![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppchomfvalOLD | Structured version Visualization version GIF version |
Description: Obsolete version of oppchomfval 17759 as of 14-Oct-2024. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
oppchom.h | ⊢ 𝐻 = (Hom ‘𝐶) |
oppchom.o | ⊢ 𝑂 = (oppCat‘𝐶) |
Ref | Expression |
---|---|
oppchomfvalOLD | ⊢ tpos 𝐻 = (Hom ‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homid 17458 | . . . 4 ⊢ Hom = Slot (Hom ‘ndx) | |
2 | 1nn0 12540 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
3 | 4nn 12347 | . . . . . . . 8 ⊢ 4 ∈ ℕ | |
4 | 2, 3 | decnncl 12751 | . . . . . . 7 ⊢ ;14 ∈ ℕ |
5 | 4 | nnrei 12273 | . . . . . 6 ⊢ ;14 ∈ ℝ |
6 | 4nn0 12543 | . . . . . . 7 ⊢ 4 ∈ ℕ0 | |
7 | 5nn 12350 | . . . . . . 7 ⊢ 5 ∈ ℕ | |
8 | 4lt5 12441 | . . . . . . 7 ⊢ 4 < 5 | |
9 | 2, 6, 7, 8 | declt 12759 | . . . . . 6 ⊢ ;14 < ;15 |
10 | 5, 9 | ltneii 11372 | . . . . 5 ⊢ ;14 ≠ ;15 |
11 | homndx 17457 | . . . . . 6 ⊢ (Hom ‘ndx) = ;14 | |
12 | ccondx 17459 | . . . . . 6 ⊢ (comp‘ndx) = ;15 | |
13 | 11, 12 | neeq12i 3005 | . . . . 5 ⊢ ((Hom ‘ndx) ≠ (comp‘ndx) ↔ ;14 ≠ ;15) |
14 | 10, 13 | mpbir 231 | . . . 4 ⊢ (Hom ‘ndx) ≠ (comp‘ndx) |
15 | 1, 14 | setsnid 17243 | . . 3 ⊢ (Hom ‘(𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉)) = (Hom ‘((𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
16 | oppchom.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐶) | |
17 | 16 | fvexi 6921 | . . . . 5 ⊢ 𝐻 ∈ V |
18 | 17 | tposex 8284 | . . . 4 ⊢ tpos 𝐻 ∈ V |
19 | 1 | setsid 17242 | . . . 4 ⊢ ((𝐶 ∈ V ∧ tpos 𝐻 ∈ V) → tpos 𝐻 = (Hom ‘(𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉))) |
20 | 18, 19 | mpan2 691 | . . 3 ⊢ (𝐶 ∈ V → tpos 𝐻 = (Hom ‘(𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉))) |
21 | eqid 2735 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
22 | eqid 2735 | . . . . 5 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
23 | oppchom.o | . . . . 5 ⊢ 𝑂 = (oppCat‘𝐶) | |
24 | 21, 16, 22, 23 | oppcval 17758 | . . . 4 ⊢ (𝐶 ∈ V → 𝑂 = ((𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
25 | 24 | fveq2d 6911 | . . 3 ⊢ (𝐶 ∈ V → (Hom ‘𝑂) = (Hom ‘((𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉))) |
26 | 15, 20, 25 | 3eqtr4a 2801 | . 2 ⊢ (𝐶 ∈ V → tpos 𝐻 = (Hom ‘𝑂)) |
27 | tpos0 8280 | . . 3 ⊢ tpos ∅ = ∅ | |
28 | fvprc 6899 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → (Hom ‘𝐶) = ∅) | |
29 | 16, 28 | eqtrid 2787 | . . . 4 ⊢ (¬ 𝐶 ∈ V → 𝐻 = ∅) |
30 | 29 | tposeqd 8253 | . . 3 ⊢ (¬ 𝐶 ∈ V → tpos 𝐻 = tpos ∅) |
31 | fvprc 6899 | . . . . . 6 ⊢ (¬ 𝐶 ∈ V → (oppCat‘𝐶) = ∅) | |
32 | 23, 31 | eqtrid 2787 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → 𝑂 = ∅) |
33 | 32 | fveq2d 6911 | . . . 4 ⊢ (¬ 𝐶 ∈ V → (Hom ‘𝑂) = (Hom ‘∅)) |
34 | df-hom 17322 | . . . . 5 ⊢ Hom = Slot ;14 | |
35 | 34 | str0 17223 | . . . 4 ⊢ ∅ = (Hom ‘∅) |
36 | 33, 35 | eqtr4di 2793 | . . 3 ⊢ (¬ 𝐶 ∈ V → (Hom ‘𝑂) = ∅) |
37 | 27, 30, 36 | 3eqtr4a 2801 | . 2 ⊢ (¬ 𝐶 ∈ V → tpos 𝐻 = (Hom ‘𝑂)) |
38 | 26, 37 | pm2.61i 182 | 1 ⊢ tpos 𝐻 = (Hom ‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 Vcvv 3478 ∅c0 4339 〈cop 4637 × cxp 5687 ‘cfv 6563 (class class class)co 7431 ∈ cmpo 7433 1st c1st 8011 2nd c2nd 8012 tpos ctpos 8249 1c1 11154 4c4 12321 5c5 12322 ;cdc 12731 sSet csts 17197 ndxcnx 17227 Basecbs 17245 Hom chom 17309 compcco 17310 oppCatcoppc 17756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-dec 12732 df-sets 17198 df-slot 17216 df-ndx 17228 df-hom 17322 df-cco 17323 df-oppc 17757 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |