 quart1lem 26822 quart1 26823 dvatan 26902 log2cnv 26911 log2tlbnd 26912 bclbnd 27248 bposlem8 27259 bposlem9 27260 dp20h 32858 dpmul10 32874 dpmul100 32876 dp3mul10 32877 dpexpp1 32887 dpadd2 32889 cos9thpiminplylem4 33824 cos9thpiminplylem5 33825 quad3 35697 areacirc 37742 cxpi11d 42359 tanhalfpim 42365 tan3rdpi 42366 areaquad 43207 lhe4.4ex1a 44320 stoweidlem13 46009 stoweidlem26 46022 wallispilem4 46064 wallispi 46066 dirkerper 46092 fourierdlem103 46205 fourierswlem 46226 fouriersw 46227 |
| Copyright terms: Public domain | W3C validator |