| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divcli | Structured version Visualization version GIF version | ||
| Description: Closure law for division. (Contributed by NM, 2-Feb-1995.) (Revised by Mario Carneiro, 17-Feb-2014.) |
| Ref | Expression |
|---|---|
| divclz.1 | ⊢ 𝐴 ∈ ℂ |
| divclz.2 | ⊢ 𝐵 ∈ ℂ |
| divcl.3 | ⊢ 𝐵 ≠ 0 |
| Ref | Expression |
|---|---|
| divcli | ⊢ (𝐴 / 𝐵) ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divcl.3 | . 2 ⊢ 𝐵 ≠ 0 | |
| 2 | divclz.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
| 3 | divclz.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
| 4 | 2, 3 | divclzi 11923 | . 2 ⊢ (𝐵 ≠ 0 → (𝐴 / 𝐵) ∈ ℂ) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ (𝐴 / 𝐵) ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ≠ wne 2926 (class class class)co 7389 ℂcc 11072 0cc0 11074 / cdiv 11841 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-po 5548 df-so 5549 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 |
| This theorem is referenced by: divcan1i 11932 halfpm6th 12410 sqdivi 14156 bpoly3 16030 bpoly4 16031 cos1bnd 16161 cospi 26387 sincosq1eq 26427 tan4thpi 26429 sincos6thpi 26431 sincos3rdpi 26432 cxpsqrt 26618 1cubr 26758 quart1cl 26770 quart1lem 26771 quart1 26772 dvatan 26851 log2cnv 26860 log2tlbnd 26861 bclbnd 27197 bposlem8 27208 bposlem9 27209 dp20h 32805 dpmul10 32821 dpmul100 32823 dp3mul10 32824 dpexpp1 32834 dpadd2 32836 cos9thpiminplylem4 33781 cos9thpiminplylem5 33782 quad3 35657 areacirc 37702 cxpi11d 42326 tanhalfpim 42332 tan3rdpi 42335 sin2t3rdpi 42336 cos2t3rdpi 42337 sin4t3rdpi 42338 cos4t3rdpi 42339 areaquad 43198 lhe4.4ex1a 44311 stoweidlem13 46004 stoweidlem26 46017 wallispilem4 46059 wallispi 46061 dirkerper 46087 fourierdlem103 46200 fourierswlem 46221 fouriersw 46222 |
| Copyright terms: Public domain | W3C validator |