![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvsubval | Structured version Visualization version GIF version |
Description: Value of vector subtraction. (Contributed by NM, 5-Sep-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvsubval | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 6798 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 +ℎ (-1 ·ℎ 𝑦)) = (𝐴 +ℎ (-1 ·ℎ 𝑦))) | |
2 | oveq2 6799 | . . 3 ⊢ (𝑦 = 𝐵 → (-1 ·ℎ 𝑦) = (-1 ·ℎ 𝐵)) | |
3 | 2 | oveq2d 6807 | . 2 ⊢ (𝑦 = 𝐵 → (𝐴 +ℎ (-1 ·ℎ 𝑦)) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) |
4 | df-hvsub 28161 | . 2 ⊢ −ℎ = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑥 +ℎ (-1 ·ℎ 𝑦))) | |
5 | ovex 6821 | . 2 ⊢ (𝐴 +ℎ (-1 ·ℎ 𝐵)) ∈ V | |
6 | 1, 3, 4, 5 | ovmpt2 6941 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 (class class class)co 6791 1c1 10137 -cneg 10467 ℋchil 28109 +ℎ cva 28110 ·ℎ csm 28111 −ℎ cmv 28115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-iota 5992 df-fun 6031 df-fv 6037 df-ov 6794 df-oprab 6795 df-mpt2 6796 df-hvsub 28161 |
This theorem is referenced by: hvsubcl 28207 hvsubvali 28210 hvsubid 28216 hvnegid 28217 hv2neg 28218 hvaddsubval 28223 hvsub4 28227 hvaddsub12 28228 hvpncan 28229 hvaddsubass 28231 hvsubass 28234 hvsubdistr1 28239 hvsubdistr2 28240 hvsubcan 28264 hvsub0 28266 his2sub 28282 hhph 28368 shsubcl 28410 shsel3 28507 honegsubi 28988 lnopsubi 29166 lnfnsubi 29238 superpos 29546 cdj1i 29625 |
Copyright terms: Public domain | W3C validator |