MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunnatOLD Structured version   Visualization version   GIF version

Theorem wunnatOLD 17803
Description: Obsolete proof of wunnat 17802 as of 13-Oct-2024. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
wunnat.1 (𝜑𝑈 ∈ WUni)
wunnat.2 (𝜑𝐶𝑈)
wunnat.3 (𝜑𝐷𝑈)
Assertion
Ref Expression
wunnatOLD (𝜑 → (𝐶 Nat 𝐷) ∈ 𝑈)

Proof of Theorem wunnatOLD
Dummy variables 𝑓 𝑎 𝑔 𝑟 𝑠 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wunnat.1 . 2 (𝜑𝑈 ∈ WUni)
2 wunnat.2 . . . 4 (𝜑𝐶𝑈)
3 wunnat.3 . . . 4 (𝜑𝐷𝑈)
41, 2, 3wunfunc 17744 . . 3 (𝜑 → (𝐶 Func 𝐷) ∈ 𝑈)
51, 4, 4wunxp 10618 . 2 (𝜑 → ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)) ∈ 𝑈)
6 df-hom 17116 . . . . . . 7 Hom = Slot 14
76, 1, 3wunstr 17019 . . . . . 6 (𝜑 → (Hom ‘𝐷) ∈ 𝑈)
81, 7wunrn 10623 . . . . 5 (𝜑 → ran (Hom ‘𝐷) ∈ 𝑈)
91, 8wununi 10600 . . . 4 (𝜑 ran (Hom ‘𝐷) ∈ 𝑈)
10 df-base 17043 . . . . 5 Base = Slot 1
1110, 1, 2wunstr 17019 . . . 4 (𝜑 → (Base‘𝐶) ∈ 𝑈)
121, 9, 11wunmap 10620 . . 3 (𝜑 → ( ran (Hom ‘𝐷) ↑m (Base‘𝐶)) ∈ 𝑈)
131, 12wunpw 10601 . 2 (𝜑 → 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶)) ∈ 𝑈)
14 fvex 6852 . . . . . 6 (1st𝑓) ∈ V
15 fvex 6852 . . . . . . . . 9 (1st𝑔) ∈ V
16 ovex 7384 . . . . . . . . . . . 12 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶)) ∈ V
17 ssrab2 4035 . . . . . . . . . . . . 13 {𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ⊆ X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥))
18 ovssunirn 7387 . . . . . . . . . . . . . . . 16 ((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ⊆ ran (Hom ‘𝐷)
1918rgenw 3066 . . . . . . . . . . . . . . 15 𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ⊆ ran (Hom ‘𝐷)
20 ss2ixp 8806 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ⊆ ran (Hom ‘𝐷) → X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ⊆ X𝑥 ∈ (Base‘𝐶) ran (Hom ‘𝐷))
2119, 20ax-mp 5 . . . . . . . . . . . . . 14 X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ⊆ X𝑥 ∈ (Base‘𝐶) ran (Hom ‘𝐷)
22 fvex 6852 . . . . . . . . . . . . . . 15 (Base‘𝐶) ∈ V
23 fvex 6852 . . . . . . . . . . . . . . . . 17 (Hom ‘𝐷) ∈ V
2423rnex 7841 . . . . . . . . . . . . . . . 16 ran (Hom ‘𝐷) ∈ V
2524uniex 7670 . . . . . . . . . . . . . . 15 ran (Hom ‘𝐷) ∈ V
2622, 25ixpconst 8803 . . . . . . . . . . . . . 14 X𝑥 ∈ (Base‘𝐶) ran (Hom ‘𝐷) = ( ran (Hom ‘𝐷) ↑m (Base‘𝐶))
2721, 26sseqtri 3978 . . . . . . . . . . . . 13 X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ⊆ ( ran (Hom ‘𝐷) ↑m (Base‘𝐶))
2817, 27sstri 3951 . . . . . . . . . . . 12 {𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ⊆ ( ran (Hom ‘𝐷) ↑m (Base‘𝐶))
2916, 28elpwi2 5301 . . . . . . . . . . 11 {𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶))
3029sbcth 3752 . . . . . . . . . 10 ((1st𝑔) ∈ V → [(1st𝑔) / 𝑠]{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶)))
