Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1div0 | Structured version Visualization version GIF version |
Description: You can't divide by zero, because division explicitly excludes zero from the domain of the function. Thus, by the definition of function value, it evaluates to the empty set. (This theorem is for information only and normally is not referenced by other proofs. To be meaningful, it assumes that ∅ is not a complex number, which depends on the particular complex number construction that is used.) (Contributed by Mario Carneiro, 1-Apr-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
1div0 | ⊢ (1 / 0) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-div 11563 | . . 3 ⊢ / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) | |
2 | riotaex 7216 | . . 3 ⊢ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) ∈ V | |
3 | 1, 2 | dmmpo 7884 | . 2 ⊢ dom / = (ℂ × (ℂ ∖ {0})) |
4 | eqid 2738 | . . 3 ⊢ 0 = 0 | |
5 | eldifsni 4720 | . . . . 5 ⊢ (0 ∈ (ℂ ∖ {0}) → 0 ≠ 0) | |
6 | 5 | adantl 481 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 0 ∈ (ℂ ∖ {0})) → 0 ≠ 0) |
7 | 6 | necon2bi 2973 | . . 3 ⊢ (0 = 0 → ¬ (1 ∈ ℂ ∧ 0 ∈ (ℂ ∖ {0}))) |
8 | 4, 7 | ax-mp 5 | . 2 ⊢ ¬ (1 ∈ ℂ ∧ 0 ∈ (ℂ ∖ {0})) |
9 | ndmovg 7433 | . 2 ⊢ ((dom / = (ℂ × (ℂ ∖ {0})) ∧ ¬ (1 ∈ ℂ ∧ 0 ∈ (ℂ ∖ {0}))) → (1 / 0) = ∅) | |
10 | 3, 8, 9 | mp2an 688 | 1 ⊢ (1 / 0) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∖ cdif 3880 ∅c0 4253 {csn 4558 × cxp 5578 dom cdm 5580 ℩crio 7211 (class class class)co 7255 ℂcc 10800 0cc0 10802 1c1 10803 · cmul 10807 / cdiv 11562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-div 11563 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |