MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divcli Structured version   Visualization version   GIF version

Theorem divcli 11930
Description: Closure law for division. (Contributed by NM, 2-Feb-1995.) (Revised by Mario Carneiro, 17-Feb-2014.)
Hypotheses
Ref Expression
divclz.1 𝐴 ∈ ℂ
divclz.2 𝐵 ∈ ℂ
divcl.3 𝐵 ≠ 0
Assertion
Ref Expression
divcli (𝐴 / 𝐵) ∈ ℂ

Proof of Theorem divcli
StepHypRef Expression
1 divcl.3 . 2 𝐵 ≠ 0
2 divclz.1 . . 3 𝐴 ∈ ℂ
3 divclz.2 . . 3 𝐵 ∈ ℂ
42, 3divclzi 11923 . 2 (𝐵 ≠ 0 → (𝐴 / 𝐵) ∈ ℂ)
51, 4ax-mp 5 1 (𝐴 / 𝐵) ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  wne 2926  (class class class)co 7389  cc 11072  0cc0 11074   / cdiv 11841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-po 5548  df-so 5549  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842
This theorem is referenced by:  divcan1i  11932  halfpm6th  12410  sqdivi  14156  bpoly3  16030  bpoly4  16031  cos1bnd  16161  cospi  26387  sincosq1eq  26427  tan4thpi  26429  sincos6thpi  26431  sincos3rdpi  26432  cxpsqrt  26618  1cubr  26758  quart1cl  26770  quart1lem  26771  quart1  26772  dvatan  26851  log2cnv  26860  log2tlbnd  26861  bclbnd  27197  bposlem8  27208  bposlem9  27209  dp20h  32805  dpmul10  32821  dpmul100  32823  dp3mul10  32824  dpexpp1  32834  dpadd2  32836  cos9thpiminplylem4  33781  cos9thpiminplylem5  33782  quad3  35657  areacirc  37702  cxpi11d  42326  tanhalfpim  42332  tan3rdpi  42335  sin2t3rdpi  42336  cos2t3rdpi  42337  sin4t3rdpi  42338  cos4t3rdpi  42339  areaquad  43198  lhe4.4ex1a  44311  stoweidlem13  46004  stoweidlem26  46017  wallispilem4  46059  wallispi  46061  dirkerper  46087  fourierdlem103  46200  fourierswlem  46221  fouriersw  46222
  Copyright terms: Public domain W3C validator