HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsubval Structured version   Visualization version   GIF version

Theorem hvsubval 30952
Description: Value of vector subtraction. (Contributed by NM, 5-Sep-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
hvsubval ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 𝐵) = (𝐴 + (-1 · 𝐵)))

Proof of Theorem hvsubval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7397 . 2 (𝑥 = 𝐴 → (𝑥 + (-1 · 𝑦)) = (𝐴 + (-1 · 𝑦)))
2 oveq2 7398 . . 3 (𝑦 = 𝐵 → (-1 · 𝑦) = (-1 · 𝐵))
32oveq2d 7406 . 2 (𝑦 = 𝐵 → (𝐴 + (-1 · 𝑦)) = (𝐴 + (-1 · 𝐵)))
4 df-hvsub 30907 . 2 = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑥 + (-1 · 𝑦)))
5 ovex 7423 . 2 (𝐴 + (-1 · 𝐵)) ∈ V
61, 3, 4, 5ovmpo 7552 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 𝐵) = (𝐴 + (-1 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  (class class class)co 7390  1c1 11076  -cneg 11413  chba 30855   + cva 30856   · csm 30857   cmv 30861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-hvsub 30907
This theorem is referenced by:  hvsubcl  30953  hvsubvali  30956  hvsubid  30962  hvnegid  30963  hv2neg  30964  hvaddsubval  30969  hvsub4  30973  hvaddsub12  30974  hvpncan  30975  hvaddsubass  30977  hvsubass  30980  hvsubdistr1  30985  hvsubdistr2  30986  hvsubcan  31010  hvsub0  31012  his2sub  31028  hhph  31114  shsubcl  31156  shsel3  31251  honegsubi  31732  lnopsubi  31910  lnfnsubi  31982  superpos  32290  cdj1i  32369
  Copyright terms: Public domain W3C validator