![]() |
Metamath
Proof Explorer Theorem List (p. 120 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ltadd1dd 11901 | Addition to both sides of 'less than'. Theorem I.18 of [Apostol] p. 20. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (𝐴 + 𝐶) < (𝐵 + 𝐶)) | ||
Theorem | ltsub1dd 11902 | Subtraction from both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (𝐴 − 𝐶) < (𝐵 − 𝐶)) | ||
Theorem | ltsub2dd 11903 | Subtraction of both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (𝐶 − 𝐵) < (𝐶 − 𝐴)) | ||
Theorem | leadd1dd 11904 | Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 + 𝐶) ≤ (𝐵 + 𝐶)) | ||
Theorem | leadd2dd 11905 | Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐶 + 𝐴) ≤ (𝐶 + 𝐵)) | ||
Theorem | lesub1dd 11906 | Subtraction from both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 − 𝐶) ≤ (𝐵 − 𝐶)) | ||
Theorem | lesub2dd 11907 | Subtraction of both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐶 − 𝐵) ≤ (𝐶 − 𝐴)) | ||
Theorem | lesub3d 11908 | The result of subtracting a number less than or equal to an intermediate number from a number greater than or equal to a third number increased by the intermediate number is greater than or equal to the third number. (Contributed by AV, 13-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → (𝑋 + 𝐶) ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ≤ 𝑋) ⇒ ⊢ (𝜑 → 𝐶 ≤ (𝐴 − 𝐵)) | ||
Theorem | le2addd 11909 | Adding both side of two inequalities. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐶) & ⊢ (𝜑 → 𝐵 ≤ 𝐷) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷)) | ||
Theorem | le2subd 11910 | Subtracting both sides of two 'less than or equal to' relations. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐶) & ⊢ (𝜑 → 𝐵 ≤ 𝐷) ⇒ ⊢ (𝜑 → (𝐴 − 𝐷) ≤ (𝐶 − 𝐵)) | ||
Theorem | ltleaddd 11911 | Adding both sides of two orderings. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐶) & ⊢ (𝜑 → 𝐵 ≤ 𝐷) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷)) | ||
Theorem | leltaddd 11912 | Adding both sides of two orderings. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐶) & ⊢ (𝜑 → 𝐵 < 𝐷) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷)) | ||
Theorem | lt2addd 11913 | Adding both side of two inequalities. Theorem I.25 of [Apostol] p. 20. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐶) & ⊢ (𝜑 → 𝐵 < 𝐷) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷)) | ||
Theorem | lt2subd 11914 | Subtracting both sides of two 'less than' relations. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐶) & ⊢ (𝜑 → 𝐵 < 𝐷) ⇒ ⊢ (𝜑 → (𝐴 − 𝐷) < (𝐶 − 𝐵)) | ||
Theorem | possumd 11915 | Condition for a positive sum. (Contributed by Scott Fenton, 16-Dec-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (0 < (𝐴 + 𝐵) ↔ -𝐵 < 𝐴)) | ||
Theorem | sublt0d 11916 | When a subtraction gives a negative result. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) < 0 ↔ 𝐴 < 𝐵)) | ||
Theorem | ltaddsublt 11917 | Addition and subtraction on one side of 'less than'. (Contributed by AV, 24-Nov-2018.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 ↔ ((𝐴 + 𝐵) − 𝐶) < 𝐴)) | ||
Theorem | 1le1 11918 | One is less than or equal to one. (Contributed by David A. Wheeler, 16-Jul-2016.) |
⊢ 1 ≤ 1 | ||
Theorem | ixi 11919 | i times itself is minus 1. (Contributed by NM, 6-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
⊢ (i · i) = -1 | ||
Theorem | recextlem1 11920 | Lemma for recex 11922. (Contributed by Eric Schmidt, 23-May-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) = ((𝐴 · 𝐴) + (𝐵 · 𝐵))) | ||
Theorem | recextlem2 11921 | Lemma for recex 11922. (Contributed by Eric Schmidt, 23-May-2007.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) ≠ 0) → ((𝐴 · 𝐴) + (𝐵 · 𝐵)) ≠ 0) | ||
Theorem | recex 11922* | Existence of reciprocal of nonzero complex number. (Contributed by Eric Schmidt, 22-May-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1) | ||
Theorem | mulcand 11923 | Cancellation law for multiplication. Theorem I.7 of [Apostol] p. 18. (Contributed by NM, 26-Jan-1995.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | mulcan2d 11924 | Cancellation law for multiplication. Theorem I.7 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐶) = (𝐵 · 𝐶) ↔ 𝐴 = 𝐵)) | ||
Theorem | mulcanad 11925 | Cancellation of a nonzero factor on the left in an equation. One-way deduction form of mulcand 11923. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ≠ 0) & ⊢ (𝜑 → (𝐶 · 𝐴) = (𝐶 · 𝐵)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | mulcan2ad 11926 | Cancellation of a nonzero factor on the right in an equation. One-way deduction form of mulcan2d 11924. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ≠ 0) & ⊢ (𝜑 → (𝐴 · 𝐶) = (𝐵 · 𝐶)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | mulcan 11927 | Cancellation law for multiplication (full theorem form). Theorem I.7 of [Apostol] p. 18. (Contributed by NM, 29-Jan-1995.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | mulcan2 11928 | Cancellation law for multiplication. (Contributed by NM, 21-Jan-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐶) = (𝐵 · 𝐶) ↔ 𝐴 = 𝐵)) | ||
Theorem | mulcani 11929 | Cancellation law for multiplication. Theorem I.7 of [Apostol] p. 18. (Contributed by NM, 26-Jan-1995.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐶 ≠ 0 ⇒ ⊢ ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵) | ||
Theorem | mul0or 11930 | If a product is zero, one of its factors must be zero. Theorem I.11 of [Apostol] p. 18. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0))) | ||
Theorem | mulne0b 11931 | The product of two nonzero numbers is nonzero. (Contributed by NM, 1-Aug-2004.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) ↔ (𝐴 · 𝐵) ≠ 0)) | ||
Theorem | mulne0 11932 | The product of two nonzero numbers is nonzero. (Contributed by NM, 30-Dec-2007.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴 · 𝐵) ≠ 0) | ||
Theorem | mulne0i 11933 | The product of two nonzero numbers is nonzero. (Contributed by NM, 15-Feb-1995.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐴 ≠ 0 & ⊢ 𝐵 ≠ 0 ⇒ ⊢ (𝐴 · 𝐵) ≠ 0 | ||
Theorem | muleqadd 11934 | Property of numbers whose product equals their sum. Equation 5 of [Kreyszig] p. 12. (Contributed by NM, 13-Nov-2006.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = (𝐴 + 𝐵) ↔ ((𝐴 − 1) · (𝐵 − 1)) = 1)) | ||
Theorem | receu 11935* | Existential uniqueness of reciprocals. Theorem I.8 of [Apostol] p. 18. (Contributed by NM, 29-Jan-1995.) (Revised by Mario Carneiro, 17-Feb-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴) | ||
Theorem | mulnzcnf 11936 | Multiplication maps nonzero complex numbers to nonzero complex numbers. (Contributed by Steve Rodriguez, 23-Feb-2007.) |
⊢ ( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))):((ℂ ∖ {0}) × (ℂ ∖ {0}))⟶(ℂ ∖ {0}) | ||
Theorem | msq0i 11937 | A number is zero iff its square is zero (where square is represented using multiplication). (Contributed by NM, 28-Jul-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ ((𝐴 · 𝐴) = 0 ↔ 𝐴 = 0) | ||
Theorem | mul0ori 11938 | If a product is zero, one of its factors must be zero. Theorem I.11 of [Apostol] p. 18. (Contributed by NM, 7-Oct-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0)) | ||
Theorem | msq0d 11939 | A number is zero iff its square is zero (where square is represented using multiplication). (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐴) = 0 ↔ 𝐴 = 0)) | ||
Theorem | mul0ord 11940 | If a product is zero, one of its factors must be zero. Theorem I.11 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0))) | ||
Theorem | mulne0bd 11941 | The product of two nonzero numbers is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) ↔ (𝐴 · 𝐵) ≠ 0)) | ||
Theorem | mulne0d 11942 | The product of two nonzero numbers is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ≠ 0) | ||
Theorem | mulcan1g 11943 | A generalized form of the cancellation law for multiplication. (Contributed by Scott Fenton, 17-Jun-2013.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) = (𝐴 · 𝐶) ↔ (𝐴 = 0 ∨ 𝐵 = 𝐶))) | ||
Theorem | mulcan2g 11944 | A generalized form of the cancellation law for multiplication. (Contributed by Scott Fenton, 17-Jun-2013.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐶) = (𝐵 · 𝐶) ↔ (𝐴 = 𝐵 ∨ 𝐶 = 0))) | ||
Theorem | mulne0bad 11945 | A factor of a nonzero complex number is nonzero. Partial converse of mulne0d 11942 and consequence of mulne0bd 11941. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴 · 𝐵) ≠ 0) ⇒ ⊢ (𝜑 → 𝐴 ≠ 0) | ||
Theorem | mulne0bbd 11946 | A factor of a nonzero complex number is nonzero. Partial converse of mulne0d 11942 and consequence of mulne0bd 11941. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴 · 𝐵) ≠ 0) ⇒ ⊢ (𝜑 → 𝐵 ≠ 0) | ||
Syntax | cdiv 11947 | Extend class notation to include division. |
class / | ||
Definition | df-div 11948* | Define division. Theorem divmuli 12048 relates it to multiplication, and divcli 12036 and redivcli 12061 prove its closure laws. (Contributed by NM, 2-Feb-1995.) Use divval 11951 instead. (Revised by Mario Carneiro, 1-Apr-2014.) (New usage is discouraged.) |
⊢ / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) | ||
Theorem | 1div0 11949 | You can't divide by zero, because division explicitly excludes zero from the domain of the function. Thus, by the definition of function value, it evaluates to the empty set. (This theorem is for information only and normally is not referenced by other proofs. To be meaningful, it assumes that ∅ is not a complex number, which depends on the particular complex number construction that is used.) (Contributed by Mario Carneiro, 1-Apr-2014.) (Proof shortened by SN, 5-Jun-2025.) (New usage is discouraged.) |
⊢ (1 / 0) = ∅ | ||
Theorem | 1div0OLD 11950 | Obsolete version of 1div0 11949 as of 5-Jun-2025. (Contributed by Mario Carneiro, 1-Apr-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (1 / 0) = ∅ | ||
Theorem | divval 11951* | Value of division: if 𝐴 and 𝐵 are complex numbers with 𝐵 nonzero, then (𝐴 / 𝐵) is the (unique) complex number such that (𝐵 · 𝑥) = 𝐴. (Contributed by NM, 8-May-1999.) (Revised by Mario Carneiro, 17-Feb-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = (℩𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)) | ||
Theorem | divmul 11952 | Relationship between division and multiplication. (Contributed by NM, 2-Aug-2004.) (Revised by Mario Carneiro, 17-Feb-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) = 𝐵 ↔ (𝐶 · 𝐵) = 𝐴)) | ||
Theorem | divmul2 11953 | Relationship between division and multiplication. (Contributed by NM, 7-Feb-2006.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) = 𝐵 ↔ 𝐴 = (𝐶 · 𝐵))) | ||
Theorem | divmul3 11954 | Relationship between division and multiplication. (Contributed by NM, 13-Feb-2006.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) = 𝐵 ↔ 𝐴 = (𝐵 · 𝐶))) | ||
Theorem | divcl 11955 | Closure law for division. (Contributed by NM, 21-Jul-2001.) (Proof shortened by Mario Carneiro, 17-Feb-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℂ) | ||
Theorem | reccl 11956 | Closure law for reciprocal. (Contributed by NM, 30-Apr-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ) | ||
Theorem | divcan2 11957 | A cancellation law for division. (Contributed by NM, 3-Feb-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐵 · (𝐴 / 𝐵)) = 𝐴) | ||
Theorem | divcan1 11958 | A cancellation law for division. (Contributed by NM, 5-Jun-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝐴 / 𝐵) · 𝐵) = 𝐴) | ||
Theorem | diveq0 11959 | A ratio is zero iff the numerator is zero. (Contributed by NM, 20-Apr-2006.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝐴 / 𝐵) = 0 ↔ 𝐴 = 0)) | ||
Theorem | divne0b 11960 | The ratio of nonzero numbers is nonzero. (Contributed by NM, 2-Aug-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 ≠ 0 ↔ (𝐴 / 𝐵) ≠ 0)) | ||
Theorem | divne0 11961 | The ratio of nonzero numbers is nonzero. (Contributed by NM, 28-Dec-2007.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ≠ 0) | ||
Theorem | recne0 11962 | The reciprocal of a nonzero number is nonzero. (Contributed by NM, 9-Feb-2006.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ≠ 0) | ||
Theorem | recid 11963 | Multiplication of a number and its reciprocal. (Contributed by NM, 25-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 · (1 / 𝐴)) = 1) | ||
Theorem | recid2 11964 | Multiplication of a number and its reciprocal. (Contributed by NM, 22-Jun-2006.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · 𝐴) = 1) | ||
Theorem | divrec 11965 | Relationship between division and reciprocal. Theorem I.9 of [Apostol] p. 18. (Contributed by NM, 2-Aug-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) | ||
Theorem | divrec2 11966 | Relationship between division and reciprocal. (Contributed by NM, 7-Feb-2006.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴)) | ||
Theorem | divass 11967 | An associative law for division. (Contributed by NM, 2-Aug-2004.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶))) | ||
Theorem | div23 11968 | A commutative/associative law for division. (Contributed by NM, 2-Aug-2004.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵)) | ||
Theorem | div32 11969 | A commutative/associative law for division. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℂ) → ((𝐴 / 𝐵) · 𝐶) = (𝐴 · (𝐶 / 𝐵))) | ||
Theorem | div13 11970 | A commutative/associative law for division. (Contributed by NM, 22-Apr-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℂ) → ((𝐴 / 𝐵) · 𝐶) = ((𝐶 / 𝐵) · 𝐴)) | ||
Theorem | div12 11971 | A commutative/associative law for division. (Contributed by NM, 30-Apr-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 · (𝐵 / 𝐶)) = (𝐵 · (𝐴 / 𝐶))) | ||
Theorem | divmulass 11972 | An associative law for division and multiplication. (Contributed by AV, 10-Jul-2021.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → ((𝐴 · (𝐵 / 𝐷)) · 𝐶) = ((𝐴 · 𝐵) · (𝐶 / 𝐷))) | ||
Theorem | divmulasscom 11973 | An associative/commutative law for division and multiplication. (Contributed by AV, 10-Jul-2021.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → ((𝐴 · (𝐵 / 𝐷)) · 𝐶) = (𝐵 · ((𝐴 · 𝐶) / 𝐷))) | ||
Theorem | divdir 11974 | Distribution of division over addition. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶))) | ||
Theorem | divcan3 11975 | A cancellation law for division. (Contributed by NM, 3-Feb-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝐵 · 𝐴) / 𝐵) = 𝐴) | ||
Theorem | divcan4 11976 | A cancellation law for division. (Contributed by NM, 8-Feb-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) / 𝐵) = 𝐴) | ||
Theorem | div11 11977 | One-to-one relationship for division. (Contributed by NM, 20-Apr-2006.) (Proof shortened by Mario Carneiro, 27-May-2016.) (Proof shortened by SN, 9-Jul-2025.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) = (𝐵 / 𝐶) ↔ 𝐴 = 𝐵)) | ||
Theorem | div11OLD 11978 | Obsolete version of div11 11977 as of 9-Jul-2025. (Contributed by NM, 20-Apr-2006.) (Proof shortened by Mario Carneiro, 27-May-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) = (𝐵 / 𝐶) ↔ 𝐴 = 𝐵)) | ||
Theorem | diveq1 11979 | Equality in terms of unit ratio. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝐴 / 𝐵) = 1 ↔ 𝐴 = 𝐵)) | ||
