| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvsubval | Structured version Visualization version GIF version | ||
| Description: Value of vector subtraction. (Contributed by NM, 5-Sep-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvsubval | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7359 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 +ℎ (-1 ·ℎ 𝑦)) = (𝐴 +ℎ (-1 ·ℎ 𝑦))) | |
| 2 | oveq2 7360 | . . 3 ⊢ (𝑦 = 𝐵 → (-1 ·ℎ 𝑦) = (-1 ·ℎ 𝐵)) | |
| 3 | 2 | oveq2d 7368 | . 2 ⊢ (𝑦 = 𝐵 → (𝐴 +ℎ (-1 ·ℎ 𝑦)) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) |
| 4 | df-hvsub 30953 | . 2 ⊢ −ℎ = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑥 +ℎ (-1 ·ℎ 𝑦))) | |
| 5 | ovex 7385 | . 2 ⊢ (𝐴 +ℎ (-1 ·ℎ 𝐵)) ∈ V | |
| 6 | 1, 3, 4, 5 | ovmpo 7512 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 (class class class)co 7352 1c1 11014 -cneg 11352 ℋchba 30901 +ℎ cva 30902 ·ℎ csm 30903 −ℎ cmv 30907 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-hvsub 30953 |
| This theorem is referenced by: hvsubcl 30999 hvsubvali 31002 hvsubid 31008 hvnegid 31009 hv2neg 31010 hvaddsubval 31015 hvsub4 31019 hvaddsub12 31020 hvpncan 31021 hvaddsubass 31023 hvsubass 31026 hvsubdistr1 31031 hvsubdistr2 31032 hvsubcan 31056 hvsub0 31058 his2sub 31074 hhph 31160 shsubcl 31202 shsel3 31297 honegsubi 31778 lnopsubi 31956 lnfnsubi 32028 superpos 32336 cdj1i 32415 |
| Copyright terms: Public domain | W3C validator |