HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsubval Structured version   Visualization version   GIF version

Theorem hvsubval 30978
Description: Value of vector subtraction. (Contributed by NM, 5-Sep-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
hvsubval ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 𝐵) = (𝐴 + (-1 · 𝐵)))

Proof of Theorem hvsubval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7360 . 2 (𝑥 = 𝐴 → (𝑥 + (-1 · 𝑦)) = (𝐴 + (-1 · 𝑦)))
2 oveq2 7361 . . 3 (𝑦 = 𝐵 → (-1 · 𝑦) = (-1 · 𝐵))
32oveq2d 7369 . 2 (𝑦 = 𝐵 → (𝐴 + (-1 · 𝑦)) = (𝐴 + (-1 · 𝐵)))
4 df-hvsub 30933 . 2 = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑥 + (-1 · 𝑦)))
5 ovex 7386 . 2 (𝐴 + (-1 · 𝐵)) ∈ V
61, 3, 4, 5ovmpo 7513 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 𝐵) = (𝐴 + (-1 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  (class class class)co 7353  1c1 11029  -cneg 11366  chba 30881   + cva 30882   · csm 30883   cmv 30887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-hvsub 30933
This theorem is referenced by:  hvsubcl  30979  hvsubvali  30982  hvsubid  30988  hvnegid  30989  hv2neg  30990  hvaddsubval  30995  hvsub4  30999  hvaddsub12  31000  hvpncan  31001  hvaddsubass  31003  hvsubass  31006  hvsubdistr1  31011  hvsubdistr2  31012  hvsubcan  31036  hvsub0  31038  his2sub  31054  hhph  31140  shsubcl  31182  shsel3  31277  honegsubi  31758  lnopsubi  31936  lnfnsubi  32008  superpos  32316  cdj1i  32395
  Copyright terms: Public domain W3C validator