![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvsubvali | Structured version Visualization version GIF version |
Description: Value of vector subtraction definition. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvaddcl.1 | ⊢ 𝐴 ∈ ℋ |
hvaddcl.2 | ⊢ 𝐵 ∈ ℋ |
Ref | Expression |
---|---|
hvsubvali | ⊢ (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvaddcl.1 | . 2 ⊢ 𝐴 ∈ ℋ | |
2 | hvaddcl.2 | . 2 ⊢ 𝐵 ∈ ℋ | |
3 | hvsubval 31045 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 (class class class)co 7431 1c1 11154 -cneg 11491 ℋchba 30948 +ℎ cva 30949 ·ℎ csm 30950 −ℎ cmv 30954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-hvsub 31000 |
This theorem is referenced by: hvsubsub4i 31088 hvnegdii 31091 hvsubeq0i 31092 hvsubcan2i 31093 hvsubaddi 31095 normlem0 31138 normlem9 31147 norm3difi 31176 normpar2i 31185 pjsubii 31707 pjssmii 31710 pjcji 31713 lnophmlem2 32046 |
Copyright terms: Public domain | W3C validator |