31 sbcel1g 4371 . . . . . . . . . 10 ((1st𝑔) ∈ V → ([(1st𝑔) / 𝑠]{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶)) ↔ (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶))))
3230, 31mpbid 231 . . . . . . . . 9 ((1st𝑔) ∈ V → (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶)))
3315, 32ax-mp 5 . . . . . . . 8 (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶))
3433sbcth 3752 . . . . . . 7 ((1st𝑓) ∈ V → [(1st𝑓) / 𝑟](1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶)))
35 sbcel1g 4371 . . . . . . 7 ((1st𝑓) ∈ V → ([(1st𝑓) / 𝑟](1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶)) ↔ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶))))
3634, 35mpbid 231 . . . . . 6 ((1st𝑓) ∈ V → (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶)))
3714, 36ax-mp 5 . . . . 5 (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶))
3837rgen2w 3067 . . . 4 𝑓 ∈ (𝐶 Func 𝐷)∀𝑔 ∈ (𝐶 Func 𝐷)(1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶))
39 eqid 2737 . . . . . 6 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
40 eqid 2737 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
41 eqid 2737 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
42 eqid 2737 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
43 eqid 2737 . . . . . 6 (comp‘𝐷) = (comp‘𝐷)
4439, 40, 41, 42, 43natfval 17792 . . . . 5 (𝐶 Nat 𝐷) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
4544fmpo 7992 . . . 4 (∀𝑓 ∈ (𝐶 Func 𝐷)∀𝑔 ∈ (𝐶 Func 𝐷)(1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘𝑧)) = (((𝑥(2nd𝑔)𝑦)‘𝑧)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} ∈ 𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶)) ↔ (𝐶 Nat 𝐷):((𝐶 Func 𝐷) × (𝐶 Func 𝐷))⟶𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶)))
4638, 45mpbi 229 . . 3 (𝐶 Nat 𝐷):((𝐶 Func 𝐷) × (𝐶 Func 𝐷))⟶𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶))
4746a1i 11 . 2 (𝜑 → (𝐶 Nat 𝐷):((𝐶 Func 𝐷) × (𝐶 Func 𝐷))⟶𝒫 ( ran (Hom ‘𝐷) ↑m (Base‘𝐶)))
481, 5, 13, 47wunf 10621 1 (𝜑 → (𝐶 Nat 𝐷) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  wral 3062  {crab 3405  Vcvv 3443  [wsbc 3737  csb 3853  wss 3908  𝒫 cpw 4558  cop 4590   cuni 4863   × cxp 5629  ran crn 5632  wf 6489  cfv 6493  (class class class)co 7351  1st c1st 7911  2nd c2nd 7912  m cmap 8723  Xcixp 8793  WUnicwun 10594  1c1 11010  4c4 12168  cdc 12576  Basecbs 17042  Hom chom 17103  compcco 17104   Func cfunc 17699   Nat cnat 17787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-ov 7354  df-oprab 7355  df-mpo 7356  df-om 7795  df-1st 7913  df-2nd 7914  df-frecs 8204  df-wrecs 8235  df-recs 8309  df-rdg 8348  df-er 8606  df-map 8725  df-pm 8726  df-ixp 8794  df-en 8842  df-dom 8843  df-sdom 8844  df-wun 10596  df-pnf 11149  df-mnf 11150  df-ltxr 11152  df-nn 12112  df-2 12174  df-3 12175  df-4 12176  df-5 12177  df-6 12178  df-7 12179  df-8 12180  df-9 12181  df-n0 12372  df-dec 12577  df-slot 17013  df-ndx 17025  df-base 17043  df-hom 17116  df-func 17703  df-nat 17789
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator