![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppchomfvalOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of oppchomfval 17685 as of 14-Oct-2024. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
oppchom.h | β’ π» = (Hom βπΆ) |
oppchom.o | β’ π = (oppCatβπΆ) |
Ref | Expression |
---|---|
oppchomfvalOLD | β’ tpos π» = (Hom βπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homid 17384 | . . . 4 β’ Hom = Slot (Hom βndx) | |
2 | 1nn0 12510 | . . . . . . . 8 β’ 1 β β0 | |
3 | 4nn 12317 | . . . . . . . 8 β’ 4 β β | |
4 | 2, 3 | decnncl 12719 | . . . . . . 7 β’ ;14 β β |
5 | 4 | nnrei 12243 | . . . . . 6 β’ ;14 β β |
6 | 4nn0 12513 | . . . . . . 7 β’ 4 β β0 | |
7 | 5nn 12320 | . . . . . . 7 β’ 5 β β | |
8 | 4lt5 12411 | . . . . . . 7 β’ 4 < 5 | |
9 | 2, 6, 7, 8 | declt 12727 | . . . . . 6 β’ ;14 < ;15 |
10 | 5, 9 | ltneii 11349 | . . . . 5 β’ ;14 β ;15 |
11 | homndx 17383 | . . . . . 6 β’ (Hom βndx) = ;14 | |
12 | ccondx 17385 | . . . . . 6 β’ (compβndx) = ;15 | |
13 | 11, 12 | neeq12i 3002 | . . . . 5 β’ ((Hom βndx) β (compβndx) β ;14 β ;15) |
14 | 10, 13 | mpbir 230 | . . . 4 β’ (Hom βndx) β (compβndx) |
15 | 1, 14 | setsnid 17169 | . . 3 β’ (Hom β(πΆ sSet β¨(Hom βndx), tpos π»β©)) = (Hom β((πΆ sSet β¨(Hom βndx), tpos π»β©) sSet β¨(compβndx), (π’ β ((BaseβπΆ) Γ (BaseβπΆ)), π§ β (BaseβπΆ) β¦ tpos (β¨π§, (2nd βπ’)β©(compβπΆ)(1st βπ’)))β©)) |
16 | oppchom.h | . . . . . 6 β’ π» = (Hom βπΆ) | |
17 | 16 | fvexi 6905 | . . . . 5 β’ π» β V |
18 | 17 | tposex 8259 | . . . 4 β’ tpos π» β V |
19 | 1 | setsid 17168 | . . . 4 β’ ((πΆ β V β§ tpos π» β V) β tpos π» = (Hom β(πΆ sSet β¨(Hom βndx), tpos π»β©))) |
20 | 18, 19 | mpan2 690 | . . 3 β’ (πΆ β V β tpos π» = (Hom β(πΆ sSet β¨(Hom βndx), tpos π»β©))) |
21 | eqid 2727 | . . . . 5 β’ (BaseβπΆ) = (BaseβπΆ) | |
22 | eqid 2727 | . . . . 5 β’ (compβπΆ) = (compβπΆ) | |
23 | oppchom.o | . . . . 5 β’ π = (oppCatβπΆ) | |
24 | 21, 16, 22, 23 | oppcval 17684 | . . . 4 β’ (πΆ β V β π = ((πΆ sSet β¨(Hom βndx), tpos π»β©) sSet β¨(compβndx), (π’ β ((BaseβπΆ) Γ (BaseβπΆ)), π§ β (BaseβπΆ) β¦ tpos (β¨π§, (2nd βπ’)β©(compβπΆ)(1st βπ’)))β©)) |
25 | 24 | fveq2d 6895 | . . 3 β’ (πΆ β V β (Hom βπ) = (Hom β((πΆ sSet β¨(Hom βndx), tpos π»β©) sSet β¨(compβndx), (π’ β ((BaseβπΆ) Γ (BaseβπΆ)), π§ β (BaseβπΆ) β¦ tpos (β¨π§, (2nd βπ’)β©(compβπΆ)(1st βπ’)))β©))) |
26 | 15, 20, 25 | 3eqtr4a 2793 | . 2 β’ (πΆ β V β tpos π» = (Hom βπ)) |
27 | tpos0 8255 | . . 3 β’ tpos β = β | |
28 | fvprc 6883 | . . . . 5 β’ (Β¬ πΆ β V β (Hom βπΆ) = β ) | |
29 | 16, 28 | eqtrid 2779 | . . . 4 β’ (Β¬ πΆ β V β π» = β ) |
30 | 29 | tposeqd 8228 | . . 3 β’ (Β¬ πΆ β V β tpos π» = tpos β ) |
31 | fvprc 6883 | . . . . . 6 β’ (Β¬ πΆ β V β (oppCatβπΆ) = β ) | |
32 | 23, 31 | eqtrid 2779 | . . . . 5 β’ (Β¬ πΆ β V β π = β ) |
33 | 32 | fveq2d 6895 | . . . 4 β’ (Β¬ πΆ β V β (Hom βπ) = (Hom ββ )) |
34 | df-hom 17248 | . . . . 5 β’ Hom = Slot ;14 | |
35 | 34 | str0 17149 | . . . 4 β’ β = (Hom ββ ) |
36 | 33, 35 | eqtr4di 2785 | . . 3 β’ (Β¬ πΆ β V β (Hom βπ) = β ) |
37 | 27, 30, 36 | 3eqtr4a 2793 | . 2 β’ (Β¬ πΆ β V β tpos π» = (Hom βπ)) |
38 | 26, 37 | pm2.61i 182 | 1 β’ tpos π» = (Hom βπ) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 = wceq 1534 β wcel 2099 β wne 2935 Vcvv 3469 β c0 4318 β¨cop 4630 Γ cxp 5670 βcfv 6542 (class class class)co 7414 β cmpo 7416 1st c1st 7985 2nd c2nd 7986 tpos ctpos 8224 1c1 11131 4c4 12291 5c5 12292 ;cdc 12699 sSet csts 17123 ndxcnx 17153 Basecbs 17171 Hom chom 17235 compcco 17236 oppCatcoppc 17682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-5 12300 df-6 12301 df-7 12302 df-8 12303 df-9 12304 df-n0 12495 df-dec 12700 df-sets 17124 df-slot 17142 df-ndx 17154 df-hom 17248 df-cco 17249 df-oppc 17683 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |