MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunnatOLD Structured version   Visualization version   GIF version

Theorem wunnatOLD 17909
Description: Obsolete proof of wunnat 17908 as of 13-Oct-2024. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
wunnat.1 (πœ‘ β†’ π‘ˆ ∈ WUni)
wunnat.2 (πœ‘ β†’ 𝐢 ∈ π‘ˆ)
wunnat.3 (πœ‘ β†’ 𝐷 ∈ π‘ˆ)
Assertion
Ref Expression
wunnatOLD (πœ‘ β†’ (𝐢 Nat 𝐷) ∈ π‘ˆ)

Proof of Theorem wunnatOLD
Dummy variables 𝑓 π‘Ž 𝑔 π‘Ÿ 𝑠 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wunnat.1 . 2 (πœ‘ β†’ π‘ˆ ∈ WUni)
2 wunnat.2 . . . 4 (πœ‘ β†’ 𝐢 ∈ π‘ˆ)
3 wunnat.3 . . . 4 (πœ‘ β†’ 𝐷 ∈ π‘ˆ)
41, 2, 3wunfunc 17849 . . 3 (πœ‘ β†’ (𝐢 Func 𝐷) ∈ π‘ˆ)
51, 4, 4wunxp 10714 . 2 (πœ‘ β†’ ((𝐢 Func 𝐷) Γ— (𝐢 Func 𝐷)) ∈ π‘ˆ)
6 df-hom 17219 . . . . . . 7 Hom = Slot 14
76, 1, 3wunstr 17119 . . . . . 6 (πœ‘ β†’ (Hom β€˜π·) ∈ π‘ˆ)
81, 7wunrn 10719 . . . . 5 (πœ‘ β†’ ran (Hom β€˜π·) ∈ π‘ˆ)
91, 8wununi 10696 . . . 4 (πœ‘ β†’ βˆͺ ran (Hom β€˜π·) ∈ π‘ˆ)
10 df-base 17143 . . . . 5 Base = Slot 1
1110, 1, 2wunstr 17119 . . . 4 (πœ‘ β†’ (Baseβ€˜πΆ) ∈ π‘ˆ)
121, 9, 11wunmap 10716 . . 3 (πœ‘ β†’ (βˆͺ ran (Hom β€˜π·) ↑m (Baseβ€˜πΆ)) ∈ π‘ˆ)
131, 12wunpw 10697 . 2 (πœ‘ β†’ 𝒫 (βˆͺ ran (Hom β€˜π·) ↑m (Baseβ€˜πΆ)) ∈ π‘ˆ)
14 fvex 6894 . . . . . 6 (1st β€˜π‘“) ∈ V
15 fvex 6894 . . . . . . . . 9 (1st β€˜π‘”) ∈ V
16 ovex 7434 . . . . . . . . . . . 12 (βˆͺ ran (Hom β€˜π·) ↑m (Baseβ€˜πΆ)) ∈ V
17 ssrab2 4069 . . . . . . . . . . . . 13 {π‘Ž ∈ Xπ‘₯ ∈ (Baseβ€˜πΆ)((π‘Ÿβ€˜π‘₯)(Hom β€˜π·)(π‘ β€˜π‘₯)) ∣ βˆ€π‘₯ ∈ (Baseβ€˜πΆ)βˆ€π‘¦ ∈ (Baseβ€˜πΆ)βˆ€π‘§ ∈ (π‘₯(Hom β€˜πΆ)𝑦)((π‘Žβ€˜π‘¦)(⟨(π‘Ÿβ€˜π‘₯), (π‘Ÿβ€˜π‘¦)⟩(compβ€˜π·)(π‘ β€˜π‘¦))((π‘₯(2nd β€˜π‘“)𝑦)β€˜π‘§)) = (((π‘₯(2nd β€˜π‘”)𝑦)β€˜π‘§)(⟨(π‘Ÿβ€˜π‘₯), (π‘ β€˜π‘₯)⟩(compβ€˜π·)(π‘ β€˜π‘¦))(π‘Žβ€˜π‘₯))} βŠ† Xπ‘₯ ∈ (Baseβ€˜πΆ)((π‘Ÿβ€˜π‘₯)(Hom β€˜π·)(π‘ β€˜π‘₯))
18 ovssunirn 7437 . . . . . . . . . . . . . . . 16 ((π‘Ÿβ€˜π‘₯)(Hom β€˜π·)(π‘ β€˜π‘₯)) βŠ† βˆͺ ran (Hom β€˜π·)
1918rgenw 3057 . . . . . . . . . . . . . . 15 βˆ€π‘₯ ∈ (Baseβ€˜πΆ)((π‘Ÿβ€˜π‘₯)(Hom β€˜π·)(π‘ β€˜π‘₯)) βŠ† βˆͺ ran (Hom β€˜π·)
20 ss2ixp 8899 . . . . . . . . . . . . . . 15 (βˆ€π‘₯ ∈ (Baseβ€˜πΆ)((π‘Ÿβ€˜π‘₯)(Hom β€˜π·)(π‘ β€˜π‘₯)) βŠ† βˆͺ ran (Hom β€˜π·) β†’ Xπ‘₯ ∈ (Baseβ€˜πΆ)((π‘Ÿβ€˜π‘₯)(Hom β€˜π·)(π‘ β€˜π‘₯)) βŠ† Xπ‘₯ ∈ (Baseβ€˜πΆ)βˆͺ ran (Hom β€˜π·))
2119, 20ax-mp 5 . . . . . . . . . . . . . 14 Xπ‘₯ ∈ (Baseβ€˜πΆ)((π‘Ÿβ€˜π‘₯)(Hom β€˜π·)(π‘ β€˜π‘₯)) βŠ† Xπ‘₯ ∈ (Baseβ€˜πΆ)βˆͺ ran (Hom β€˜π·)
22 fvex 6894 . . . . . . . . . . . . . . 15 (Baseβ€˜πΆ) ∈ V
23 fvex 6894 . . . . . . . . . . . . . . . . 17 (Hom β€˜π·) ∈ V
2423rnex 7896 . . . . . . . . . . . . . . . 16 ran (Hom β€˜π·) ∈ V
2524uniex 7724 . . . . . . . . . . . . . . 15 βˆͺ ran (Hom β€˜π·) ∈ V
2622, 25ixpconst 8896 . . . . . . . . . . . . . 14 Xπ‘₯ ∈ (Baseβ€˜πΆ)βˆͺ ran (Hom β€˜π·) = (βˆͺ ran (Hom β€˜π·) ↑m (Baseβ€˜πΆ))
2721, 26sseqtri 4010 . . . . . . . . . . . . 13 Xπ‘₯ ∈ (Baseβ€˜πΆ)((π‘Ÿβ€˜π‘₯)(Hom β€˜π·)(π‘ β€˜π‘₯)) βŠ† (βˆͺ ran (Hom β€˜π·) ↑m (Baseβ€˜πΆ))
2817, 27sstri 3983 . . . . . . . . . . . 12 {π‘Ž ∈ Xπ‘₯ ∈ (Baseβ€˜πΆ)((π‘Ÿβ€˜π‘₯)(Hom β€˜π·)(π‘ β€˜π‘₯)) ∣ βˆ€π‘₯ ∈ (Baseβ€˜πΆ)βˆ€π‘¦ ∈ (Baseβ€˜πΆ)βˆ€π‘§ ∈ (π‘₯(Hom β€˜πΆ)𝑦)((π‘Žβ€˜π‘¦)(⟨(π‘Ÿβ€˜π‘₯), (π‘Ÿβ€˜π‘¦)⟩(compβ€˜π·)(π‘ β€˜π‘¦))((π‘₯(2nd β€˜π‘“)𝑦)β€˜π‘§)) = (((π‘₯(2nd β€˜π‘”)𝑦)β€˜π‘§)(⟨(π‘Ÿβ€˜π‘₯), (π‘ β€˜π‘₯)⟩(compβ€˜π·)(π‘ β€˜π‘¦))(π‘Žβ€˜π‘₯))} βŠ† (βˆͺ ran (Hom β€˜π·) ↑m (Baseβ€˜πΆ))
2916, 28elpwi2 5336 . . . . . . . . . . 11 {π‘Ž ∈ Xπ‘₯ ∈ (Baseβ€˜πΆ)((π‘Ÿβ€˜π‘₯)(Hom β€˜π·)(π‘ β€˜π‘₯)) ∣ βˆ€π‘₯ ∈ (Baseβ€˜πΆ)βˆ€π‘¦ ∈ (Baseβ€˜πΆ)βˆ€π‘§ ∈ (π‘₯(Hom β€˜πΆ)𝑦)((π‘Žβ€˜π‘¦)(⟨(π‘Ÿβ€˜π‘₯), (π‘Ÿβ€˜π‘¦)⟩(compβ€˜π·)(π‘ β€˜π‘¦))((π‘₯(2nd β€˜π‘“)𝑦)β€˜π‘§)) = (((π‘₯(2nd β€˜π‘”)𝑦)β€˜π‘§)(⟨(π‘Ÿβ€˜π‘₯), (π‘ β€˜π‘₯)⟩(compβ€˜π·)(π‘ β€˜π‘¦))(π‘Žβ€˜π‘₯))} ∈ 𝒫 (βˆͺ ran (Hom β€˜π·) ↑m (Baseβ€˜πΆ))
3029sbcth 3784 . . . . . . . . . 10 ((1st β€˜π‘”) ∈ V β†’ [(1st β€˜π‘”) / 𝑠]{π‘Ž ∈ Xπ‘₯ ∈ (Baseβ€˜πΆ)((π‘Ÿβ€˜π‘₯)(Hom β€˜π·)(π‘ β€˜π‘₯)) ∣ βˆ€π‘₯ ∈ (Baseβ€˜πΆ)βˆ€π‘¦ ∈ (Baseβ€˜πΆ)βˆ€π‘§ ∈ (π‘₯(Hom β€˜πΆ)𝑦)((π‘Žβ€˜π‘¦)(⟨(π‘Ÿβ€˜π‘₯), (π‘Ÿβ€˜π‘¦)⟩(compβ€˜π·)(π‘ β€˜π‘¦))((π‘₯(2nd β€˜π‘“)𝑦)β€˜π‘§)) = (((π‘₯(2nd β€˜π‘”)𝑦)β€˜π‘§)(⟨(π‘Ÿβ€˜π‘₯), (π‘ β€˜π‘₯)⟩(compβ€˜π·)(π‘ β€˜π‘¦))(π‘Žβ€˜π‘₯))} ∈ 𝒫 (βˆͺ ran (Hom β€˜π·) ↑m (Baseβ€˜πΆ)))
31 sbcel1g 4405 . . . . . . . . . 10 ((1st β€˜π‘”) ∈ V β†’ ([(1st β€˜π‘”) / 𝑠]{π‘Ž ∈ Xπ‘₯ ∈ (Baseβ€˜πΆ)((π‘Ÿβ€˜π‘₯)(Hom β€˜π·)(π‘ β€˜π‘₯)) ∣ βˆ€π‘₯ ∈ (Baseβ€˜πΆ)βˆ€π‘¦ ∈ (Baseβ€˜πΆ)βˆ€π‘§ ∈ (π‘₯(Hom β€˜πΆ)𝑦)((π‘Žβ€˜π‘¦)(⟨(π‘Ÿβ€˜π‘₯), (π‘Ÿβ€˜π‘¦)⟩(compβ€˜π·)(π‘ β€˜π‘¦))((π‘₯(2nd β€˜π‘“)𝑦)β€˜π‘§)) = (((π‘₯(2nd β€˜π‘”)𝑦)β€˜π‘§)(⟨(π‘Ÿβ€˜π‘₯), (π‘ β€˜π‘₯)⟩(compβ€˜π·)(π‘ β€˜π‘¦))(π‘Žβ€˜π‘₯))} ∈ 𝒫 (βˆͺ ran (Hom β€˜π·) ↑m (Baseβ€˜πΆ)) ↔ ⦋(1st β€˜π‘”) / π‘ β¦Œ{π‘Ž ∈ Xπ‘₯ ∈ (Baseβ€˜πΆ)((π‘Ÿβ€˜π‘₯)(Hom β€˜π·)(π‘ β€˜π‘₯)) ∣ βˆ€π‘₯ ∈ (Baseβ€˜πΆ)βˆ€π‘¦ ∈ (Baseβ€˜πΆ)βˆ€π‘§ ∈ (π‘₯(Hom β€˜πΆ)𝑦)((π‘Žβ€˜π‘¦)(⟨(π‘Ÿβ€˜π‘₯), (π‘Ÿβ€˜π‘¦)⟩(compβ€˜π·)(π‘ β€˜π‘¦))((π‘₯(2nd β€˜π‘“)𝑦)β€˜π‘§)) = (((π‘₯(2nd β€˜π‘”)𝑦)β€˜π‘§)(⟨(π‘Ÿβ€˜π‘₯), (π‘ β€˜π‘₯)⟩(compβ€˜π·)(π‘ β€˜π‘¦))(π‘Žβ€˜π‘₯))} ∈ 𝒫 (βˆͺ ran (Hom β€˜π·) ↑m (Baseβ€˜πΆ))))
3230, 31mpbid 231 . . . . . . . . 9 ((1st β€˜π‘”) ∈ V β†’ ⦋(1st β€˜π‘”) / π‘ β¦Œ{π‘Ž ∈ Xπ‘₯ ∈ (Baseβ€˜πΆ)((π‘Ÿβ€˜π‘₯)(Hom β€˜π·)(π‘ β€˜π‘₯)) ∣ βˆ€π‘₯ ∈ (Baseβ€˜πΆ)βˆ€π‘¦ ∈ (Baseβ€˜πΆ)βˆ€π‘§ ∈ (π‘₯(Hom β€˜πΆ)𝑦)((π‘Žβ€˜π‘¦)(⟨(π‘Ÿβ€˜π‘₯), (π‘Ÿβ€˜π‘¦)⟩(compβ€˜π·)(π‘ β€˜π‘¦))((π‘₯(2nd β€˜π‘“)𝑦)β€˜π‘§)) = (((π‘₯(2nd β€˜π‘”)𝑦)β€˜π‘§)(⟨(π‘Ÿβ€˜π‘₯), (π‘ β€˜π‘₯)⟩(compβ€˜π·)(π‘ β€˜π‘¦))(π‘Žβ€˜π‘₯))} ∈ 𝒫 (βˆͺ ran (Hom β€˜π·) ↑m (Baseβ€˜πΆ)))
3315, 32ax-mp 5 . . . . . . . 8 ⦋(1st β€˜π‘”) / π‘ β¦Œ{π‘Ž ∈ Xπ‘₯ ∈ (Baseβ€˜πΆ)((π‘Ÿβ€˜π‘₯)(Hom β€˜π·)(π‘ β€˜π‘₯)) ∣ βˆ€π‘₯ ∈ (Baseβ€˜πΆ)βˆ€π‘¦ ∈ (Baseβ€˜πΆ)βˆ€π‘§ ∈ (π‘₯(Hom β€˜πΆ)𝑦)((π‘Žβ€˜π‘¦)(⟨(π‘Ÿβ€˜π‘₯), (π‘Ÿβ€˜π‘¦)⟩(compβ€˜π·)(π‘ β€˜π‘¦))((π‘₯(2nd β€˜π‘“)𝑦)β€˜π‘§)) = (((π‘₯(2nd β€˜π‘”)𝑦)β€˜π‘§)(⟨(π‘Ÿβ€˜π‘₯), (π‘ β€˜π‘₯)⟩(compβ€˜π·)(π‘ β€˜π‘¦))(π‘Žβ€˜π‘₯))} ∈ 𝒫 (βˆͺ ran (Hom β€˜π·) ↑m (Baseβ€˜πΆ))
3433sbcth 3784 . . . . . . 7 ((1st β€˜π‘“) ∈ V β†’ [(1st β€˜π‘“) / π‘Ÿ]⦋(1st β€˜π‘”) / π‘ β¦Œ{π‘Ž ∈ Xπ‘₯ ∈ (Baseβ€˜πΆ)((π‘Ÿβ€˜π‘₯)(Hom β€˜π·)(π‘ β€˜π‘₯)) ∣ βˆ€π‘₯ ∈ (Baseβ€˜πΆ)βˆ€π‘¦ ∈ (Baseβ€˜πΆ)βˆ€π‘§ ∈ (π‘₯(Hom β€˜πΆ)𝑦)((π‘Žβ€˜π‘¦)(⟨(π‘Ÿβ€˜π‘₯), (π‘Ÿβ€˜π‘¦)⟩(compβ€˜π·)(π‘ β€˜π‘¦))((π‘₯(2nd β€˜π‘“)𝑦)β€˜π‘§)) = (((π‘₯(2nd β€˜π‘”)𝑦)β€˜π‘§)(⟨(π‘Ÿβ€˜π‘₯), (π‘ β€˜π‘₯)⟩(compβ€˜π·)(π‘ β€˜π‘¦))(π‘Žβ€˜π‘₯))} ∈ 𝒫 (βˆͺ ran (Hom β€˜π·) ↑m (Baseβ€˜πΆ)))
