![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1div0 | Structured version Visualization version GIF version |
Description: You can't divide by zero, because division explicitly excludes zero from the domain of the function. Thus, by the definition of function value, it evaluates to the empty set. (This theorem is for information only and normally is not referenced by other proofs. To be meaningful, it assumes that ∅ is not a complex number, which depends on the particular complex number construction that is used.) (Contributed by Mario Carneiro, 1-Apr-2014.) (Proof shortened by SN, 5-Jun-2025.) (New usage is discouraged.) |
Ref | Expression |
---|---|
1div0 | ⊢ (1 / 0) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-div 11904 | . . 3 ⊢ / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) | |
2 | riotaex 7379 | . . 3 ⊢ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) ∈ V | |
3 | 1, 2 | dmmpo 8076 | . 2 ⊢ dom / = (ℂ × (ℂ ∖ {0})) |
4 | neldifsn 4797 | . . 3 ⊢ ¬ 0 ∈ (ℂ ∖ {0}) | |
5 | 4 | intnan 485 | . 2 ⊢ ¬ (1 ∈ ℂ ∧ 0 ∈ (ℂ ∖ {0})) |
6 | ndmovg 7604 | . 2 ⊢ ((dom / = (ℂ × (ℂ ∖ {0})) ∧ ¬ (1 ∈ ℂ ∧ 0 ∈ (ℂ ∖ {0}))) → (1 / 0) = ∅) | |
7 | 3, 5, 6 | mp2an 690 | 1 ⊢ (1 / 0) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∖ cdif 3941 ∅c0 4322 {csn 4630 × cxp 5676 dom cdm 5678 ℩crio 7374 (class class class)co 7419 ℂcc 11138 0cc0 11140 1c1 11141 · cmul 11145 / cdiv 11903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-1st 7994 df-2nd 7995 df-div 11904 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |