Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oppchomfvalOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of oppchomfval 17340 as of 14-Oct-2024. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
oppchom.h | ⊢ 𝐻 = (Hom ‘𝐶) |
oppchom.o | ⊢ 𝑂 = (oppCat‘𝐶) |
Ref | Expression |
---|---|
oppchomfvalOLD | ⊢ tpos 𝐻 = (Hom ‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homid 17041 | . . . 4 ⊢ Hom = Slot (Hom ‘ndx) | |
2 | 1nn0 12179 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
3 | 4nn 11986 | . . . . . . . 8 ⊢ 4 ∈ ℕ | |
4 | 2, 3 | decnncl 12386 | . . . . . . 7 ⊢ ;14 ∈ ℕ |
5 | 4 | nnrei 11912 | . . . . . 6 ⊢ ;14 ∈ ℝ |
6 | 4nn0 12182 | . . . . . . 7 ⊢ 4 ∈ ℕ0 | |
7 | 5nn 11989 | . . . . . . 7 ⊢ 5 ∈ ℕ | |
8 | 4lt5 12080 | . . . . . . 7 ⊢ 4 < 5 | |
9 | 2, 6, 7, 8 | declt 12394 | . . . . . 6 ⊢ ;14 < ;15 |
10 | 5, 9 | ltneii 11018 | . . . . 5 ⊢ ;14 ≠ ;15 |
11 | homndx 17040 | . . . . . 6 ⊢ (Hom ‘ndx) = ;14 | |
12 | ccondx 17042 | . . . . . 6 ⊢ (comp‘ndx) = ;15 | |
13 | 11, 12 | neeq12i 3009 | . . . . 5 ⊢ ((Hom ‘ndx) ≠ (comp‘ndx) ↔ ;14 ≠ ;15) |
14 | 10, 13 | mpbir 230 | . . . 4 ⊢ (Hom ‘ndx) ≠ (comp‘ndx) |
15 | 1, 14 | setsnid 16838 | . . 3 ⊢ (Hom ‘(𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉)) = (Hom ‘((𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
16 | oppchom.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐶) | |
17 | 16 | fvexi 6770 | . . . . 5 ⊢ 𝐻 ∈ V |
18 | 17 | tposex 8047 | . . . 4 ⊢ tpos 𝐻 ∈ V |
19 | 1 | setsid 16837 | . . . 4 ⊢ ((𝐶 ∈ V ∧ tpos 𝐻 ∈ V) → tpos 𝐻 = (Hom ‘(𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉))) |
20 | 18, 19 | mpan2 687 | . . 3 ⊢ (𝐶 ∈ V → tpos 𝐻 = (Hom ‘(𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉))) |
21 | eqid 2738 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
22 | eqid 2738 | . . . . 5 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
23 | oppchom.o | . . . . 5 ⊢ 𝑂 = (oppCat‘𝐶) | |
24 | 21, 16, 22, 23 | oppcval 17339 | . . . 4 ⊢ (𝐶 ∈ V → 𝑂 = ((𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
25 | 24 | fveq2d 6760 | . . 3 ⊢ (𝐶 ∈ V → (Hom ‘𝑂) = (Hom ‘((𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉))) |
26 | 15, 20, 25 | 3eqtr4a 2805 | . 2 ⊢ (𝐶 ∈ V → tpos 𝐻 = (Hom ‘𝑂)) |
27 | tpos0 8043 | . . 3 ⊢ tpos ∅ = ∅ | |
28 | fvprc 6748 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → (Hom ‘𝐶) = ∅) | |
29 | 16, 28 | eqtrid 2790 | . . . 4 ⊢ (¬ 𝐶 ∈ V → 𝐻 = ∅) |
30 | 29 | tposeqd 8016 | . . 3 ⊢ (¬ 𝐶 ∈ V → tpos 𝐻 = tpos ∅) |
31 | fvprc 6748 | . . . . . 6 ⊢ (¬ 𝐶 ∈ V → (oppCat‘𝐶) = ∅) | |
32 | 23, 31 | eqtrid 2790 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → 𝑂 = ∅) |
33 | 32 | fveq2d 6760 | . . . 4 ⊢ (¬ 𝐶 ∈ V → (Hom ‘𝑂) = (Hom ‘∅)) |
34 | df-hom 16912 | . . . . 5 ⊢ Hom = Slot ;14 | |
35 | 34 | str0 16818 | . . . 4 ⊢ ∅ = (Hom ‘∅) |
36 | 33, 35 | eqtr4di 2797 | . . 3 ⊢ (¬ 𝐶 ∈ V → (Hom ‘𝑂) = ∅) |
37 | 27, 30, 36 | 3eqtr4a 2805 | . 2 ⊢ (¬ 𝐶 ∈ V → tpos 𝐻 = (Hom ‘𝑂)) |
38 | 26, 37 | pm2.61i 182 | 1 ⊢ tpos 𝐻 = (Hom ‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ∅c0 4253 〈cop 4564 × cxp 5578 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 1st c1st 7802 2nd c2nd 7803 tpos ctpos 8012 1c1 10803 4c4 11960 5c5 11961 ;cdc 12366 sSet csts 16792 ndxcnx 16822 Basecbs 16840 Hom chom 16899 compcco 16900 oppCatcoppc 17337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-dec 12367 df-sets 16793 df-slot 16811 df-ndx 16823 df-hom 16912 df-cco 16913 df-oppc 17338 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |