MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divval Structured version   Visualization version   GIF version

Theorem divval 11294
Description: Value of division: if 𝐴 and 𝐵 are complex numbers with 𝐵 nonzero, then (𝐴 / 𝐵) is the (unique) complex number such that (𝐵 · 𝑥) = 𝐴. (Contributed by NM, 8-May-1999.) (Revised by Mario Carneiro, 17-Feb-2014.)
Assertion
Ref Expression
divval ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem divval
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifsn 4713 . . 3 (𝐵 ∈ (ℂ ∖ {0}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
2 eqeq2 2833 . . . . 5 (𝑧 = 𝐴 → ((𝑦 · 𝑥) = 𝑧 ↔ (𝑦 · 𝑥) = 𝐴))
32riotabidv 7110 . . . 4 (𝑧 = 𝐴 → (𝑥 ∈ ℂ (𝑦 · 𝑥) = 𝑧) = (𝑥 ∈ ℂ (𝑦 · 𝑥) = 𝐴))
4 oveq1 7157 . . . . . 6 (𝑦 = 𝐵 → (𝑦 · 𝑥) = (𝐵 · 𝑥))
54eqeq1d 2823 . . . . 5 (𝑦 = 𝐵 → ((𝑦 · 𝑥) = 𝐴 ↔ (𝐵 · 𝑥) = 𝐴))
65riotabidv 7110 . . . 4 (𝑦 = 𝐵 → (𝑥 ∈ ℂ (𝑦 · 𝑥) = 𝐴) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
7 df-div 11292 . . . 4 / = (𝑧 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 ∈ ℂ (𝑦 · 𝑥) = 𝑧))
8 riotaex 7112 . . . 4 (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴) ∈ V
93, 6, 7, 8ovmpo 7304 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ (ℂ ∖ {0})) → (𝐴 / 𝐵) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
101, 9sylan2br 596 . 2 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
11103impb 1111 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  cdif 3933  {csn 4561  crio 7107  (class class class)co 7150  cc 10529  0cc0 10531   · cmul 10536   / cdiv 11291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pr 5322
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-iota 6309  df-fun 6352  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-div 11292
This theorem is referenced by:  divmul  11295  divcl  11298  cnflddiv  20569  divcn  23470  rexdiv  30597
  Copyright terms: Public domain W3C validator