![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divval | Structured version Visualization version GIF version |
Description: Value of division: if 𝐴 and 𝐵 are complex numbers with 𝐵 nonzero, then (𝐴 / 𝐵) is the (unique) complex number such that (𝐵 · 𝑥) = 𝐴. (Contributed by NM, 8-May-1999.) (Revised by Mario Carneiro, 17-Feb-2014.) |
Ref | Expression |
---|---|
divval | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = (℩𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 4811 | . . 3 ⊢ (𝐵 ∈ (ℂ ∖ {0}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) | |
2 | eqeq2 2752 | . . . . 5 ⊢ (𝑧 = 𝐴 → ((𝑦 · 𝑥) = 𝑧 ↔ (𝑦 · 𝑥) = 𝐴)) | |
3 | 2 | riotabidv 7406 | . . . 4 ⊢ (𝑧 = 𝐴 → (℩𝑥 ∈ ℂ (𝑦 · 𝑥) = 𝑧) = (℩𝑥 ∈ ℂ (𝑦 · 𝑥) = 𝐴)) |
4 | oveq1 7455 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝑦 · 𝑥) = (𝐵 · 𝑥)) | |
5 | 4 | eqeq1d 2742 | . . . . 5 ⊢ (𝑦 = 𝐵 → ((𝑦 · 𝑥) = 𝐴 ↔ (𝐵 · 𝑥) = 𝐴)) |
6 | 5 | riotabidv 7406 | . . . 4 ⊢ (𝑦 = 𝐵 → (℩𝑥 ∈ ℂ (𝑦 · 𝑥) = 𝐴) = (℩𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)) |
7 | df-div 11948 | . . . 4 ⊢ / = (𝑧 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑥 ∈ ℂ (𝑦 · 𝑥) = 𝑧)) | |
8 | riotaex 7408 | . . . 4 ⊢ (℩𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴) ∈ V | |
9 | 3, 6, 7, 8 | ovmpo 7610 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ (ℂ ∖ {0})) → (𝐴 / 𝐵) = (℩𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)) |
10 | 1, 9 | sylan2br 594 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) = (℩𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)) |
11 | 10 | 3impb 1115 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = (℩𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∖ cdif 3973 {csn 4648 ℩crio 7403 (class class class)co 7448 ℂcc 11182 0cc0 11184 · cmul 11189 / cdiv 11947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-div 11948 |
This theorem is referenced by: divmul 11952 divcl 11955 cnflddiv 21436 cnflddivOLD 21437 divcnOLD 24909 divcn 24911 rexdiv 32890 |
Copyright terms: Public domain | W3C validator |