HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsubval Structured version   Visualization version   GIF version

Theorem hvsubval 31048
Description: Value of vector subtraction. (Contributed by NM, 5-Sep-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
hvsubval ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 𝐵) = (𝐴 + (-1 · 𝐵)))

Proof of Theorem hvsubval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7455 . 2 (𝑥 = 𝐴 → (𝑥 + (-1 · 𝑦)) = (𝐴 + (-1 · 𝑦)))
2 oveq2 7456 . . 3 (𝑦 = 𝐵 → (-1 · 𝑦) = (-1 · 𝐵))
32oveq2d 7464 . 2 (𝑦 = 𝐵 → (𝐴 + (-1 · 𝑦)) = (𝐴 + (-1 · 𝐵)))
4 df-hvsub 31003 . 2 = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑥 + (-1 · 𝑦)))
5 ovex 7481 . 2 (𝐴 + (-1 · 𝐵)) ∈ V
61, 3, 4, 5ovmpo 7610 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 𝐵) = (𝐴 + (-1 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  (class class class)co 7448  1c1 11185  -cneg 11521  chba 30951   + cva 30952   · csm 30953   cmv 30957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-hvsub 31003
This theorem is referenced by:  hvsubcl  31049  hvsubvali  31052  hvsubid  31058  hvnegid  31059  hv2neg  31060  hvaddsubval  31065  hvsub4  31069  hvaddsub12  31070  hvpncan  31071  hvaddsubass  31073  hvsubass  31076  hvsubdistr1  31081  hvsubdistr2  31082  hvsubcan  31106  hvsub0  31108  his2sub  31124  hhph  31210  shsubcl  31252  shsel3  31347  honegsubi  31828  lnopsubi  32006  lnfnsubi  32078  superpos  32386  cdj1i  32465
  Copyright terms: Public domain W3C validator