Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fuchomOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of fuchom 17678 as of 14-Oct-2024. (Contributed by Mario Carneiro, 6-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
fucbas.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
fuchom.n | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
Ref | Expression |
---|---|
fuchomOLD | ⊢ 𝑁 = (Hom ‘𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fucbas.q | . . . . 5 ⊢ 𝑄 = (𝐶 FuncCat 𝐷) | |
2 | eqid 2738 | . . . . 5 ⊢ (𝐶 Func 𝐷) = (𝐶 Func 𝐷) | |
3 | fuchom.n | . . . . 5 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
4 | eqid 2738 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
5 | eqid 2738 | . . . . 5 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
6 | simpl 483 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝐶 ∈ Cat) | |
7 | simpr 485 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝐷 ∈ Cat) | |
8 | eqid 2738 | . . . . . 6 ⊢ (comp‘𝑄) = (comp‘𝑄) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | fuccofval 17676 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (comp‘𝑄) = (𝑣 ∈ ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)), ℎ ∈ (𝐶 Func 𝐷) ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐷)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))) |
10 | 1, 2, 3, 4, 5, 6, 7, 9 | fucval 17675 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑄 = {〈(Base‘ndx), (𝐶 Func 𝐷)〉, 〈(Hom ‘ndx), 𝑁〉, 〈(comp‘ndx), (comp‘𝑄)〉}) |
11 | catstr 17674 | . . . 4 ⊢ {〈(Base‘ndx), (𝐶 Func 𝐷)〉, 〈(Hom ‘ndx), 𝑁〉, 〈(comp‘ndx), (comp‘𝑄)〉} Struct 〈1, ;15〉 | |
12 | homid 17122 | . . . 4 ⊢ Hom = Slot (Hom ‘ndx) | |
13 | snsstp2 4750 | . . . 4 ⊢ {〈(Hom ‘ndx), 𝑁〉} ⊆ {〈(Base‘ndx), (𝐶 Func 𝐷)〉, 〈(Hom ‘ndx), 𝑁〉, 〈(comp‘ndx), (comp‘𝑄)〉} | |
14 | 3 | ovexi 7309 | . . . . 5 ⊢ 𝑁 ∈ V |
15 | 14 | a1i 11 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑁 ∈ V) |
16 | eqid 2738 | . . . 4 ⊢ (Hom ‘𝑄) = (Hom ‘𝑄) | |
17 | 10, 11, 12, 13, 15, 16 | strfv3 16906 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (Hom ‘𝑄) = 𝑁) |
18 | 17 | eqcomd 2744 | . 2 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑁 = (Hom ‘𝑄)) |
19 | df-hom 16986 | . . . 4 ⊢ Hom = Slot ;14 | |
20 | 19 | str0 16890 | . . 3 ⊢ ∅ = (Hom ‘∅) |
21 | 3 | natffn 17665 | . . . . 5 ⊢ 𝑁 Fn ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)) |
22 | funcrcl 17578 | . . . . . . . . . 10 ⊢ (𝑓 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) | |
23 | 22 | con3i 154 | . . . . . . . . 9 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → ¬ 𝑓 ∈ (𝐶 Func 𝐷)) |
24 | 23 | eq0rdv 4338 | . . . . . . . 8 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Func 𝐷) = ∅) |
25 | 24 | xpeq2d 5619 | . . . . . . 7 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)) = ((𝐶 Func 𝐷) × ∅)) |
26 | xp0 6061 | . . . . . . 7 ⊢ ((𝐶 Func 𝐷) × ∅) = ∅ | |
27 | 25, 26 | eqtrdi 2794 | . . . . . 6 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)) = ∅) |
28 | 27 | fneq2d 6527 | . . . . 5 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝑁 Fn ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)) ↔ 𝑁 Fn ∅)) |
29 | 21, 28 | mpbii 232 | . . . 4 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑁 Fn ∅) |
30 | fn0 6564 | . . . 4 ⊢ (𝑁 Fn ∅ ↔ 𝑁 = ∅) | |
31 | 29, 30 | sylib 217 | . . 3 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑁 = ∅) |
32 | fnfuc 17661 | . . . . . . 7 ⊢ FuncCat Fn (Cat × Cat) | |
33 | 32 | fndmi 6537 | . . . . . 6 ⊢ dom FuncCat = (Cat × Cat) |
34 | 33 | ndmov 7456 | . . . . 5 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 FuncCat 𝐷) = ∅) |
35 | 1, 34 | eqtrid 2790 | . . . 4 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑄 = ∅) |
36 | 35 | fveq2d 6778 | . . 3 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (Hom ‘𝑄) = (Hom ‘∅)) |
37 | 20, 31, 36 | 3eqtr4a 2804 | . 2 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑁 = (Hom ‘𝑄)) |
38 | 18, 37 | pm2.61i 182 | 1 ⊢ 𝑁 = (Hom ‘𝑄) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 {ctp 4565 〈cop 4567 × cxp 5587 Fn wfn 6428 ‘cfv 6433 (class class class)co 7275 1c1 10872 4c4 12030 5c5 12031 ;cdc 12437 ndxcnx 16894 Basecbs 16912 Hom chom 16973 compcco 16974 Catccat 17373 Func cfunc 17569 Nat cnat 17657 FuncCat cfuc 17658 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-struct 16848 df-slot 16883 df-ndx 16895 df-base 16913 df-hom 16986 df-cco 16987 df-func 17573 df-nat 17659 df-fuc 17660 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |