MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunfuncOLD Structured version   Visualization version   GIF version

Theorem wunfuncOLD 17850
Description: Obsolete proof of wunfunc 17849 as of 13-Oct-2024. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
wunfunc.1 (𝜑𝑈 ∈ WUni)
wunfunc.2 (𝜑𝐶𝑈)
wunfunc.3 (𝜑𝐷𝑈)
Assertion
Ref Expression
wunfuncOLD (𝜑 → (𝐶 Func 𝐷) ∈ 𝑈)

Proof of Theorem wunfuncOLD
Dummy variables 𝑓 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wunfunc.1 . 2 (𝜑𝑈 ∈ WUni)
2 df-base 17145 . . . . 5 Base = Slot 1
3 wunfunc.3 . . . . 5 (𝜑𝐷𝑈)
42, 1, 3wunstr 17121 . . . 4 (𝜑 → (Base‘𝐷) ∈ 𝑈)
5 wunfunc.2 . . . . 5 (𝜑𝐶𝑈)
62, 1, 5wunstr 17121 . . . 4 (𝜑 → (Base‘𝐶) ∈ 𝑈)
71, 4, 6wunmap 10721 . . 3 (𝜑 → ((Base‘𝐷) ↑m (Base‘𝐶)) ∈ 𝑈)
8 df-hom 17221 . . . . . . . . 9 Hom = Slot 14
98, 1, 5wunstr 17121 . . . . . . . 8 (𝜑 → (Hom ‘𝐶) ∈ 𝑈)
101, 9wunrn 10724 . . . . . . 7 (𝜑 → ran (Hom ‘𝐶) ∈ 𝑈)
111, 10wununi 10701 . . . . . 6 (𝜑 ran (Hom ‘𝐶) ∈ 𝑈)
128, 1, 3wunstr 17121 . . . . . . . 8 (𝜑 → (Hom ‘𝐷) ∈ 𝑈)
131, 12wunrn 10724 . . . . . . 7 (𝜑 → ran (Hom ‘𝐷) ∈ 𝑈)
141, 13wununi 10701 . . . . . 6 (𝜑 ran (Hom ‘𝐷) ∈ 𝑈)
151, 11, 14wunxp 10719 . . . . 5 (𝜑 → ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ∈ 𝑈)
161, 15wunpw 10702 . . . 4 (𝜑 → 𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ∈ 𝑈)
171, 6, 6wunxp 10719 . . . 4 (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) ∈ 𝑈)
181, 16, 17wunmap 10721 . . 3 (𝜑 → (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑m ((Base‘𝐶) × (Base‘𝐶))) ∈ 𝑈)
191, 7, 18wunxp 10719 . 2 (𝜑 → (((Base‘𝐷) ↑m (Base‘𝐶)) × (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑m ((Base‘𝐶) × (Base‘𝐶)))) ∈ 𝑈)
20 relfunc 17812 . . . 4 Rel (𝐶 Func 𝐷)
2120a1i 11 . . 3 (𝜑 → Rel (𝐶 Func 𝐷))
22 df-br 5150 . . . 4 (𝑓(𝐶 Func 𝐷)𝑔 ↔ ⟨𝑓, 𝑔⟩ ∈ (𝐶 Func 𝐷))
23 eqid 2733 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
24 eqid 2733 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
25 simpr 486 . . . . . . . 8 ((𝜑𝑓(𝐶 Func 𝐷)𝑔) → 𝑓(𝐶 Func 𝐷)𝑔)
2623, 24, 25funcf1 17816 . . . . . . 7 ((𝜑𝑓(𝐶 Func 𝐷)𝑔) → 𝑓:(Base‘𝐶)⟶(Base‘𝐷))
27 fvex 6905 . . . . . . . 8 (Base‘𝐷) ∈ V
28 fvex 6905 . . . . . . . 8 (Base‘𝐶) ∈ V
2927, 28elmap 8865 . . . . . . 7 (𝑓 ∈ ((Base‘𝐷) ↑m (Base‘𝐶)) ↔ 𝑓:(Base‘𝐶)⟶(Base‘𝐷))
3026, 29sylibr 233 . . . . . 6 ((𝜑𝑓(𝐶 Func 𝐷)𝑔) → 𝑓 ∈ ((Base‘𝐷) ↑m (Base‘𝐶)))
31 mapsspw 8872 . . . . . . . . . . 11 (((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ⊆ 𝒫 (((Hom ‘𝐶)‘𝑧) × ((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))))
32 fvssunirn 6925 . . . . . . . . . . . . 13 ((Hom ‘𝐶)‘𝑧) ⊆ ran (Hom ‘𝐶)
33 ovssunirn 7445 . . . . . . . . . . . . 13 ((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ⊆ ran (Hom ‘𝐷)
34 xpss12 5692 . . . . . . . . . . . . 13 ((((Hom ‘𝐶)‘𝑧) ⊆ ran (Hom ‘𝐶) ∧ ((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ⊆ ran (Hom ‘𝐷)) → (((Hom ‘𝐶)‘𝑧) × ((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧)))) ⊆ ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)))
3532, 33, 34mp2an 691 . . . . . . . . . . . 12 (((Hom ‘𝐶)‘𝑧) × ((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧)))) ⊆ ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷))
3635sspwi 4615 . . . . . . . . . . 11 𝒫 (((Hom ‘𝐶)‘𝑧) × ((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧)))) ⊆ 𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷))
3731, 36sstri 3992 . . . . . . . . . 10 (((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ⊆ 𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷))
3837rgenw 3066 . . . . . . . . 9 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ⊆ 𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷))
39 ss2ixp 8904 . . . . . . . . 9 (∀𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ⊆ 𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) → X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ⊆ X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)))
4038, 39ax-mp 5 . . . . . . . 8 X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ⊆ X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷))
4128, 28xpex 7740 . . . . . . . . 9 ((Base‘𝐶) × (Base‘𝐶)) ∈ V
42 fvex 6905 . . . . . . . . . . . . 13 (Hom ‘𝐶) ∈ V
4342rnex 7903 . . . . . . . . . . . 12 ran (Hom ‘𝐶) ∈ V
4443uniex 7731 . . . . . . . . . . 11 ran (Hom ‘𝐶) ∈ V
45 fvex 6905 . . . . . . . . . . . . 13 (Hom ‘𝐷) ∈ V
4645rnex 7903 . . . . . . . . . . . 12 ran (Hom ‘𝐷) ∈ V
4746uniex 7731 . . . . . . . . . . 11 ran (Hom ‘𝐷) ∈ V
4844, 47xpex 7740 . . . . . . . . . 10 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ∈ V
4948pwex 5379 . . . . . . . . 9 𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ∈ V
5041, 49ixpconst 8901 . . . . . . . 8 X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) = (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑m ((Base‘𝐶) × (Base‘𝐶)))
5140, 50sseqtri 4019 . . . . . . 7 X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ⊆ (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑m ((Base‘𝐶) × (Base‘𝐶)))
52 eqid 2733 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
53 eqid 2733 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
5423, 52, 53, 25funcixp 17817 . . . . . . 7 ((𝜑𝑓(𝐶 Func 𝐷)𝑔) → 𝑔X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)))
5551, 54sselid 3981 . . . . . 6 ((𝜑𝑓(𝐶 Func 𝐷)𝑔) → 𝑔 ∈ (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑m ((Base‘𝐶) × (Base‘𝐶))))
5630, 55opelxpd 5716 . . . . 5 ((𝜑𝑓(𝐶 Func 𝐷)𝑔) → ⟨𝑓, 𝑔⟩ ∈ (((Base‘𝐷) ↑m (Base‘𝐶)) × (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑m ((Base‘𝐶) × (Base‘𝐶)))))
5756ex 414 . . . 4 (𝜑 → (𝑓(𝐶 Func 𝐷)𝑔 → ⟨𝑓, 𝑔⟩ ∈ (((Base‘𝐷) ↑m (Base‘𝐶)) × (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑m ((Base‘𝐶) × (Base‘𝐶))))))
5822, 57biimtrrid 242 . . 3 (𝜑 → (⟨𝑓, 𝑔⟩ ∈ (𝐶 Func 𝐷) → ⟨𝑓, 𝑔⟩ ∈ (((Base‘𝐷) ↑m (Base‘𝐶)) × (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑m ((Base‘𝐶) × (Base‘𝐶))))))
5921, 58relssdv 5789 . 2 (𝜑 → (𝐶 Func 𝐷) ⊆ (((Base‘𝐷) ↑m (Base‘𝐶)) × (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑m ((Base‘𝐶) × (Base‘𝐶)))))
601, 19, 59wunss 10707 1 (𝜑 → (𝐶 Func 𝐷) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2107  wral 3062  wss 3949  𝒫 cpw 4603  cop 4635   cuni 4909   class class class wbr 5149   × cxp 5675  ran crn 5678  Rel wrel 5682  wf 6540  cfv 6544  (class class class)co 7409  1st c1st 7973  2nd c2nd 7974  m cmap 8820  Xcixp 8891  WUnicwun 10695  1c1 11111  4c4 12269  cdc 12677  Basecbs 17144  Hom chom 17208   Func cfunc 17804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-map 8822  df-pm 8823  df-ixp 8892  df-wun 10697  df-slot 17115  df-base 17145  df-hom 17221  df-func 17808
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator