HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsubvali Structured version   Visualization version   GIF version

Theorem hvsubvali 28902
Description: Value of vector subtraction definition. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
hvaddcl.1 𝐴 ∈ ℋ
hvaddcl.2 𝐵 ∈ ℋ
Assertion
Ref Expression
hvsubvali (𝐴 𝐵) = (𝐴 + (-1 · 𝐵))

Proof of Theorem hvsubvali
StepHypRef Expression
1 hvaddcl.1 . 2 𝐴 ∈ ℋ
2 hvaddcl.2 . 2 𝐵 ∈ ℋ
3 hvsubval 28898 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 𝐵) = (𝐴 + (-1 · 𝐵)))
41, 2, 3mp2an 691 1 (𝐴 𝐵) = (𝐴 + (-1 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2111  (class class class)co 7150  1c1 10576  -cneg 10909  chba 28801   + cva 28802   · csm 28803   cmv 28807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-v 3411  df-sbc 3697  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-iota 6294  df-fun 6337  df-fv 6343  df-ov 7153  df-oprab 7154  df-mpo 7155  df-hvsub 28853
This theorem is referenced by:  hvsubsub4i  28941  hvnegdii  28944  hvsubeq0i  28945  hvsubcan2i  28946  hvsubaddi  28948  normlem0  28991  normlem9  29000  norm3difi  29029  normpar2i  29038  pjsubii  29560  pjssmii  29563  pjcji  29566  lnophmlem2  29899
  Copyright terms: Public domain W3C validator