Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oppchomfvalOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of oppchomfval 17413 as of 14-Oct-2024. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
oppchom.h | ⊢ 𝐻 = (Hom ‘𝐶) |
oppchom.o | ⊢ 𝑂 = (oppCat‘𝐶) |
Ref | Expression |
---|---|
oppchomfvalOLD | ⊢ tpos 𝐻 = (Hom ‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homid 17112 | . . . 4 ⊢ Hom = Slot (Hom ‘ndx) | |
2 | 1nn0 12241 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
3 | 4nn 12048 | . . . . . . . 8 ⊢ 4 ∈ ℕ | |
4 | 2, 3 | decnncl 12448 | . . . . . . 7 ⊢ ;14 ∈ ℕ |
5 | 4 | nnrei 11974 | . . . . . 6 ⊢ ;14 ∈ ℝ |
6 | 4nn0 12244 | . . . . . . 7 ⊢ 4 ∈ ℕ0 | |
7 | 5nn 12051 | . . . . . . 7 ⊢ 5 ∈ ℕ | |
8 | 4lt5 12142 | . . . . . . 7 ⊢ 4 < 5 | |
9 | 2, 6, 7, 8 | declt 12456 | . . . . . 6 ⊢ ;14 < ;15 |
10 | 5, 9 | ltneii 11080 | . . . . 5 ⊢ ;14 ≠ ;15 |
11 | homndx 17111 | . . . . . 6 ⊢ (Hom ‘ndx) = ;14 | |
12 | ccondx 17113 | . . . . . 6 ⊢ (comp‘ndx) = ;15 | |
13 | 11, 12 | neeq12i 3012 | . . . . 5 ⊢ ((Hom ‘ndx) ≠ (comp‘ndx) ↔ ;14 ≠ ;15) |
14 | 10, 13 | mpbir 230 | . . . 4 ⊢ (Hom ‘ndx) ≠ (comp‘ndx) |
15 | 1, 14 | setsnid 16900 | . . 3 ⊢ (Hom ‘(𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉)) = (Hom ‘((𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
16 | oppchom.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐶) | |
17 | 16 | fvexi 6783 | . . . . 5 ⊢ 𝐻 ∈ V |
18 | 17 | tposex 8061 | . . . 4 ⊢ tpos 𝐻 ∈ V |
19 | 1 | setsid 16899 | . . . 4 ⊢ ((𝐶 ∈ V ∧ tpos 𝐻 ∈ V) → tpos 𝐻 = (Hom ‘(𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉))) |
20 | 18, 19 | mpan2 688 | . . 3 ⊢ (𝐶 ∈ V → tpos 𝐻 = (Hom ‘(𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉))) |
21 | eqid 2740 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
22 | eqid 2740 | . . . . 5 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
23 | oppchom.o | . . . . 5 ⊢ 𝑂 = (oppCat‘𝐶) | |
24 | 21, 16, 22, 23 | oppcval 17412 | . . . 4 ⊢ (𝐶 ∈ V → 𝑂 = ((𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
25 | 24 | fveq2d 6773 | . . 3 ⊢ (𝐶 ∈ V → (Hom ‘𝑂) = (Hom ‘((𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉))) |
26 | 15, 20, 25 | 3eqtr4a 2806 | . 2 ⊢ (𝐶 ∈ V → tpos 𝐻 = (Hom ‘𝑂)) |
27 | tpos0 8057 | . . 3 ⊢ tpos ∅ = ∅ | |
28 | fvprc 6761 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → (Hom ‘𝐶) = ∅) | |
29 | 16, 28 | eqtrid 2792 | . . . 4 ⊢ (¬ 𝐶 ∈ V → 𝐻 = ∅) |
30 | 29 | tposeqd 8030 | . . 3 ⊢ (¬ 𝐶 ∈ V → tpos 𝐻 = tpos ∅) |
31 | fvprc 6761 | . . . . . 6 ⊢ (¬ 𝐶 ∈ V → (oppCat‘𝐶) = ∅) | |
32 | 23, 31 | eqtrid 2792 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → 𝑂 = ∅) |
33 | 32 | fveq2d 6773 | . . . 4 ⊢ (¬ 𝐶 ∈ V → (Hom ‘𝑂) = (Hom ‘∅)) |
34 | df-hom 16976 | . . . . 5 ⊢ Hom = Slot ;14 | |
35 | 34 | str0 16880 | . . . 4 ⊢ ∅ = (Hom ‘∅) |
36 | 33, 35 | eqtr4di 2798 | . . 3 ⊢ (¬ 𝐶 ∈ V → (Hom ‘𝑂) = ∅) |
37 | 27, 30, 36 | 3eqtr4a 2806 | . 2 ⊢ (¬ 𝐶 ∈ V → tpos 𝐻 = (Hom ‘𝑂)) |
38 | 26, 37 | pm2.61i 182 | 1 ⊢ tpos 𝐻 = (Hom ‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 Vcvv 3431 ∅c0 4262 〈cop 4573 × cxp 5587 ‘cfv 6431 (class class class)co 7269 ∈ cmpo 7271 1st c1st 7816 2nd c2nd 7817 tpos ctpos 8026 1c1 10865 4c4 12022 5c5 12023 ;cdc 12428 sSet csts 16854 ndxcnx 16884 Basecbs 16902 Hom chom 16963 compcco 16964 oppCatcoppc 17410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10920 ax-resscn 10921 ax-1cn 10922 ax-icn 10923 ax-addcl 10924 ax-addrcl 10925 ax-mulcl 10926 ax-mulrcl 10927 ax-mulcom 10928 ax-addass 10929 ax-mulass 10930 ax-distr 10931 ax-i2m1 10932 ax-1ne0 10933 ax-1rid 10934 ax-rnegex 10935 ax-rrecex 10936 ax-cnre 10937 ax-pre-lttri 10938 ax-pre-lttrn 10939 ax-pre-ltadd 10940 ax-pre-mulgt0 10941 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7702 df-2nd 7819 df-tpos 8027 df-frecs 8082 df-wrecs 8113 df-recs 8187 df-rdg 8226 df-er 8473 df-en 8709 df-dom 8710 df-sdom 8711 df-pnf 11004 df-mnf 11005 df-xr 11006 df-ltxr 11007 df-le 11008 df-sub 11199 df-neg 11200 df-nn 11966 df-2 12028 df-3 12029 df-4 12030 df-5 12031 df-6 12032 df-7 12033 df-8 12034 df-9 12035 df-n0 12226 df-dec 12429 df-sets 16855 df-slot 16873 df-ndx 16885 df-hom 16976 df-cco 16977 df-oppc 17411 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |