![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppchomfvalOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of oppchomfval 17688 as of 14-Oct-2024. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
oppchom.h | β’ π» = (Hom βπΆ) |
oppchom.o | β’ π = (oppCatβπΆ) |
Ref | Expression |
---|---|
oppchomfvalOLD | β’ tpos π» = (Hom βπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homid 17387 | . . . 4 β’ Hom = Slot (Hom βndx) | |
2 | 1nn0 12513 | . . . . . . . 8 β’ 1 β β0 | |
3 | 4nn 12320 | . . . . . . . 8 β’ 4 β β | |
4 | 2, 3 | decnncl 12722 | . . . . . . 7 β’ ;14 β β |
5 | 4 | nnrei 12246 | . . . . . 6 β’ ;14 β β |
6 | 4nn0 12516 | . . . . . . 7 β’ 4 β β0 | |
7 | 5nn 12323 | . . . . . . 7 β’ 5 β β | |
8 | 4lt5 12414 | . . . . . . 7 β’ 4 < 5 | |
9 | 2, 6, 7, 8 | declt 12730 | . . . . . 6 β’ ;14 < ;15 |
10 | 5, 9 | ltneii 11352 | . . . . 5 β’ ;14 β ;15 |
11 | homndx 17386 | . . . . . 6 β’ (Hom βndx) = ;14 | |
12 | ccondx 17388 | . . . . . 6 β’ (compβndx) = ;15 | |
13 | 11, 12 | neeq12i 2997 | . . . . 5 β’ ((Hom βndx) β (compβndx) β ;14 β ;15) |
14 | 10, 13 | mpbir 230 | . . . 4 β’ (Hom βndx) β (compβndx) |
15 | 1, 14 | setsnid 17172 | . . 3 β’ (Hom β(πΆ sSet β¨(Hom βndx), tpos π»β©)) = (Hom β((πΆ sSet β¨(Hom βndx), tpos π»β©) sSet β¨(compβndx), (π’ β ((BaseβπΆ) Γ (BaseβπΆ)), π§ β (BaseβπΆ) β¦ tpos (β¨π§, (2nd βπ’)β©(compβπΆ)(1st βπ’)))β©)) |
16 | oppchom.h | . . . . . 6 β’ π» = (Hom βπΆ) | |
17 | 16 | fvexi 6904 | . . . . 5 β’ π» β V |
18 | 17 | tposex 8259 | . . . 4 β’ tpos π» β V |
19 | 1 | setsid 17171 | . . . 4 β’ ((πΆ β V β§ tpos π» β V) β tpos π» = (Hom β(πΆ sSet β¨(Hom βndx), tpos π»β©))) |
20 | 18, 19 | mpan2 689 | . . 3 β’ (πΆ β V β tpos π» = (Hom β(πΆ sSet β¨(Hom βndx), tpos π»β©))) |
21 | eqid 2725 | . . . . 5 β’ (BaseβπΆ) = (BaseβπΆ) | |
22 | eqid 2725 | . . . . 5 β’ (compβπΆ) = (compβπΆ) | |
23 | oppchom.o | . . . . 5 β’ π = (oppCatβπΆ) | |
24 | 21, 16, 22, 23 | oppcval 17687 | . . . 4 β’ (πΆ β V β π = ((πΆ sSet β¨(Hom βndx), tpos π»β©) sSet β¨(compβndx), (π’ β ((BaseβπΆ) Γ (BaseβπΆ)), π§ β (BaseβπΆ) β¦ tpos (β¨π§, (2nd βπ’)β©(compβπΆ)(1st βπ’)))β©)) |
25 | 24 | fveq2d 6894 | . . 3 β’ (πΆ β V β (Hom βπ) = (Hom β((πΆ sSet β¨(Hom βndx), tpos π»β©) sSet β¨(compβndx), (π’ β ((BaseβπΆ) Γ (BaseβπΆ)), π§ β (BaseβπΆ) β¦ tpos (β¨π§, (2nd βπ’)β©(compβπΆ)(1st βπ’)))β©))) |
26 | 15, 20, 25 | 3eqtr4a 2791 | . 2 β’ (πΆ β V β tpos π» = (Hom βπ)) |
27 | tpos0 8255 | . . 3 β’ tpos β = β | |
28 | fvprc 6882 | . . . . 5 β’ (Β¬ πΆ β V β (Hom βπΆ) = β ) | |
29 | 16, 28 | eqtrid 2777 | . . . 4 β’ (Β¬ πΆ β V β π» = β ) |
30 | 29 | tposeqd 8228 | . . 3 β’ (Β¬ πΆ β V β tpos π» = tpos β ) |
31 | fvprc 6882 | . . . . . 6 β’ (Β¬ πΆ β V β (oppCatβπΆ) = β ) | |
32 | 23, 31 | eqtrid 2777 | . . . . 5 β’ (Β¬ πΆ β V β π = β ) |
33 | 32 | fveq2d 6894 | . . . 4 β’ (Β¬ πΆ β V β (Hom βπ) = (Hom ββ )) |
34 | df-hom 17251 | . . . . 5 β’ Hom = Slot ;14 | |
35 | 34 | str0 17152 | . . . 4 β’ β = (Hom ββ ) |
36 | 33, 35 | eqtr4di 2783 | . . 3 β’ (Β¬ πΆ β V β (Hom βπ) = β ) |
37 | 27, 30, 36 | 3eqtr4a 2791 | . 2 β’ (Β¬ πΆ β V β tpos π» = (Hom βπ)) |
38 | 26, 37 | pm2.61i 182 | 1 β’ tpos π» = (Hom βπ) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 = wceq 1533 β wcel 2098 β wne 2930 Vcvv 3463 β c0 4319 β¨cop 4631 Γ cxp 5671 βcfv 6543 (class class class)co 7413 β cmpo 7415 1st c1st 7985 2nd c2nd 7986 tpos ctpos 8224 1c1 11134 4c4 12294 5c5 12295 ;cdc 12702 sSet csts 17126 ndxcnx 17156 Basecbs 17174 Hom chom 17238 compcco 17239 oppCatcoppc 17685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-2nd 7988 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-n0 12498 df-dec 12703 df-sets 17127 df-slot 17145 df-ndx 17157 df-hom 17251 df-cco 17252 df-oppc 17686 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |