Home | Metamath
Proof Explorer Theorem List (p. 305 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | nmcoplb 30401 | A lower bound for the norm of a continuous linear Hilbert space operator. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ∧ 𝐴 ∈ ℋ) → (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) | ||
Theorem | nmophmi 30402 | The norm of the scalar product of a bounded linear operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ (𝐴 ∈ ℂ → (normop‘(𝐴 ·op 𝑇)) = ((abs‘𝐴) · (normop‘𝑇))) | ||
Theorem | bdophmi 30403 | The scalar product of a bounded linear operator is a bounded linear operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ (𝐴 ∈ ℂ → (𝐴 ·op 𝑇) ∈ BndLinOp) | ||
Theorem | lnconi 30404* | Lemma for lnopconi 30405 and lnfnconi 30426. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ 𝐶 → 𝑆 ∈ ℝ) & ⊢ ((𝑇 ∈ 𝐶 ∧ 𝑦 ∈ ℋ) → (𝑁‘(𝑇‘𝑦)) ≤ (𝑆 · (normℎ‘𝑦))) & ⊢ (𝑇 ∈ 𝐶 ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℝ+ ∃𝑦 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑦 → (𝑁‘((𝑇‘𝑤)𝑀(𝑇‘𝑥))) < 𝑧)) & ⊢ (𝑦 ∈ ℋ → (𝑁‘(𝑇‘𝑦)) ∈ ℝ) & ⊢ ((𝑤 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘(𝑤 −ℎ 𝑥)) = ((𝑇‘𝑤)𝑀(𝑇‘𝑥))) ⇒ ⊢ (𝑇 ∈ 𝐶 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (𝑁‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦))) | ||
Theorem | lnopconi 30405* | A condition equivalent to "𝑇 is continuous" when 𝑇 is linear. Theorem 3.5(iii) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp ⇒ ⊢ (𝑇 ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (normℎ‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦))) | ||
Theorem | lnopcon 30406* | A condition equivalent to "𝑇 is continuous" when 𝑇 is linear. Theorem 3.5(iii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinOp → (𝑇 ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (normℎ‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦)))) | ||
Theorem | lnopcnbd 30407 | A linear operator is continuous iff it is bounded. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinOp → (𝑇 ∈ ContOp ↔ 𝑇 ∈ BndLinOp)) | ||
Theorem | lncnopbd 30408 | A continuous linear operator is a bounded linear operator. This theorem justifies our use of "bounded linear" as an interchangeable condition for "continuous linear" used in some textbook proofs. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ (LinOp ∩ ContOp) ↔ 𝑇 ∈ BndLinOp) | ||
Theorem | lncnbd 30409 | A continuous linear operator is a bounded linear operator. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
⊢ (LinOp ∩ ContOp) = BndLinOp | ||
Theorem | lnopcnre 30410 | A linear operator is continuous iff it is bounded. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinOp → (𝑇 ∈ ContOp ↔ (normop‘𝑇) ∈ ℝ)) | ||
Theorem | lnfnli 30411 | Basic property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinFn ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) = ((𝐴 · (𝑇‘𝐵)) + (𝑇‘𝐶))) | ||
Theorem | lnfnfi 30412 | A linear Hilbert space functional is a functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinFn ⇒ ⊢ 𝑇: ℋ⟶ℂ | ||
Theorem | lnfn0i 30413 | The value of a linear Hilbert space functional at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinFn ⇒ ⊢ (𝑇‘0ℎ) = 0 | ||
Theorem | lnfnaddi 30414 | Additive property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinFn ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 +ℎ 𝐵)) = ((𝑇‘𝐴) + (𝑇‘𝐵))) | ||
Theorem | lnfnmuli 30415 | Multiplicative property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinFn ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 · (𝑇‘𝐵))) | ||
Theorem | lnfnaddmuli 30416 | Sum/product property of a linear Hilbert space functional. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinFn ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘(𝐵 +ℎ (𝐴 ·ℎ 𝐶))) = ((𝑇‘𝐵) + (𝐴 · (𝑇‘𝐶)))) | ||
Theorem | lnfnsubi 30417 | Subtraction property for a linear Hilbert space functional. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinFn ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 −ℎ 𝐵)) = ((𝑇‘𝐴) − (𝑇‘𝐵))) | ||
Theorem | lnfn0 30418 | The value of a linear Hilbert space functional at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinFn → (𝑇‘0ℎ) = 0) | ||
Theorem | lnfnmul 30419 | Multiplicative property of a linear Hilbert space functional. (Contributed by NM, 30-May-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ LinFn ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 · (𝑇‘𝐵))) | ||
Theorem | nmbdfnlbi 30420 | A lower bound for the norm of a bounded linear functional. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinFn ∧ (normfn‘𝑇) ∈ ℝ) ⇒ ⊢ (𝐴 ∈ ℋ → (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴))) | ||
Theorem | nmbdfnlb 30421 | A lower bound for the norm of a bounded linear functional. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ LinFn ∧ (normfn‘𝑇) ∈ ℝ ∧ 𝐴 ∈ ℋ) → (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴))) | ||
Theorem | nmcfnexi 30422 | The norm of a continuous linear Hilbert space functional exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinFn & ⊢ 𝑇 ∈ ContFn ⇒ ⊢ (normfn‘𝑇) ∈ ℝ | ||
Theorem | nmcfnlbi 30423 | A lower bound for the norm of a continuous linear functional. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinFn & ⊢ 𝑇 ∈ ContFn ⇒ ⊢ (𝐴 ∈ ℋ → (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴))) | ||
Theorem | nmcfnex 30424 | The norm of a continuous linear Hilbert space functional exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn) → (normfn‘𝑇) ∈ ℝ) | ||
Theorem | nmcfnlb 30425 | A lower bound of the norm of a continuous linear Hilbert space functional. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ∧ 𝐴 ∈ ℋ) → (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴))) | ||
Theorem | lnfnconi 30426* | A condition equivalent to "𝑇 is continuous" when 𝑇 is linear. Theorem 3.5(iii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinFn ⇒ ⊢ (𝑇 ∈ ContFn ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦))) | ||
Theorem | lnfncon 30427* | A condition equivalent to "𝑇 is continuous" when 𝑇 is linear. Theorem 3.5(iii) of [Beran] p. 99. (Contributed by NM, 16-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦)))) | ||
Theorem | lnfncnbd 30428 | A linear functional is continuous iff it is bounded. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ (normfn‘𝑇) ∈ ℝ)) | ||
Theorem | imaelshi 30429 | The image of a subspace under a linear operator is a subspace. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp & ⊢ 𝐴 ∈ Sℋ ⇒ ⊢ (𝑇 “ 𝐴) ∈ Sℋ | ||
Theorem | rnelshi 30430 | The range of a linear operator is a subspace. (Contributed by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp ⇒ ⊢ ran 𝑇 ∈ Sℋ | ||
Theorem | nlelshi 30431 | The null space of a linear functional is a subspace. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinFn ⇒ ⊢ (null‘𝑇) ∈ Sℋ | ||
Theorem | nlelchi 30432 | The null space of a continuous linear functional is a closed subspace. Remark 3.8 of [Beran] p. 103. (Contributed by NM, 11-Feb-2006.) (Proof shortened by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinFn & ⊢ 𝑇 ∈ ContFn ⇒ ⊢ (null‘𝑇) ∈ Cℋ | ||
Theorem | riesz3i 30433* | A continuous linear functional can be expressed as an inner product. Existence part of Theorem 3.9 of [Beran] p. 104. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinFn & ⊢ 𝑇 ∈ ContFn ⇒ ⊢ ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) | ||
Theorem | riesz4i 30434* | A continuous linear functional can be expressed as an inner product. Uniqueness part of Theorem 3.9 of [Beran] p. 104. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinFn & ⊢ 𝑇 ∈ ContFn ⇒ ⊢ ∃!𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) | ||
Theorem | riesz4 30435* | A continuous linear functional can be expressed as an inner product. Uniqueness part of Theorem 3.9 of [Beran] p. 104. See riesz2 30437 for the bounded linear functional version. (Contributed by NM, 16-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ (LinFn ∩ ContFn) → ∃!𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤)) | ||
Theorem | riesz1 30436* | Part 1 of the Riesz representation theorem for bounded linear functionals. A linear functional is bounded iff its value can be expressed as an inner product. Part of Theorem 17.3 of [Halmos] p. 31. For part 2, see riesz2 30437. For the continuous linear functional version, see riesz3i 30433 and riesz4 30435. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinFn → ((normfn‘𝑇) ∈ ℝ ↔ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦))) | ||
Theorem | riesz2 30437* | Part 2 of the Riesz representation theorem for bounded linear functionals. The value of a bounded linear functional corresponds to a unique inner product. Part of Theorem 17.3 of [Halmos] p. 31. For part 1, see riesz1 30436. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ LinFn ∧ (normfn‘𝑇) ∈ ℝ) → ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) | ||
Theorem | cnlnadjlem1 30438* | Lemma for cnlnadji 30447 (Theorem 3.10 of [Beran] p. 104: every continuous linear operator has an adjoint). The value of the auxiliary functional 𝐺. (Contributed by NM, 16-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp & ⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) ⇒ ⊢ (𝐴 ∈ ℋ → (𝐺‘𝐴) = ((𝑇‘𝐴) ·ih 𝑦)) | ||
Theorem | cnlnadjlem2 30439* | Lemma for cnlnadji 30447. 𝐺 is a continuous linear functional. (Contributed by NM, 16-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp & ⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) ⇒ ⊢ (𝑦 ∈ ℋ → (𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn)) | ||
Theorem | cnlnadjlem3 30440* | Lemma for cnlnadji 30447. By riesz4 30435, 𝐵 is the unique vector such that (𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤) for all 𝑣. (Contributed by NM, 17-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp & ⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) & ⊢ 𝐵 = (℩𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) ⇒ ⊢ (𝑦 ∈ ℋ → 𝐵 ∈ ℋ) | ||
Theorem | cnlnadjlem4 30441* | Lemma for cnlnadji 30447. The values of auxiliary function 𝐹 are vectors. (Contributed by NM, 17-Feb-2006.) (Proof shortened by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp & ⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) & ⊢ 𝐵 = (℩𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) & ⊢ 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵) ⇒ ⊢ (𝐴 ∈ ℋ → (𝐹‘𝐴) ∈ ℋ) | ||
Theorem | cnlnadjlem5 30442* | Lemma for cnlnadji 30447. 𝐹 is an adjoint of 𝑇 (later, we will show it is unique). (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp & ⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) & ⊢ 𝐵 = (℩𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) & ⊢ 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵) ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝑇‘𝐶) ·ih 𝐴) = (𝐶 ·ih (𝐹‘𝐴))) | ||
Theorem | cnlnadjlem6 30443* | Lemma for cnlnadji 30447. 𝐹 is linear. (Contributed by NM, 17-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp & ⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) & ⊢ 𝐵 = (℩𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) & ⊢ 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵) ⇒ ⊢ 𝐹 ∈ LinOp | ||
Theorem | cnlnadjlem7 30444* | Lemma for cnlnadji 30447. Helper lemma to show that 𝐹 is continuous. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp & ⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) & ⊢ 𝐵 = (℩𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) & ⊢ 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵) ⇒ ⊢ (𝐴 ∈ ℋ → (normℎ‘(𝐹‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) | ||
Theorem | cnlnadjlem8 30445* | Lemma for cnlnadji 30447. 𝐹 is continuous. (Contributed by NM, 17-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp & ⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) & ⊢ 𝐵 = (℩𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) & ⊢ 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵) ⇒ ⊢ 𝐹 ∈ ContOp | ||
Theorem | cnlnadjlem9 30446* | Lemma for cnlnadji 30447. 𝐹 provides an example showing the existence of a continuous linear adjoint. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp & ⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) & ⊢ 𝐵 = (℩𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) & ⊢ 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵) ⇒ ⊢ ∃𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡‘𝑧)) | ||
Theorem | cnlnadji 30447* | Every continuous linear operator has an adjoint. Theorem 3.10 of [Beran] p. 104. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp ⇒ ⊢ ∃𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦)) | ||
Theorem | cnlnadjeui 30448* | Every continuous linear operator has a unique adjoint. Theorem 3.10 of [Beran] p. 104. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp ⇒ ⊢ ∃!𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦)) | ||
Theorem | cnlnadjeu 30449* | Every continuous linear operator has a unique adjoint. Theorem 3.10 of [Beran] p. 104. (Contributed by NM, 19-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ (LinOp ∩ ContOp) → ∃!𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦))) | ||
Theorem | cnlnadj 30450* | Every continuous linear operator has an adjoint. Theorem 3.10 of [Beran] p. 104. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ (LinOp ∩ ContOp) → ∃𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦))) | ||
Theorem | cnlnssadj 30451 | Every continuous linear Hilbert space operator has an adjoint. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
⊢ (LinOp ∩ ContOp) ⊆ dom adjℎ | ||
Theorem | bdopssadj 30452 | Every bounded linear Hilbert space operator has an adjoint. (Contributed by NM, 19-Feb-2006.) (New usage is discouraged.) |
⊢ BndLinOp ⊆ dom adjℎ | ||
Theorem | bdopadj 30453 | Every bounded linear Hilbert space operator has an adjoint. (Contributed by NM, 22-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ dom adjℎ) | ||
Theorem | adjbdln 30454 | The adjoint of a bounded linear operator is a bounded linear operator. (Contributed by NM, 19-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ BndLinOp → (adjℎ‘𝑇) ∈ BndLinOp) | ||
Theorem | adjbdlnb 30455 | An operator is bounded and linear iff its adjoint is. (Contributed by NM, 19-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ BndLinOp ↔ (adjℎ‘𝑇) ∈ BndLinOp) | ||
Theorem | adjbd1o 30456 | The mapping of adjoints of bounded linear operators is one-to-one onto. (Contributed by NM, 19-Feb-2006.) (New usage is discouraged.) |
⊢ (adjℎ ↾ BndLinOp):BndLinOp–1-1-onto→BndLinOp | ||
Theorem | adjlnop 30457 | The adjoint of an operator is linear. Proposition 1 of [AkhiezerGlazman] p. 80. (Contributed by NM, 17-Jun-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ dom adjℎ → (adjℎ‘𝑇) ∈ LinOp) | ||
Theorem | adjsslnop 30458 | Every operator with an adjoint is linear. (Contributed by NM, 17-Jun-2006.) (New usage is discouraged.) |
⊢ dom adjℎ ⊆ LinOp | ||
Theorem | nmopadjlei 30459 | Property of the norm of an adjoint. Part of proof of Theorem 3.10 of [Beran] p. 104. (Contributed by NM, 22-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ (𝐴 ∈ ℋ → (normℎ‘((adjℎ‘𝑇)‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) | ||
Theorem | nmopadjlem 30460 | Lemma for nmopadji 30461. (Contributed by NM, 22-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ (normop‘(adjℎ‘𝑇)) ≤ (normop‘𝑇) | ||
Theorem | nmopadji 30461 | Property of the norm of an adjoint. Theorem 3.11(v) of [Beran] p. 106. (Contributed by NM, 22-Feb-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ (normop‘(adjℎ‘𝑇)) = (normop‘𝑇) | ||
Theorem | adjeq0 30462 | An operator is zero iff its adjoint is zero. Theorem 3.11(i) of [Beran] p. 106. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 = 0hop ↔ (adjℎ‘𝑇) = 0hop ) | ||
Theorem | adjmul 30463 | The adjoint of the scalar product of an operator. Theorem 3.11(ii) of [Beran] p. 106. (Contributed by NM, 21-Feb-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ) → (adjℎ‘(𝐴 ·op 𝑇)) = ((∗‘𝐴) ·op (adjℎ‘𝑇))) | ||
Theorem | adjadd 30464 | The adjoint of the sum of two operators. Theorem 3.11(iii) of [Beran] p. 106. (Contributed by NM, 22-Feb-2006.) (New usage is discouraged.) |
⊢ ((𝑆 ∈ dom adjℎ ∧ 𝑇 ∈ dom adjℎ) → (adjℎ‘(𝑆 +op 𝑇)) = ((adjℎ‘𝑆) +op (adjℎ‘𝑇))) | ||
Theorem | nmoptrii 30465 | Triangle inequality for the norms of bounded linear operators. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑆 ∈ BndLinOp & ⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ (normop‘(𝑆 +op 𝑇)) ≤ ((normop‘𝑆) + (normop‘𝑇)) | ||
Theorem | nmopcoi 30466 | Upper bound for the norm of the composition of two bounded linear operators. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑆 ∈ BndLinOp & ⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ (normop‘(𝑆 ∘ 𝑇)) ≤ ((normop‘𝑆) · (normop‘𝑇)) | ||
Theorem | bdophsi 30467 | The sum of two bounded linear operators is a bounded linear operator. (Contributed by NM, 9-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑆 ∈ BndLinOp & ⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ (𝑆 +op 𝑇) ∈ BndLinOp | ||
Theorem | bdophdi 30468 | The difference between two bounded linear operators is bounded. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑆 ∈ BndLinOp & ⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ (𝑆 −op 𝑇) ∈ BndLinOp | ||
Theorem | bdopcoi 30469 | The composition of two bounded linear operators is bounded. (Contributed by NM, 9-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑆 ∈ BndLinOp & ⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ (𝑆 ∘ 𝑇) ∈ BndLinOp | ||
Theorem | nmoptri2i 30470 | Triangle-type inequality for the norms of bounded linear operators. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑆 ∈ BndLinOp & ⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ ((normop‘𝑆) − (normop‘𝑇)) ≤ (normop‘(𝑆 +op 𝑇)) | ||
Theorem | adjcoi 30471 | The adjoint of a composition of bounded linear operators. Theorem 3.11(viii) of [Beran] p. 106. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑆 ∈ BndLinOp & ⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ (adjℎ‘(𝑆 ∘ 𝑇)) = ((adjℎ‘𝑇) ∘ (adjℎ‘𝑆)) | ||
Theorem | nmopcoadji 30472 | The norm of an operator composed with its adjoint. Part of Theorem 3.11(vi) of [Beran] p. 106. (Contributed by NM, 8-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ (normop‘((adjℎ‘𝑇) ∘ 𝑇)) = ((normop‘𝑇)↑2) | ||
Theorem | nmopcoadj2i 30473 | The norm of an operator composed with its adjoint. Part of Theorem 3.11(vi) of [Beran] p. 106. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ (normop‘(𝑇 ∘ (adjℎ‘𝑇))) = ((normop‘𝑇)↑2) | ||
Theorem | nmopcoadj0i 30474 | An operator composed with its adjoint is zero iff the operator is zero. Theorem 3.11(vii) of [Beran] p. 106. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ ((𝑇 ∘ (adjℎ‘𝑇)) = 0hop ↔ 𝑇 = 0hop ) | ||
Theorem | unierri 30475 | If we approximate a chain of unitary transformations (quantum computer gates) 𝐹, 𝐺 by other unitary transformations 𝑆, 𝑇, the error increases at most additively. Equation 4.73 of [NielsenChuang] p. 195. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
⊢ 𝐹 ∈ UniOp & ⊢ 𝐺 ∈ UniOp & ⊢ 𝑆 ∈ UniOp & ⊢ 𝑇 ∈ UniOp ⇒ ⊢ (normop‘((𝐹 ∘ 𝐺) −op (𝑆 ∘ 𝑇))) ≤ ((normop‘(𝐹 −op 𝑆)) + (normop‘(𝐺 −op 𝑇))) | ||
Theorem | branmfn 30476 | The norm of the bra function. (Contributed by NM, 24-May-2006.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (normfn‘(bra‘𝐴)) = (normℎ‘𝐴)) | ||
Theorem | brabn 30477 | The bra of a vector is a bounded functional. (Contributed by NM, 26-May-2006.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (normfn‘(bra‘𝐴)) ∈ ℝ) | ||
Theorem | rnbra 30478 | The set of bras equals the set of continuous linear functionals. (Contributed by NM, 26-May-2006.) (New usage is discouraged.) |
⊢ ran bra = (LinFn ∩ ContFn) | ||
Theorem | bra11 30479 | The bra function maps vectors one-to-one onto the set of continuous linear functionals. (Contributed by NM, 26-May-2006.) (Proof shortened by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ bra: ℋ–1-1-onto→(LinFn ∩ ContFn) | ||
Theorem | bracnln 30480 | A bra is a continuous linear functional. (Contributed by NM, 30-May-2006.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (bra‘𝐴) ∈ (LinFn ∩ ContFn)) | ||
Theorem | cnvbraval 30481* | Value of the converse of the bra function. Based on the Riesz Lemma riesz4 30435, this very important theorem not only justifies the Dirac bra-ket notation, but allows us to extract a unique vector from any continuous linear functional from which the functional can be recovered; i.e. a single vector can "store" all of the information contained in any entire continuous linear functional (mapping from ℋ to ℂ). (Contributed by NM, 26-May-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ (LinFn ∩ ContFn) → (◡bra‘𝑇) = (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦))) | ||
Theorem | cnvbracl 30482 | Closure of the converse of the bra function. (Contributed by NM, 26-May-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ (LinFn ∩ ContFn) → (◡bra‘𝑇) ∈ ℋ) | ||
Theorem | cnvbrabra 30483 | The converse bra of the bra of a vector is the vector itself. (Contributed by NM, 30-May-2006.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (◡bra‘(bra‘𝐴)) = 𝐴) | ||
Theorem | bracnvbra 30484 | The bra of the converse bra of a continuous linear functional. (Contributed by NM, 31-May-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ (LinFn ∩ ContFn) → (bra‘(◡bra‘𝑇)) = 𝑇) | ||
Theorem | bracnlnval 30485* | The vector that a continuous linear functional is the bra of. (Contributed by NM, 26-May-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ (LinFn ∩ ContFn) → 𝑇 = (bra‘(℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)))) | ||
Theorem | cnvbramul 30486 | Multiplication property of the converse bra function. (Contributed by NM, 31-May-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑇 ∈ (LinFn ∩ ContFn)) → (◡bra‘(𝐴 ·fn 𝑇)) = ((∗‘𝐴) ·ℎ (◡bra‘𝑇))) | ||
Theorem | kbass1 30487 | Dirac bra-ket associative law ( ∣ 𝐴〉〈𝐵 ∣ ) ∣ 𝐶〉 = ∣ 𝐴〉(〈𝐵 ∣ 𝐶〉), i.e., the juxtaposition of an outer product with a ket equals a bra juxtaposed with an inner product. Since 〈𝐵 ∣ 𝐶〉 is a complex number, it is the first argument in the inner product ·ℎ that it is mapped to, although in Dirac notation it is placed after the ket. (Contributed by NM, 15-May-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = (((bra‘𝐵)‘𝐶) ·ℎ 𝐴)) | ||
Theorem | kbass2 30488 | Dirac bra-ket associative law (〈𝐴 ∣ 𝐵〉)〈𝐶 ∣ = 〈𝐴 ∣ ( ∣ 𝐵〉〈𝐶 ∣ ), i.e., the juxtaposition of an inner product with a bra equals a ket juxtaposed with an outer product. (Contributed by NM, 23-May-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) = ((bra‘𝐴) ∘ (𝐵 ketbra 𝐶))) | ||
Theorem | kbass3 30489 | Dirac bra-ket associative law 〈𝐴 ∣ 𝐵〉〈𝐶 ∣ 𝐷〉 = (〈𝐴 ∣ 𝐵〉〈𝐶 ∣ ) ∣ 𝐷〉. (Contributed by NM, 30-May-2006.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝐷)) = ((((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶))‘𝐷)) | ||
Theorem | kbass4 30490 | Dirac bra-ket associative law 〈𝐴 ∣ 𝐵〉〈𝐶 ∣ 𝐷〉 = 〈𝐴 ∣ ( ∣ 𝐵〉〈𝐶 ∣ 𝐷〉). (Contributed by NM, 30-May-2006.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝐷)) = ((bra‘𝐴)‘(((bra‘𝐶)‘𝐷) ·ℎ 𝐵))) | ||
Theorem | kbass5 30491 | Dirac bra-ket associative law ( ∣ 𝐴〉〈𝐵 ∣ )( ∣ 𝐶〉〈𝐷 ∣ ) = (( ∣ 𝐴〉〈𝐵 ∣ ) ∣ 𝐶〉)〈𝐷 ∣. (Contributed by NM, 30-May-2006.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) = (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)) | ||
Theorem | kbass6 30492 | Dirac bra-ket associative law ( ∣ 𝐴〉〈𝐵 ∣ )( ∣ 𝐶〉〈𝐷 ∣ ) = ∣ 𝐴〉(〈𝐵 ∣ ( ∣ 𝐶〉〈𝐷 ∣ )). (Contributed by NM, 30-May-2006.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) = (𝐴 ketbra (◡bra‘((bra‘𝐵) ∘ (𝐶 ketbra 𝐷))))) | ||
Theorem | leopg 30493* | Ordering relation for positive operators. Definition of positive operator ordering in [Kreyszig] p. 470. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐵) → (𝑇 ≤op 𝑈 ↔ ((𝑈 −op 𝑇) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑈 −op 𝑇)‘𝑥) ·ih 𝑥)))) | ||
Theorem | leop 30494* | Ordering relation for operators. Definition of positive operator ordering in [Kreyszig] p. 470. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇 ≤op 𝑈 ↔ ∀𝑥 ∈ ℋ 0 ≤ (((𝑈 −op 𝑇)‘𝑥) ·ih 𝑥))) | ||
Theorem | leop2 30495* | Ordering relation for operators. Definition of operator ordering in [Young] p. 141. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇 ≤op 𝑈 ↔ ∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑥) ≤ ((𝑈‘𝑥) ·ih 𝑥))) | ||
Theorem | leop3 30496 | Operator ordering in terms of a positive operator. Definition of operator ordering in [Retherford] p. 49. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇 ≤op 𝑈 ↔ 0hop ≤op (𝑈 −op 𝑇))) | ||
Theorem | leoppos 30497* | Binary relation defining a positive operator. Definition VI.1 of [Retherford] p. 49. (Contributed by NM, 25-Jul-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ HrmOp → ( 0hop ≤op 𝑇 ↔ ∀𝑥 ∈ ℋ 0 ≤ ((𝑇‘𝑥) ·ih 𝑥))) | ||
Theorem | leoprf2 30498 | The ordering relation for operators is reflexive. (Contributed by NM, 24-Jul-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → 𝑇 ≤op 𝑇) | ||
Theorem | leoprf 30499 | The ordering relation for operators is reflexive. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ HrmOp → 𝑇 ≤op 𝑇) | ||
Theorem | leopsq 30500 | The square of a Hermitian operator is positive. (Contributed by NM, 23-Aug-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ HrmOp → 0hop ≤op (𝑇 ∘ 𝑇)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |