| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvsubval | Structured version Visualization version GIF version | ||
| Description: Value of vector subtraction. (Contributed by NM, 5-Sep-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvsubval | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7394 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 +ℎ (-1 ·ℎ 𝑦)) = (𝐴 +ℎ (-1 ·ℎ 𝑦))) | |
| 2 | oveq2 7395 | . . 3 ⊢ (𝑦 = 𝐵 → (-1 ·ℎ 𝑦) = (-1 ·ℎ 𝐵)) | |
| 3 | 2 | oveq2d 7403 | . 2 ⊢ (𝑦 = 𝐵 → (𝐴 +ℎ (-1 ·ℎ 𝑦)) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) |
| 4 | df-hvsub 30900 | . 2 ⊢ −ℎ = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑥 +ℎ (-1 ·ℎ 𝑦))) | |
| 5 | ovex 7420 | . 2 ⊢ (𝐴 +ℎ (-1 ·ℎ 𝐵)) ∈ V | |
| 6 | 1, 3, 4, 5 | ovmpo 7549 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7387 1c1 11069 -cneg 11406 ℋchba 30848 +ℎ cva 30849 ·ℎ csm 30850 −ℎ cmv 30854 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-hvsub 30900 |
| This theorem is referenced by: hvsubcl 30946 hvsubvali 30949 hvsubid 30955 hvnegid 30956 hv2neg 30957 hvaddsubval 30962 hvsub4 30966 hvaddsub12 30967 hvpncan 30968 hvaddsubass 30970 hvsubass 30973 hvsubdistr1 30978 hvsubdistr2 30979 hvsubcan 31003 hvsub0 31005 his2sub 31021 hhph 31107 shsubcl 31149 shsel3 31244 honegsubi 31725 lnopsubi 31903 lnfnsubi 31975 superpos 32283 cdj1i 32362 |
| Copyright terms: Public domain | W3C validator |