35 sbcel1g 4405 . . . . . . 7 ((1st β€˜π‘“) ∈ V β†’ ([(1st β€˜π‘“) / π‘Ÿ]⦋(1st β€˜π‘”) / π‘ β¦Œ{π‘Ž ∈ Xπ‘₯ ∈ (Baseβ€˜πΆ)((π‘Ÿβ€˜π‘₯)(Hom β€˜π·)(π‘ β€˜π‘₯)) ∣ βˆ€π‘₯ ∈ (Baseβ€˜πΆ)βˆ€π‘¦ ∈ (Baseβ€˜πΆ)βˆ€π‘§ ∈ (π‘₯(Hom β€˜πΆ)𝑦)((π‘Žβ€˜π‘¦)(⟨(π‘Ÿβ€˜π‘₯), (π‘Ÿβ€˜π‘¦)⟩(compβ€˜π·)(π‘ β€˜π‘¦))((π‘₯(2nd β€˜π‘“)𝑦)β€˜π‘§)) = (((π‘₯(2nd β€˜π‘”)𝑦)β€˜π‘§)(⟨(π‘Ÿβ€˜π‘₯), (π‘ β€˜π‘₯)⟩(compβ€˜π·)(π‘ β€˜π‘¦))(π‘Žβ€˜π‘₯))} ∈ 𝒫 (βˆͺ ran (Hom β€˜π·) ↑m (Baseβ€˜πΆ)) ↔ ⦋(1st β€˜π‘“) / π‘Ÿβ¦Œβ¦‹(1st β€˜π‘”) / π‘ β¦Œ{π‘Ž ∈ Xπ‘₯ ∈ (Baseβ€˜πΆ)((π‘Ÿβ€˜π‘₯)(Hom β€˜π·)(π‘ β€˜π‘₯)) ∣ βˆ€π‘₯ ∈ (Baseβ€˜πΆ)βˆ€π‘¦ ∈ (Baseβ€˜πΆ)βˆ€π‘§ ∈ (π‘₯(Hom β€˜πΆ)𝑦)((π‘Žβ€˜π‘¦)(⟨(π‘Ÿβ€˜π‘₯), (π‘Ÿβ€˜π‘¦)⟩(compβ€˜π·)(π‘ β€˜π‘¦))((π‘₯(2nd β€˜π‘“)𝑦)β€˜π‘§)) = (((π‘₯(2nd β€˜π‘”)𝑦)β€˜π‘§)(⟨(π‘Ÿβ€˜π‘₯), (π‘ β€˜π‘₯)⟩(compβ€˜π·)(π‘ β€˜π‘¦))(π‘Žβ€˜π‘₯))} ∈ 𝒫 (βˆͺ ran (Hom β€˜π·) ↑m (Baseβ€˜πΆ))))
3634, 35mpbid 231 . . . . . 6 ((1st β€˜π‘“) ∈ V β†’ ⦋(1st β€˜π‘“) / π‘Ÿβ¦Œβ¦‹(1st β€˜π‘”) / π‘ β¦Œ{π‘Ž ∈ Xπ‘₯ ∈ (Baseβ€˜πΆ)((π‘Ÿβ€˜π‘₯)(Hom β€˜π·)(π‘ β€˜π‘₯)) ∣ βˆ€π‘₯ ∈ (Baseβ€˜πΆ)βˆ€π‘¦ ∈ (Baseβ€˜πΆ)βˆ€π‘§ ∈ (π‘₯(Hom β€˜πΆ)𝑦)((π‘Žβ€˜π‘¦)(⟨(π‘Ÿβ€˜π‘₯), (π‘Ÿβ€˜π‘¦)⟩(compβ€˜π·)(π‘ β€˜π‘¦))((π‘₯(2nd β€˜π‘“)𝑦)β€˜π‘§)) = (((π‘₯(2nd β€˜π‘”)𝑦)β€˜π‘§)(⟨(π‘Ÿβ€˜π‘₯), (π‘ β€˜π‘₯)⟩(compβ€˜π·)(π‘ β€˜π‘¦))(π‘Žβ€˜π‘₯))} ∈ 𝒫 (βˆͺ ran (Hom β€˜π·) ↑m (Baseβ€˜πΆ)))
3714, 36ax-mp 5 . . . . 5 ⦋(1st β€˜π‘“) / π‘Ÿβ¦Œβ¦‹(1st β€˜π‘”) / π‘ β¦Œ{π‘Ž ∈ Xπ‘₯ ∈ (Baseβ€˜πΆ)((π‘Ÿβ€˜π‘₯)(Hom β€˜π·)(π‘ β€˜π‘₯)) ∣ βˆ€π‘₯ ∈ (Baseβ€˜πΆ)βˆ€π‘¦ ∈ (Baseβ€˜πΆ)βˆ€π‘§ ∈ (π‘₯(Hom β€˜πΆ)𝑦)((π‘Žβ€˜π‘¦)(⟨(π‘Ÿβ€˜π‘₯), (π‘Ÿβ€˜π‘¦)⟩(compβ€˜π·)(π‘ β€˜π‘¦))((π‘₯(2nd β€˜π‘“)𝑦)β€˜π‘§)) = (((π‘₯(2nd β€˜π‘”)𝑦)β€˜π‘§)(⟨(π‘Ÿβ€˜π‘₯), (π‘ β€˜π‘₯)⟩(compβ€˜π·)(π‘ β€˜π‘¦))(π‘Žβ€˜π‘₯))} ∈ 𝒫 (βˆͺ ran (Hom β€˜π·) ↑m (Baseβ€˜πΆ))
3837rgen2w 3058 . . . 4 βˆ€π‘“ ∈ (𝐢 Func 𝐷)βˆ€π‘” ∈ (𝐢 Func 𝐷)⦋(1st β€˜π‘“) / π‘Ÿβ¦Œβ¦‹(1st β€˜π‘”) / π‘ β¦Œ{π‘Ž ∈ Xπ‘₯ ∈ (Baseβ€˜πΆ)((π‘Ÿβ€˜π‘₯)(Hom β€˜π·)(π‘ β€˜π‘₯)) ∣ βˆ€π‘₯ ∈ (Baseβ€˜πΆ)βˆ€π‘¦ ∈ (Baseβ€˜πΆ)βˆ€π‘§ ∈ (π‘₯(Hom β€˜πΆ)𝑦)((π‘Žβ€˜π‘¦)(⟨(π‘Ÿβ€˜π‘₯), (π‘Ÿβ€˜π‘¦)⟩(compβ€˜π·)(π‘ β€˜π‘¦))((π‘₯(2nd β€˜π‘“)𝑦)β€˜π‘§)) = (((π‘₯(2nd β€˜π‘”)𝑦)β€˜π‘§)(⟨(π‘Ÿβ€˜π‘₯), (π‘ β€˜π‘₯)⟩(compβ€˜π·)(π‘ β€˜π‘¦))(π‘Žβ€˜π‘₯))} ∈ 𝒫 (βˆͺ ran (Hom β€˜π·) ↑m (Baseβ€˜πΆ))
39 eqid 2724 . . . . . 6 (𝐢 Nat 𝐷) = (𝐢 Nat 𝐷)
40 eqid 2724 . . . . . 6 (Baseβ€˜πΆ) = (Baseβ€˜πΆ)
41 eqid 2724 . . . . . 6 (Hom β€˜πΆ) = (Hom β€˜πΆ)
42 eqid 2724 . . . . . 6 (Hom β€˜π·) = (Hom β€˜π·)
43 eqid 2724 . . . . . 6 (compβ€˜π·) = (compβ€˜π·)
4439, 40, 41, 42, 43natfval 17898 . . . . 5 (𝐢 Nat 𝐷) = (𝑓 ∈ (𝐢 Func 𝐷), 𝑔 ∈ (𝐢 Func 𝐷) ↦ ⦋(1st β€˜π‘“) / π‘Ÿβ¦Œβ¦‹(1st β€˜π‘”) / π‘ β¦Œ{π‘Ž ∈ Xπ‘₯ ∈ (Baseβ€˜πΆ)((π‘Ÿβ€˜π‘₯)(Hom β€˜π·)(π‘ β€˜π‘₯)) ∣ βˆ€π‘₯ ∈ (Baseβ€˜πΆ)βˆ€π‘¦ ∈ (Baseβ€˜πΆ)βˆ€π‘§ ∈ (π‘₯(Hom β€˜πΆ)𝑦)((π‘Žβ€˜π‘¦)(⟨(π‘Ÿβ€˜π‘₯), (π‘Ÿβ€˜π‘¦)⟩(compβ€˜π·)(π‘ β€˜π‘¦))((π‘₯(2nd β€˜π‘“)𝑦)β€˜π‘§)) = (((π‘₯(2nd β€˜π‘”)𝑦)β€˜π‘§)(⟨(π‘Ÿβ€˜π‘₯), (π‘ β€˜π‘₯)⟩(compβ€˜π·)(π‘ β€˜π‘¦))(π‘Žβ€˜π‘₯))})
4544fmpo 8047 . . . 4 (βˆ€π‘“ ∈ (𝐢 Func 𝐷)βˆ€π‘” ∈ (𝐢 Func 𝐷)⦋(1st β€˜π‘“) / π‘Ÿβ¦Œβ¦‹(1st β€˜π‘”) / π‘ β¦Œ{π‘Ž ∈ Xπ‘₯ ∈ (Baseβ€˜πΆ)((π‘Ÿβ€˜π‘₯)(Hom β€˜π·)(π‘ β€˜π‘₯)) ∣ βˆ€π‘₯ ∈ (Baseβ€˜πΆ)βˆ€π‘¦ ∈ (Baseβ€˜πΆ)βˆ€π‘§ ∈ (π‘₯(Hom β€˜πΆ)𝑦)((π‘Žβ€˜π‘¦)(⟨(π‘Ÿβ€˜π‘₯), (π‘Ÿβ€˜π‘¦)⟩(compβ€˜π·)(π‘ β€˜π‘¦))((π‘₯(2nd β€˜π‘“)𝑦)β€˜π‘§)) = (((π‘₯(2nd β€˜π‘”)𝑦)β€˜π‘§)(⟨(π‘Ÿβ€˜π‘₯), (π‘ β€˜π‘₯)⟩(compβ€˜π·)(π‘ β€˜π‘¦))(π‘Žβ€˜π‘₯))} ∈ 𝒫 (βˆͺ ran (Hom β€˜π·) ↑m (Baseβ€˜πΆ)) ↔ (𝐢 Nat 𝐷):((𝐢 Func 𝐷) Γ— (𝐢 Func 𝐷))βŸΆπ’« (βˆͺ ran (Hom β€˜π·) ↑m (Baseβ€˜πΆ)))
4638, 45mpbi 229 . . 3 (𝐢 Nat 𝐷):((𝐢 Func 𝐷) Γ— (𝐢 Func 𝐷))βŸΆπ’« (βˆͺ ran (Hom β€˜π·) ↑m (Baseβ€˜πΆ))
4746a1i 11 . 2 (πœ‘ β†’ (𝐢 Nat 𝐷):((𝐢 Func 𝐷) Γ— (𝐢 Func 𝐷))βŸΆπ’« (βˆͺ ran (Hom β€˜π·) ↑m (Baseβ€˜πΆ)))
481, 5, 13, 47wunf 10717 1 (πœ‘ β†’ (𝐢 Nat 𝐷) ∈ π‘ˆ)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098  βˆ€wral 3053  {crab 3424  Vcvv 3466  [wsbc 3769  β¦‹csb 3885   βŠ† wss 3940  π’« cpw 4594  βŸ¨cop 4626  βˆͺ cuni 4899   Γ— cxp 5664  ran crn 5667  βŸΆwf 6529  β€˜cfv 6533  (class class class)co 7401  1st c1st 7966  2nd c2nd 7967   ↑m cmap 8815  Xcixp 8886  WUnicwun 10690  1c1 11106  4c4 12265  cdc 12673  Basecbs 17142  Hom chom 17206  compcco 17207   Func cfunc 17802   Nat cnat 17893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8698  df-map 8817  df-pm 8818  df-ixp 8887  df-en 8935  df-dom 8936  df-sdom 8937  df-wun 10692  df-pnf 11246  df-mnf 11247  df-ltxr 11249  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-dec 12674  df-slot 17113  df-ndx 17125  df-base 17143  df-hom 17219  df-func 17806  df-nat 17895
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator