MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divval Structured version   Visualization version   GIF version

Theorem divval 11903
Description: Value of division: if 𝐴 and 𝐵 are complex numbers with 𝐵 nonzero, then (𝐴 / 𝐵) is the (unique) complex number such that (𝐵 · 𝑥) = 𝐴. (Contributed by NM, 8-May-1999.) (Revised by Mario Carneiro, 17-Feb-2014.)
Assertion
Ref Expression
divval ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem divval
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifsn 4767 . . 3 (𝐵 ∈ (ℂ ∖ {0}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
2 eqeq2 2748 . . . . 5 (𝑧 = 𝐴 → ((𝑦 · 𝑥) = 𝑧 ↔ (𝑦 · 𝑥) = 𝐴))
32riotabidv 7369 . . . 4 (𝑧 = 𝐴 → (𝑥 ∈ ℂ (𝑦 · 𝑥) = 𝑧) = (𝑥 ∈ ℂ (𝑦 · 𝑥) = 𝐴))
4 oveq1 7417 . . . . . 6 (𝑦 = 𝐵 → (𝑦 · 𝑥) = (𝐵 · 𝑥))
54eqeq1d 2738 . . . . 5 (𝑦 = 𝐵 → ((𝑦 · 𝑥) = 𝐴 ↔ (𝐵 · 𝑥) = 𝐴))
65riotabidv 7369 . . . 4 (𝑦 = 𝐵 → (𝑥 ∈ ℂ (𝑦 · 𝑥) = 𝐴) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
7 df-div 11900 . . . 4 / = (𝑧 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 ∈ ℂ (𝑦 · 𝑥) = 𝑧))
8 riotaex 7371 . . . 4 (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴) ∈ V
93, 6, 7, 8ovmpo 7572 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ (ℂ ∖ {0})) → (𝐴 / 𝐵) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
101, 9sylan2br 595 . 2 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
11103impb 1114 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  cdif 3928  {csn 4606  crio 7366  (class class class)co 7410  cc 11132  0cc0 11134   · cmul 11139   / cdiv 11899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-div 11900
This theorem is referenced by:  divmul  11904  divcl  11907  cnflddiv  21368  cnflddivOLD  21369  divcnOLD  24813  divcn  24815  rexdiv  32905
  Copyright terms: Public domain W3C validator