HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsubvali Structured version   Visualization version   GIF version

Theorem hvsubvali 28202
Description: Value of vector subtraction definition. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
hvaddcl.1 𝐴 ∈ ℋ
hvaddcl.2 𝐵 ∈ ℋ
Assertion
Ref Expression
hvsubvali (𝐴 𝐵) = (𝐴 + (-1 · 𝐵))

Proof of Theorem hvsubvali
StepHypRef Expression
1 hvaddcl.1 . 2 𝐴 ∈ ℋ
2 hvaddcl.2 . 2 𝐵 ∈ ℋ
3 hvsubval 28198 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 𝐵) = (𝐴 + (-1 · 𝐵)))
41, 2, 3mp2an 675 1 (𝐴 𝐵) = (𝐴 + (-1 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1637  wcel 2158  (class class class)co 6871  1c1 10219  -cneg 10549  chil 28101   + cva 28102   · csm 28103   cmv 28107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1880  ax-4 1897  ax-5 2004  ax-6 2070  ax-7 2106  ax-9 2167  ax-10 2187  ax-11 2203  ax-12 2216  ax-13 2422  ax-ext 2784  ax-sep 4971  ax-nul 4980  ax-pr 5093
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1865  df-sb 2063  df-eu 2636  df-mo 2637  df-clab 2792  df-cleq 2798  df-clel 2801  df-nfc 2936  df-ral 3100  df-rex 3101  df-rab 3104  df-v 3392  df-sbc 3631  df-dif 3769  df-un 3771  df-in 3773  df-ss 3780  df-nul 4114  df-if 4277  df-sn 4368  df-pr 4370  df-op 4374  df-uni 4627  df-br 4841  df-opab 4903  df-id 5216  df-xp 5314  df-rel 5315  df-cnv 5316  df-co 5317  df-dm 5318  df-iota 6061  df-fun 6100  df-fv 6106  df-ov 6874  df-oprab 6875  df-mpt2 6876  df-hvsub 28153
This theorem is referenced by:  hvsubsub4i  28241  hvnegdii  28244  hvsubeq0i  28245  hvsubcan2i  28246  hvsubaddi  28248  normlem0  28291  normlem9  28300  norm3difi  28329  normpar2i  28338  pjsubii  28862  pjssmii  28865  pjcji  28868  lnophmlem2  29201
  Copyright terms: Public domain W3C validator