| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divval | Structured version Visualization version GIF version | ||
| Description: Value of division: if 𝐴 and 𝐵 are complex numbers with 𝐵 nonzero, then (𝐴 / 𝐵) is the (unique) complex number such that (𝐵 · 𝑥) = 𝐴. (Contributed by NM, 8-May-1999.) (Revised by Mario Carneiro, 17-Feb-2014.) |
| Ref | Expression |
|---|---|
| divval | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = (℩𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn 4750 | . . 3 ⊢ (𝐵 ∈ (ℂ ∖ {0}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) | |
| 2 | eqeq2 2741 | . . . . 5 ⊢ (𝑧 = 𝐴 → ((𝑦 · 𝑥) = 𝑧 ↔ (𝑦 · 𝑥) = 𝐴)) | |
| 3 | 2 | riotabidv 7346 | . . . 4 ⊢ (𝑧 = 𝐴 → (℩𝑥 ∈ ℂ (𝑦 · 𝑥) = 𝑧) = (℩𝑥 ∈ ℂ (𝑦 · 𝑥) = 𝐴)) |
| 4 | oveq1 7394 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝑦 · 𝑥) = (𝐵 · 𝑥)) | |
| 5 | 4 | eqeq1d 2731 | . . . . 5 ⊢ (𝑦 = 𝐵 → ((𝑦 · 𝑥) = 𝐴 ↔ (𝐵 · 𝑥) = 𝐴)) |
| 6 | 5 | riotabidv 7346 | . . . 4 ⊢ (𝑦 = 𝐵 → (℩𝑥 ∈ ℂ (𝑦 · 𝑥) = 𝐴) = (℩𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)) |
| 7 | df-div 11836 | . . . 4 ⊢ / = (𝑧 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑥 ∈ ℂ (𝑦 · 𝑥) = 𝑧)) | |
| 8 | riotaex 7348 | . . . 4 ⊢ (℩𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴) ∈ V | |
| 9 | 3, 6, 7, 8 | ovmpo 7549 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ (ℂ ∖ {0})) → (𝐴 / 𝐵) = (℩𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)) |
| 10 | 1, 9 | sylan2br 595 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) = (℩𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)) |
| 11 | 10 | 3impb 1114 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = (℩𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3911 {csn 4589 ℩crio 7343 (class class class)co 7387 ℂcc 11066 0cc0 11068 · cmul 11073 / cdiv 11835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-div 11836 |
| This theorem is referenced by: divmul 11840 divcl 11843 cnflddiv 21312 cnflddivOLD 21313 divcnOLD 24757 divcn 24759 rexdiv 32846 |
| Copyright terms: Public domain | W3C validator |