Theorem | divid 11980 | A number divided by itself is one. (Contributed by NM, 1-Aug-2004.) (Proof shortened by SN, 9-Jul-2025.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 / 𝐴) = 1) | ||
Theorem | dividOLD 11981 | Obsolete version of divid 11980 as of 9-Jul-2025. (Contributed by NM, 1-Aug-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 / 𝐴) = 1) | ||
Theorem | div0 11982 | Division into zero is zero. (Contributed by NM, 14-Mar-2005.) (Proof shortened by SN, 9-Jul-2025.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (0 / 𝐴) = 0) | ||
Theorem | div0OLD 11983 | Obsolete version of div0 11982 as of 9-Jul-2025. (Contributed by NM, 14-Mar-2005.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (0 / 𝐴) = 0) | ||
Theorem | div1 11984 | A number divided by 1 is itself. (Contributed by NM, 9-Jan-2002.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴) | ||
Theorem | 1div1e1 11985 | 1 divided by 1 is 1. (Contributed by David A. Wheeler, 7-Dec-2018.) |
⊢ (1 / 1) = 1 | ||
Theorem | divneg 11986 | Move negative sign inside of a division. (Contributed by NM, 17-Sep-2004.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → -(𝐴 / 𝐵) = (-𝐴 / 𝐵)) | ||
Theorem | muldivdir 11987 | Distribution of division over addition with a multiplication. (Contributed by AV, 1-Jul-2021.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐶 · 𝐴) + 𝐵) / 𝐶) = (𝐴 + (𝐵 / 𝐶))) | ||
Theorem | divsubdir 11988 | Distribution of division over subtraction. (Contributed by NM, 4-Mar-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 − 𝐵) / 𝐶) = ((𝐴 / 𝐶) − (𝐵 / 𝐶))) | ||
Theorem | subdivcomb1 11989 | Bring a term in a subtraction into the numerator. (Contributed by Scott Fenton, 3-Jul-2013.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐶 · 𝐴) − 𝐵) / 𝐶) = (𝐴 − (𝐵 / 𝐶))) | ||
Theorem | subdivcomb2 11990 | Bring a term in a subtraction into the numerator. (Contributed by Scott Fenton, 3-Jul-2013.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 − (𝐶 · 𝐵)) / 𝐶) = ((𝐴 / 𝐶) − 𝐵)) | ||
Theorem | recrec 11991 | A number is equal to the reciprocal of its reciprocal. Theorem I.10 of [Apostol] p. 18. (Contributed by NM, 26-Sep-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / (1 / 𝐴)) = 𝐴) | ||
Theorem | rec11 11992 | Reciprocal is one-to-one. (Contributed by NM, 16-Sep-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((1 / 𝐴) = (1 / 𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | rec11r 11993 | Mutual reciprocals. (Contributed by Paul Chapman, 18-Oct-2007.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((1 / 𝐴) = 𝐵 ↔ (1 / 𝐵) = 𝐴)) | ||
Theorem | divmuldiv 11994 | Multiplication of two ratios. Theorem I.14 of [Apostol] p. 18. (Contributed by NM, 1-Aug-2004.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) = ((𝐴 · 𝐵) / (𝐶 · 𝐷))) | ||
Theorem | divdivdiv 11995 | Division of two ratios. Theorem I.15 of [Apostol] p. 18. (Contributed by NM, 2-Aug-2004.) |
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶))) | ||
Theorem | divcan5 11996 | Cancellation of common factor in a ratio. (Contributed by NM, 9-Jan-2006.) |
⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐶 · 𝐴) / (𝐶 · 𝐵)) = (𝐴 / 𝐵)) | ||
Theorem | divmul13 11997 | Swap the denominators in the product of two ratios. (Contributed by NM, 3-May-2005.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) = ((𝐵 / 𝐶) · (𝐴 / 𝐷))) | ||
Theorem | divmul24 11998 | Swap the numerators in the product of two ratios. (Contributed by NM, 3-May-2005.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) = ((𝐴 / 𝐷) · (𝐵 / 𝐶))) | ||
Theorem | divmuleq 11999 | Cross-multiply in an equality of ratios. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐶) = (𝐵 / 𝐷) ↔ (𝐴 · 𝐷) = (𝐵 · 𝐶))) | ||
Theorem | recdiv 12000 | The reciprocal of a ratio. (Contributed by NM, 3-Aug-2004.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (1 / (𝐴 / 𝐵)) = (𝐵 / 𝐴)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |