![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvsubval | Structured version Visualization version GIF version |
Description: Value of vector subtraction. (Contributed by NM, 5-Sep-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvsubval | โข ((๐ด โ โ โง ๐ต โ โ) โ (๐ด โโ ๐ต) = (๐ด +โ (-1 ยทโ ๐ต))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7416 | . 2 โข (๐ฅ = ๐ด โ (๐ฅ +โ (-1 ยทโ ๐ฆ)) = (๐ด +โ (-1 ยทโ ๐ฆ))) | |
2 | oveq2 7417 | . . 3 โข (๐ฆ = ๐ต โ (-1 ยทโ ๐ฆ) = (-1 ยทโ ๐ต)) | |
3 | 2 | oveq2d 7425 | . 2 โข (๐ฆ = ๐ต โ (๐ด +โ (-1 ยทโ ๐ฆ)) = (๐ด +โ (-1 ยทโ ๐ต))) |
4 | df-hvsub 30224 | . 2 โข โโ = (๐ฅ โ โ, ๐ฆ โ โ โฆ (๐ฅ +โ (-1 ยทโ ๐ฆ))) | |
5 | ovex 7442 | . 2 โข (๐ด +โ (-1 ยทโ ๐ต)) โ V | |
6 | 1, 3, 4, 5 | ovmpo 7568 | 1 โข ((๐ด โ โ โง ๐ต โ โ) โ (๐ด โโ ๐ต) = (๐ด +โ (-1 ยทโ ๐ต))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 397 = wceq 1542 โ wcel 2107 (class class class)co 7409 1c1 11111 -cneg 11445 โchba 30172 +โ cva 30173 ยทโ csm 30174 โโ cmv 30178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-hvsub 30224 |
This theorem is referenced by: hvsubcl 30270 hvsubvali 30273 hvsubid 30279 hvnegid 30280 hv2neg 30281 hvaddsubval 30286 hvsub4 30290 hvaddsub12 30291 hvpncan 30292 hvaddsubass 30294 hvsubass 30297 hvsubdistr1 30302 hvsubdistr2 30303 hvsubcan 30327 hvsub0 30329 his2sub 30345 hhph 30431 shsubcl 30473 shsel3 30568 honegsubi 31049 lnopsubi 31227 lnfnsubi 31299 superpos 31607 cdj1i 31686 |
Copyright terms: Public domain | W3C validator |