MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunfuncOLD Structured version   Visualization version   GIF version

Theorem wunfuncOLD 17360
Description: Obsolete proof of wunfunc 17359 as of 13-Oct-2024. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
wunfunc.1 (𝜑𝑈 ∈ WUni)
wunfunc.2 (𝜑𝐶𝑈)
wunfunc.3 (𝜑𝐷𝑈)
Assertion
Ref Expression
wunfuncOLD (𝜑 → (𝐶 Func 𝐷) ∈ 𝑈)

Proof of Theorem wunfuncOLD
Dummy variables 𝑓 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wunfunc.1 . 2 (𝜑𝑈 ∈ WUni)
2 df-base 16672 . . . . 5 Base = Slot 1
3 wunfunc.3 . . . . 5 (𝜑𝐷𝑈)
42, 1, 3wunstr 16689 . . . 4 (𝜑 → (Base‘𝐷) ∈ 𝑈)
5 wunfunc.2 . . . . 5 (𝜑𝐶𝑈)
62, 1, 5wunstr 16689 . . . 4 (𝜑 → (Base‘𝐶) ∈ 𝑈)
71, 4, 6wunmap 10305 . . 3 (𝜑 → ((Base‘𝐷) ↑m (Base‘𝐶)) ∈ 𝑈)
8 df-hom 16773 . . . . . . . . 9 Hom = Slot 14
98, 1, 5wunstr 16689 . . . . . . . 8 (𝜑 → (Hom ‘𝐶) ∈ 𝑈)
101, 9wunrn 10308 . . . . . . 7 (𝜑 → ran (Hom ‘𝐶) ∈ 𝑈)
111, 10wununi 10285 . . . . . 6 (𝜑 ran (Hom ‘𝐶) ∈ 𝑈)
128, 1, 3wunstr 16689 . . . . . . . 8 (𝜑 → (Hom ‘𝐷) ∈ 𝑈)
131, 12wunrn 10308 . . . . . . 7 (𝜑 → ran (Hom ‘𝐷) ∈ 𝑈)
141, 13wununi 10285 . . . . . 6 (𝜑 ran (Hom ‘𝐷) ∈ 𝑈)
151, 11, 14wunxp 10303 . . . . 5 (𝜑 → ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ∈ 𝑈)
161, 15wunpw 10286 . . . 4 (𝜑 → 𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ∈ 𝑈)
171, 6, 6wunxp 10303 . . . 4 (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) ∈ 𝑈)
181, 16, 17wunmap 10305 . . 3 (𝜑 → (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑m ((Base‘𝐶) × (Base‘𝐶))) ∈ 𝑈)
191, 7, 18wunxp 10303 . 2 (𝜑 → (((Base‘𝐷) ↑m (Base‘𝐶)) × (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑m ((Base‘𝐶) × (Base‘𝐶)))) ∈ 𝑈)
20 relfunc 17322 . . . 4 Rel (𝐶 Func 𝐷)
2120a1i 11 . . 3 (𝜑 → Rel (𝐶 Func 𝐷))
22 df-br 5040 . . . 4 (𝑓(𝐶 Func 𝐷)𝑔 ↔ ⟨𝑓, 𝑔⟩ ∈ (𝐶 Func 𝐷))
23 eqid 2736 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
24 eqid 2736 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
25 simpr 488 . . . . . . . 8 ((𝜑𝑓(𝐶 Func 𝐷)𝑔) → 𝑓(𝐶 Func 𝐷)𝑔)
2623, 24, 25funcf1 17326 . . . . . . 7 ((𝜑𝑓(𝐶 Func 𝐷)𝑔) → 𝑓:(Base‘𝐶)⟶(Base‘𝐷))
27 fvex 6708 . . . . . . . 8 (Base‘𝐷) ∈ V
28 fvex 6708 . . . . . . . 8 (Base‘𝐶) ∈ V
2927, 28elmap 8530 . . . . . . 7 (𝑓 ∈ ((Base‘𝐷) ↑m (Base‘𝐶)) ↔ 𝑓:(Base‘𝐶)⟶(Base‘𝐷))
3026, 29sylibr 237 . . . . . 6 ((𝜑𝑓(𝐶 Func 𝐷)𝑔) → 𝑓 ∈ ((Base‘𝐷) ↑m (Base‘𝐶)))
31 mapsspw 8537 . . . . . . . . . . 11 (((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ⊆ 𝒫 (((Hom ‘𝐶)‘𝑧) × ((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))))
32 fvssunirn 6724 . . . . . . . . . . . . 13 ((Hom ‘𝐶)‘𝑧) ⊆ ran (Hom ‘𝐶)
33 ovssunirn 7227 . . . . . . . . . . . . 13 ((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ⊆ ran (Hom ‘𝐷)
34 xpss12 5551 . . . . . . . . . . . . 13 ((((Hom ‘𝐶)‘𝑧) ⊆ ran (Hom ‘𝐶) ∧ ((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ⊆ ran (Hom ‘𝐷)) → (((Hom ‘𝐶)‘𝑧) × ((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧)))) ⊆ ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)))
3532, 33, 34mp2an 692 . . . . . . . . . . . 12 (((Hom ‘𝐶)‘𝑧) × ((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧)))) ⊆ ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷))
3635sspwi 4513 . . . . . . . . . . 11 𝒫 (((Hom ‘𝐶)‘𝑧) × ((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧)))) ⊆ 𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷))
3731, 36sstri 3896 . . . . . . . . . 10 (((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ⊆ 𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷))
3837rgenw 3063 . . . . . . . . 9 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ⊆ 𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷))
39 ss2ixp 8569 . . . . . . . . 9 (∀𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ⊆ 𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) → X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ⊆ X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)))
4038, 39ax-mp 5 . . . . . . . 8 X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ⊆ X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷))
4128, 28xpex 7516 . . . . . . . . 9 ((Base‘𝐶) × (Base‘𝐶)) ∈ V
42 fvex 6708 . . . . . . . . . . . . 13 (Hom ‘𝐶) ∈ V
4342rnex 7668 . . . . . . . . . . . 12 ran (Hom ‘𝐶) ∈ V
4443uniex 7507 . . . . . . . . . . 11 ran (Hom ‘𝐶) ∈ V
45 fvex 6708 . . . . . . . . . . . . 13 (Hom ‘𝐷) ∈ V
4645rnex 7668 . . . . . . . . . . . 12 ran (Hom ‘𝐷) ∈ V
4746uniex 7507 . . . . . . . . . . 11 ran (Hom ‘𝐷) ∈ V
4844, 47xpex 7516 . . . . . . . . . 10 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ∈ V
4948pwex 5258 . . . . . . . . 9 𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ∈ V
5041, 49ixpconst 8566 . . . . . . . 8 X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) = (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑m ((Base‘𝐶) × (Base‘𝐶)))
5140, 50sseqtri 3923 . . . . . . 7 X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ⊆ (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑m ((Base‘𝐶) × (Base‘𝐶)))
52 eqid 2736 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
53 eqid 2736 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
5423, 52, 53, 25funcixp 17327 . . . . . . 7 ((𝜑𝑓(𝐶 Func 𝐷)𝑔) → 𝑔X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)))
5551, 54sseldi 3885 . . . . . 6 ((𝜑𝑓(𝐶 Func 𝐷)𝑔) → 𝑔 ∈ (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑m ((Base‘𝐶) × (Base‘𝐶))))
5630, 55opelxpd 5574 . . . . 5 ((𝜑𝑓(𝐶 Func 𝐷)𝑔) → ⟨𝑓, 𝑔⟩ ∈ (((Base‘𝐷) ↑m (Base‘𝐶)) × (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑m ((Base‘𝐶) × (Base‘𝐶)))))
5756ex 416 . . . 4 (𝜑 → (𝑓(𝐶 Func 𝐷)𝑔 → ⟨𝑓, 𝑔⟩ ∈ (((Base‘𝐷) ↑m (Base‘𝐶)) × (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑m ((Base‘𝐶) × (Base‘𝐶))))))
5822, 57syl5bir 246 . . 3 (𝜑 → (⟨𝑓, 𝑔⟩ ∈ (𝐶 Func 𝐷) → ⟨𝑓, 𝑔⟩ ∈ (((Base‘𝐷) ↑m (Base‘𝐶)) × (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑m ((Base‘𝐶) × (Base‘𝐶))))))
5921, 58relssdv 5643 . 2 (𝜑 → (𝐶 Func 𝐷) ⊆ (((Base‘𝐷) ↑m (Base‘𝐶)) × (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑m ((Base‘𝐶) × (Base‘𝐶)))))
601, 19, 59wunss 10291 1 (𝜑 → (𝐶 Func 𝐷) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2112  wral 3051  wss 3853  𝒫 cpw 4499  cop 4533   cuni 4805   class class class wbr 5039   × cxp 5534  ran crn 5537  Rel wrel 5541  wf 6354  cfv 6358  (class class class)co 7191  1st c1st 7737  2nd c2nd 7738  m cmap 8486  Xcixp 8556  WUnicwun 10279  1c1 10695  4c4 11852  cdc 12258  Basecbs 16666  Hom chom 16760   Func cfunc 17314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-1st 7739  df-2nd 7740  df-map 8488  df-pm 8489  df-ixp 8557  df-wun 10281  df-slot 16670  df-base 16672  df-hom 16773  df-func 17318
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator