Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvsubval | Structured version Visualization version GIF version |
Description: Value of vector subtraction. (Contributed by NM, 5-Sep-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvsubval | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7278 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 +ℎ (-1 ·ℎ 𝑦)) = (𝐴 +ℎ (-1 ·ℎ 𝑦))) | |
2 | oveq2 7279 | . . 3 ⊢ (𝑦 = 𝐵 → (-1 ·ℎ 𝑦) = (-1 ·ℎ 𝐵)) | |
3 | 2 | oveq2d 7287 | . 2 ⊢ (𝑦 = 𝐵 → (𝐴 +ℎ (-1 ·ℎ 𝑦)) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) |
4 | df-hvsub 29329 | . 2 ⊢ −ℎ = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑥 +ℎ (-1 ·ℎ 𝑦))) | |
5 | ovex 7304 | . 2 ⊢ (𝐴 +ℎ (-1 ·ℎ 𝐵)) ∈ V | |
6 | 1, 3, 4, 5 | ovmpo 7427 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 (class class class)co 7271 1c1 10873 -cneg 11206 ℋchba 29277 +ℎ cva 29278 ·ℎ csm 29279 −ℎ cmv 29283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6390 df-fun 6434 df-fv 6440 df-ov 7274 df-oprab 7275 df-mpo 7276 df-hvsub 29329 |
This theorem is referenced by: hvsubcl 29375 hvsubvali 29378 hvsubid 29384 hvnegid 29385 hv2neg 29386 hvaddsubval 29391 hvsub4 29395 hvaddsub12 29396 hvpncan 29397 hvaddsubass 29399 hvsubass 29402 hvsubdistr1 29407 hvsubdistr2 29408 hvsubcan 29432 hvsub0 29434 his2sub 29450 hhph 29536 shsubcl 29578 shsel3 29673 honegsubi 30154 lnopsubi 30332 lnfnsubi 30404 superpos 30712 cdj1i 30791 |
Copyright terms: Public domain | W3C validator |