| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvsubval | Structured version Visualization version GIF version | ||
| Description: Value of vector subtraction. (Contributed by NM, 5-Sep-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvsubval | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7410 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 +ℎ (-1 ·ℎ 𝑦)) = (𝐴 +ℎ (-1 ·ℎ 𝑦))) | |
| 2 | oveq2 7411 | . . 3 ⊢ (𝑦 = 𝐵 → (-1 ·ℎ 𝑦) = (-1 ·ℎ 𝐵)) | |
| 3 | 2 | oveq2d 7419 | . 2 ⊢ (𝑦 = 𝐵 → (𝐴 +ℎ (-1 ·ℎ 𝑦)) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) |
| 4 | df-hvsub 30898 | . 2 ⊢ −ℎ = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑥 +ℎ (-1 ·ℎ 𝑦))) | |
| 5 | ovex 7436 | . 2 ⊢ (𝐴 +ℎ (-1 ·ℎ 𝐵)) ∈ V | |
| 6 | 1, 3, 4, 5 | ovmpo 7565 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 (class class class)co 7403 1c1 11128 -cneg 11465 ℋchba 30846 +ℎ cva 30847 ·ℎ csm 30848 −ℎ cmv 30852 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6483 df-fun 6532 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-hvsub 30898 |
| This theorem is referenced by: hvsubcl 30944 hvsubvali 30947 hvsubid 30953 hvnegid 30954 hv2neg 30955 hvaddsubval 30960 hvsub4 30964 hvaddsub12 30965 hvpncan 30966 hvaddsubass 30968 hvsubass 30971 hvsubdistr1 30976 hvsubdistr2 30977 hvsubcan 31001 hvsub0 31003 his2sub 31019 hhph 31105 shsubcl 31147 shsel3 31242 honegsubi 31723 lnopsubi 31901 lnfnsubi 31973 superpos 32281 cdj1i 32360 |
| Copyright terms: Public domain | W3C validator |