![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppchomfvalOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of oppchomfval 17658 as of 14-Oct-2024. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
oppchom.h | β’ π» = (Hom βπΆ) |
oppchom.o | β’ π = (oppCatβπΆ) |
Ref | Expression |
---|---|
oppchomfvalOLD | β’ tpos π» = (Hom βπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homid 17357 | . . . 4 β’ Hom = Slot (Hom βndx) | |
2 | 1nn0 12488 | . . . . . . . 8 β’ 1 β β0 | |
3 | 4nn 12295 | . . . . . . . 8 β’ 4 β β | |
4 | 2, 3 | decnncl 12697 | . . . . . . 7 β’ ;14 β β |
5 | 4 | nnrei 12221 | . . . . . 6 β’ ;14 β β |
6 | 4nn0 12491 | . . . . . . 7 β’ 4 β β0 | |
7 | 5nn 12298 | . . . . . . 7 β’ 5 β β | |
8 | 4lt5 12389 | . . . . . . 7 β’ 4 < 5 | |
9 | 2, 6, 7, 8 | declt 12705 | . . . . . 6 β’ ;14 < ;15 |
10 | 5, 9 | ltneii 11327 | . . . . 5 β’ ;14 β ;15 |
11 | homndx 17356 | . . . . . 6 β’ (Hom βndx) = ;14 | |
12 | ccondx 17358 | . . . . . 6 β’ (compβndx) = ;15 | |
13 | 11, 12 | neeq12i 3008 | . . . . 5 β’ ((Hom βndx) β (compβndx) β ;14 β ;15) |
14 | 10, 13 | mpbir 230 | . . . 4 β’ (Hom βndx) β (compβndx) |
15 | 1, 14 | setsnid 17142 | . . 3 β’ (Hom β(πΆ sSet β¨(Hom βndx), tpos π»β©)) = (Hom β((πΆ sSet β¨(Hom βndx), tpos π»β©) sSet β¨(compβndx), (π’ β ((BaseβπΆ) Γ (BaseβπΆ)), π§ β (BaseβπΆ) β¦ tpos (β¨π§, (2nd βπ’)β©(compβπΆ)(1st βπ’)))β©)) |
16 | oppchom.h | . . . . . 6 β’ π» = (Hom βπΆ) | |
17 | 16 | fvexi 6906 | . . . . 5 β’ π» β V |
18 | 17 | tposex 8245 | . . . 4 β’ tpos π» β V |
19 | 1 | setsid 17141 | . . . 4 β’ ((πΆ β V β§ tpos π» β V) β tpos π» = (Hom β(πΆ sSet β¨(Hom βndx), tpos π»β©))) |
20 | 18, 19 | mpan2 690 | . . 3 β’ (πΆ β V β tpos π» = (Hom β(πΆ sSet β¨(Hom βndx), tpos π»β©))) |
21 | eqid 2733 | . . . . 5 β’ (BaseβπΆ) = (BaseβπΆ) | |
22 | eqid 2733 | . . . . 5 β’ (compβπΆ) = (compβπΆ) | |
23 | oppchom.o | . . . . 5 β’ π = (oppCatβπΆ) | |
24 | 21, 16, 22, 23 | oppcval 17657 | . . . 4 β’ (πΆ β V β π = ((πΆ sSet β¨(Hom βndx), tpos π»β©) sSet β¨(compβndx), (π’ β ((BaseβπΆ) Γ (BaseβπΆ)), π§ β (BaseβπΆ) β¦ tpos (β¨π§, (2nd βπ’)β©(compβπΆ)(1st βπ’)))β©)) |
25 | 24 | fveq2d 6896 | . . 3 β’ (πΆ β V β (Hom βπ) = (Hom β((πΆ sSet β¨(Hom βndx), tpos π»β©) sSet β¨(compβndx), (π’ β ((BaseβπΆ) Γ (BaseβπΆ)), π§ β (BaseβπΆ) β¦ tpos (β¨π§, (2nd βπ’)β©(compβπΆ)(1st βπ’)))β©))) |
26 | 15, 20, 25 | 3eqtr4a 2799 | . 2 β’ (πΆ β V β tpos π» = (Hom βπ)) |
27 | tpos0 8241 | . . 3 β’ tpos β = β | |
28 | fvprc 6884 | . . . . 5 β’ (Β¬ πΆ β V β (Hom βπΆ) = β ) | |
29 | 16, 28 | eqtrid 2785 | . . . 4 β’ (Β¬ πΆ β V β π» = β ) |
30 | 29 | tposeqd 8214 | . . 3 β’ (Β¬ πΆ β V β tpos π» = tpos β ) |
31 | fvprc 6884 | . . . . . 6 β’ (Β¬ πΆ β V β (oppCatβπΆ) = β ) | |
32 | 23, 31 | eqtrid 2785 | . . . . 5 β’ (Β¬ πΆ β V β π = β ) |
33 | 32 | fveq2d 6896 | . . . 4 β’ (Β¬ πΆ β V β (Hom βπ) = (Hom ββ )) |
34 | df-hom 17221 | . . . . 5 β’ Hom = Slot ;14 | |
35 | 34 | str0 17122 | . . . 4 β’ β = (Hom ββ ) |
36 | 33, 35 | eqtr4di 2791 | . . 3 β’ (Β¬ πΆ β V β (Hom βπ) = β ) |
37 | 27, 30, 36 | 3eqtr4a 2799 | . 2 β’ (Β¬ πΆ β V β tpos π» = (Hom βπ)) |
38 | 26, 37 | pm2.61i 182 | 1 β’ tpos π» = (Hom βπ) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 = wceq 1542 β wcel 2107 β wne 2941 Vcvv 3475 β c0 4323 β¨cop 4635 Γ cxp 5675 βcfv 6544 (class class class)co 7409 β cmpo 7411 1st c1st 7973 2nd c2nd 7974 tpos ctpos 8210 1c1 11111 4c4 12269 5c5 12270 ;cdc 12677 sSet csts 17096 ndxcnx 17126 Basecbs 17144 Hom chom 17208 compcco 17209 oppCatcoppc 17655 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-tpos 8211 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-dec 12678 df-sets 17097 df-slot 17115 df-ndx 17127 df-hom 17221 df-cco 17222 df-oppc 17656 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |