![]() |
Metamath
Proof Explorer Theorem List (p. 305 of 435) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28331) |
![]() (28332-29856) |
![]() (29857-43448) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | psgnfzto1st 30401* | The permutation sign for moving one element to the first position. (Contributed by Thierry Arnoux, 21-Aug-2020.) |
⊢ 𝐷 = (1...𝑁) & ⊢ 𝑃 = (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) & ⊢ 𝐺 = (SymGrp‘𝐷) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑆 = (pmSgn‘𝐷) ⇒ ⊢ (𝐼 ∈ 𝐷 → (𝑆‘𝑃) = (-1↑(𝐼 + 1))) | ||
Theorem | pmtridf1o 30402 | Transpositions of 𝑋 and 𝑌 (understood to be the identity when 𝑋 = 𝑌), are bijections. (Contributed by Thierry Arnoux, 1-Jan-2022.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) ⇒ ⊢ (𝜑 → 𝑇:𝐴–1-1-onto→𝐴) | ||
Theorem | pmtridfv1 30403 | Value at X of the transposition of 𝑋 and 𝑌 (understood to be the identity when X = Y ). (Contributed by Thierry Arnoux, 3-Jan-2022.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) ⇒ ⊢ (𝜑 → (𝑇‘𝑋) = 𝑌) | ||
Theorem | pmtridfv2 30404 | Value at Y of the transposition of 𝑋 and 𝑌 (understood to be the identity when X = Y ). (Contributed by Thierry Arnoux, 3-Jan-2022.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) ⇒ ⊢ (𝜑 → (𝑇‘𝑌) = 𝑋) | ||
Syntax | csmat 30405 | Syntax for a function generating submatrices. |
class subMat1 | ||
Definition | df-smat 30406* | Define a function generating submatrices of an integer-indexed matrix. The function maps an index in ((1...𝑀) × (1...𝑁)) into a new index in ((1...(𝑀 − 1)) × (1...(𝑁 − 1))). A submatrix is obtained by deleting a row and a column of the original matrix. Because this function re-indexes the matrix, the resulting submatrix still has the same index set for rows and columns, and its determinent is defined, unlike the current df-subma 20752. (Contributed by Thierry Arnoux, 18-Aug-2020.) |
⊢ subMat1 = (𝑚 ∈ V ↦ (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑚 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))〉)))) | ||
Theorem | smatfval 30407* | Value of the submatrix. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀 ∈ 𝑉) → (𝐾(subMat1‘𝑀)𝐿) = (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉))) | ||
Theorem | smatrcl 30408 | Closure of the rectangular submatrix. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑𝑚 ((1...𝑀) × (1...𝑁)))) ⇒ ⊢ (𝜑 → 𝑆 ∈ (𝐵 ↑𝑚 ((1...(𝑀 − 1)) × (1...(𝑁 − 1))))) | ||
Theorem | smatlem 30409 | Lemma for the next theorems. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑𝑚 ((1...𝑀) × (1...𝑁)))) & ⊢ (𝜑 → 𝐼 ∈ ℕ) & ⊢ (𝜑 → 𝐽 ∈ ℕ) & ⊢ (𝜑 → if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)) = 𝑋) & ⊢ (𝜑 → if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)) = 𝑌) ⇒ ⊢ (𝜑 → (𝐼𝑆𝐽) = (𝑋𝐴𝑌)) | ||
Theorem | smattl 30410 | Entries of a submatrix, top left. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑𝑚 ((1...𝑀) × (1...𝑁)))) & ⊢ (𝜑 → 𝐼 ∈ (1..^𝐾)) & ⊢ (𝜑 → 𝐽 ∈ (1..^𝐿)) ⇒ ⊢ (𝜑 → (𝐼𝑆𝐽) = (𝐼𝐴𝐽)) | ||
Theorem | smattr 30411 | Entries of a submatrix, top right. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑𝑚 ((1...𝑀) × (1...𝑁)))) & ⊢ (𝜑 → 𝐼 ∈ (𝐾...𝑀)) & ⊢ (𝜑 → 𝐽 ∈ (1..^𝐿)) ⇒ ⊢ (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴𝐽)) | ||
Theorem | smatbl 30412 | Entries of a submatrix, bottom left. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑𝑚 ((1...𝑀) × (1...𝑁)))) & ⊢ (𝜑 → 𝐼 ∈ (1..^𝐾)) & ⊢ (𝜑 → 𝐽 ∈ (𝐿...𝑁)) ⇒ ⊢ (𝜑 → (𝐼𝑆𝐽) = (𝐼𝐴(𝐽 + 1))) | ||
Theorem | smatbr 30413 | Entries of a submatrix, bottom right. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑𝑚 ((1...𝑀) × (1...𝑁)))) & ⊢ (𝜑 → 𝐼 ∈ (𝐾...𝑀)) & ⊢ (𝜑 → 𝐽 ∈ (𝐿...𝑁)) ⇒ ⊢ (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴(𝐽 + 1))) | ||
Theorem | smatcl 30414 | Closure of the square submatrix: if 𝑀 is a square matrix of dimension 𝑁 with indices in (1...𝑁), then a submatrix of 𝑀 is of dimension (𝑁 − 1). (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐶 = (Base‘((1...(𝑁 − 1)) Mat 𝑅)) & ⊢ 𝑆 = (𝐾(subMat1‘𝑀)𝐿) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑆 ∈ 𝐶) | ||
Theorem | matmpt2 30415* | Write a square matrix as a mapping operation. (Contributed by Thierry Arnoux, 16-Aug-2020.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ (𝑀 ∈ 𝐵 → 𝑀 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑖𝑀𝑗))) | ||
Theorem | 1smat1 30416 | The submatrix of the identity matrix obtained by removing the ith row and the ith column is an identity matrix. Cf. 1marepvsma1 20758. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ 1 = (1r‘((1...𝑁) Mat 𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) ⇒ ⊢ (𝜑 → (𝐼(subMat1‘ 1 )𝐼) = (1r‘((1...(𝑁 − 1)) Mat 𝑅))) | ||
Theorem | submat1n 30417 | One case where the submatrix with integer indices, subMat1, and the general submatrix subMat, agree. (Contributed by Thierry Arnoux, 22-Aug-2020.) |
⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁)) | ||
Theorem | submatres 30418 | Special case where the submatrix is a restriction of the initial matrix, and no renumbering occurs. (Contributed by Thierry Arnoux, 26-Aug-2020.) |
⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑀 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) | ||
Theorem | submateqlem1 30419 | Lemma for submateq 30421. (Contributed by Thierry Arnoux, 25-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ (1...(𝑁 − 1))) & ⊢ (𝜑 → 𝐾 ≤ 𝑀) ⇒ ⊢ (𝜑 → (𝑀 ∈ (𝐾...𝑁) ∧ (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾}))) | ||
Theorem | submateqlem2 30420 | Lemma for submateq 30421. (Contributed by Thierry Arnoux, 26-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ (1...(𝑁 − 1))) & ⊢ (𝜑 → 𝑀 < 𝐾) ⇒ ⊢ (𝜑 → (𝑀 ∈ (1..^𝐾) ∧ 𝑀 ∈ ((1...𝑁) ∖ {𝐾}))) | ||
Theorem | submateq 30421* | Sufficient condition for two submatrices to be equal. (Contributed by Thierry Arnoux, 25-Aug-2020.) |
⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐸 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝐸𝑗) = (𝑖𝐹𝑗)) ⇒ ⊢ (𝜑 → (𝐼(subMat1‘𝐸)𝐽) = (𝐼(subMat1‘𝐹)𝐽)) | ||
Theorem | submatminr1 30422 | If we take a submatrix by removing the row 𝐼 and column 𝐽, then the result is the same on the matrix with row 𝐼 and column 𝐽 modified by the minMatR1 operator. (Contributed by Thierry Arnoux, 25-Aug-2020.) |
⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ 𝐸 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) ⇒ ⊢ (𝜑 → (𝐼(subMat1‘𝑀)𝐽) = (𝐼(subMat1‘𝐸)𝐽)) | ||
Syntax | clmat 30423 | Extend class notation with the literal matrix conversion function. |
class litMat | ||
Definition | df-lmat 30424* | Define a function converting words of words into matrices. (Contributed by Thierry Arnoux, 28-Aug-2020.) |
⊢ litMat = (𝑚 ∈ V ↦ (𝑖 ∈ (1...(♯‘𝑚)), 𝑗 ∈ (1...(♯‘(𝑚‘0))) ↦ ((𝑚‘(𝑖 − 1))‘(𝑗 − 1)))) | ||
Theorem | lmatval 30425* | Value of the literal matrix conversion function. (Contributed by Thierry Arnoux, 28-Aug-2020.) |
⊢ (𝑀 ∈ 𝑉 → (litMat‘𝑀) = (𝑖 ∈ (1...(♯‘𝑀)), 𝑗 ∈ (1...(♯‘(𝑀‘0))) ↦ ((𝑀‘(𝑖 − 1))‘(𝑗 − 1)))) | ||
Theorem | lmatfval 30426* | Entries of a literal matrix. (Contributed by Thierry Arnoux, 28-Aug-2020.) |
⊢ 𝑀 = (litMat‘𝑊) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑊 ∈ Word Word 𝑉) & ⊢ (𝜑 → (♯‘𝑊) = 𝑁) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊‘𝑖)) = 𝑁) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) ⇒ ⊢ (𝜑 → (𝐼𝑀𝐽) = ((𝑊‘(𝐼 − 1))‘(𝐽 − 1))) | ||
Theorem | lmatfvlem 30427* | Useful lemma to extract literal matrix entries. Suggested by Mario Carneiro. (Contributed by Thierry Arnoux, 3-Sep-2020.) |
⊢ 𝑀 = (litMat‘𝑊) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑊 ∈ Word Word 𝑉) & ⊢ (𝜑 → (♯‘𝑊) = 𝑁) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊‘𝑖)) = 𝑁) & ⊢ 𝐾 ∈ ℕ0 & ⊢ 𝐿 ∈ ℕ0 & ⊢ 𝐼 ≤ 𝑁 & ⊢ 𝐽 ≤ 𝑁 & ⊢ (𝐾 + 1) = 𝐼 & ⊢ (𝐿 + 1) = 𝐽 & ⊢ (𝑊‘𝐾) = 𝑋 & ⊢ (𝜑 → (𝑋‘𝐿) = 𝑌) ⇒ ⊢ (𝜑 → (𝐼𝑀𝐽) = 𝑌) | ||
Theorem | lmatcl 30428* | Closure of the literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.) |
⊢ 𝑀 = (litMat‘𝑊) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑊 ∈ Word Word 𝑉) & ⊢ (𝜑 → (♯‘𝑊) = 𝑁) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊‘𝑖)) = 𝑁) & ⊢ 𝑉 = (Base‘𝑅) & ⊢ 𝑂 = ((1...𝑁) Mat 𝑅) & ⊢ 𝑃 = (Base‘𝑂) & ⊢ (𝜑 → 𝑅 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝑀 ∈ 𝑃) | ||
Theorem | lmat22lem 30429* | Lemma for lmat22e11 30430 and co. (Contributed by Thierry Arnoux, 28-Aug-2020.) |
⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^2)) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = 2) | ||
Theorem | lmat22e11 30430 | Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 28-Aug-2020.) |
⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → (1𝑀1) = 𝐴) | ||
Theorem | lmat22e12 30431 | Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.) |
⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → (1𝑀2) = 𝐵) | ||
Theorem | lmat22e21 30432 | Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.) |
⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → (2𝑀1) = 𝐶) | ||
Theorem | lmat22e22 30433 | Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.) |
⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → (2𝑀2) = 𝐷) | ||
Theorem | lmat22det 30434 | The determinant of a literal 2x2 complex matrix. (Contributed by Thierry Arnoux, 1-Sep-2020.) |
⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ · = (.r‘𝑅) & ⊢ − = (-g‘𝑅) & ⊢ 𝑉 = (Base‘𝑅) & ⊢ 𝐽 = ((1...2) maDet 𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → (𝐽‘𝑀) = ((𝐴 · 𝐷) − (𝐶 · 𝐵))) | ||
Theorem | mdetpmtr1 30435* | The determinant of a matrix with permuted rows is the determinant of the original matrix multiplied by the sign of the permutation. (Contributed by Thierry Arnoux, 22-Aug-2020.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐺 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐸 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑃‘𝑖)𝑀𝑗)) ⇒ ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺)) → (𝐷‘𝑀) = (((𝑍 ∘ 𝑆)‘𝑃) · (𝐷‘𝐸))) | ||
Theorem | mdetpmtr2 30436* | The determinant of a matrix with permuted columns is the determinant of the original matrix multiplied by the sign of the permutation. (Contributed by Thierry Arnoux, 22-Aug-2020.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐺 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐸 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑖𝑀(𝑃‘𝑗))) ⇒ ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺)) → (𝐷‘𝑀) = (((𝑍 ∘ 𝑆)‘𝑃) · (𝐷‘𝐸))) | ||
Theorem | mdetpmtr12 30437* | The determinant of a matrix with permuted rows and columns is the determinant of the original matrix multiplied by the product of the signs of the permutations. (Contributed by Thierry Arnoux, 22-Aug-2020.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐺 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐸 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑃‘𝑖)𝑀(𝑄‘𝑗))) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ (𝜑 → 𝑃 ∈ 𝐺) & ⊢ (𝜑 → 𝑄 ∈ 𝐺) ⇒ ⊢ (𝜑 → (𝐷‘𝑀) = ((𝑍‘((𝑆‘𝑃) · (𝑆‘𝑄))) · (𝐷‘𝐸))) | ||
Theorem | mdetlap1 30438* | A Laplace expansion of the determinant of a matrix, using the adjunct (cofactor) matrix. (Contributed by Thierry Arnoux, 16-Aug-2020.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐷 = (𝑁 maDet 𝑅) & ⊢ 𝐾 = (𝑁 maAdju 𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) → (𝐷‘𝑀) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑀𝑗) · (𝑗(𝐾‘𝑀)𝐼))))) | ||
Theorem | madjusmdetlem1 30439* | Lemma for madjusmdet 30443. (Contributed by Thierry Arnoux, 22-Aug-2020.) |
⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐷 = ((1...𝑁) maDet 𝑅) & ⊢ 𝐾 = ((1...𝑁) maAdju 𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ 𝐺 = (Base‘(SymGrp‘(1...𝑁))) & ⊢ 𝑆 = (pmSgn‘(1...𝑁)) & ⊢ 𝑈 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) & ⊢ 𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃‘𝑖)𝑈(𝑄‘𝑗))) & ⊢ (𝜑 → 𝑃 ∈ 𝐺) & ⊢ (𝜑 → 𝑄 ∈ 𝐺) & ⊢ (𝜑 → (𝑃‘𝑁) = 𝐼) & ⊢ (𝜑 → (𝑄‘𝑁) = 𝐽) & ⊢ (𝜑 → (𝐼(subMat1‘𝑈)𝐽) = (𝑁(subMat1‘𝑊)𝑁)) ⇒ ⊢ (𝜑 → (𝐽(𝐾‘𝑀)𝐼) = ((𝑍‘((𝑆‘𝑃) · (𝑆‘𝑄))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽)))) | ||
Theorem | madjusmdetlem2 30440* | Lemma for madjusmdet 30443. (Contributed by Thierry Arnoux, 26-Aug-2020.) |
⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐷 = ((1...𝑁) maDet 𝑅) & ⊢ 𝐾 = ((1...𝑁) maAdju 𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ 𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) & ⊢ 𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖 ≤ 𝑁, (𝑖 − 1), 𝑖))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = ((𝑃 ∘ ◡𝑆)‘𝑋)) | ||
Theorem | madjusmdetlem3 30441* | Lemma for madjusmdet 30443. (Contributed by Thierry Arnoux, 27-Aug-2020.) |
⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐷 = ((1...𝑁) maDet 𝑅) & ⊢ 𝐾 = ((1...𝑁) maAdju 𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ 𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) & ⊢ 𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖 ≤ 𝑁, (𝑖 − 1), 𝑖))) & ⊢ 𝑄 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝐽, if(𝑗 ≤ 𝐽, (𝑗 − 1), 𝑗))) & ⊢ 𝑇 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝑁, if(𝑗 ≤ 𝑁, (𝑗 − 1), 𝑗))) & ⊢ 𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (((𝑃 ∘ ◡𝑆)‘𝑖)𝑈((𝑄 ∘ ◡𝑇)‘𝑗))) & ⊢ (𝜑 → 𝑈 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐼(subMat1‘𝑈)𝐽) = (𝑁(subMat1‘𝑊)𝑁)) | ||
Theorem | madjusmdetlem4 30442* | Lemma for madjusmdet 30443. (Contributed by Thierry Arnoux, 22-Aug-2020.) |
⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐷 = ((1...𝑁) maDet 𝑅) & ⊢ 𝐾 = ((1...𝑁) maAdju 𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ 𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) & ⊢ 𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖 ≤ 𝑁, (𝑖 − 1), 𝑖))) & ⊢ 𝑄 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝐽, if(𝑗 ≤ 𝐽, (𝑗 − 1), 𝑗))) & ⊢ 𝑇 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝑁, if(𝑗 ≤ 𝑁, (𝑗 − 1), 𝑗))) ⇒ ⊢ (𝜑 → (𝐽(𝐾‘𝑀)𝐼) = ((𝑍‘(-1↑(𝐼 + 𝐽))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽)))) | ||
Theorem | madjusmdet 30443 | Express the cofactor of the matrix, i.e. the entries of its adjunct matrix, using determinant of submatrices. (Contributed by Thierry Arnoux, 23-Aug-2020.) |
⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐷 = ((1...𝑁) maDet 𝑅) & ⊢ 𝐾 = ((1...𝑁) maAdju 𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐽(𝐾‘𝑀)𝐼) = ((𝑍‘(-1↑(𝐼 + 𝐽))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽)))) | ||
Theorem | mdetlap 30444* | Laplace expansion of the determinant of a square matrix. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐷 = ((1...𝑁) maDet 𝑅) & ⊢ 𝐾 = ((1...𝑁) maAdju 𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑍 = (ℤRHom‘𝑅) & ⊢ 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐷‘𝑀) = (𝑅 Σg (𝑗 ∈ (1...𝑁) ↦ ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))))))) | ||
Theorem | fvproj 30445* | Value of a function on pairs, given two projections 𝐹 and 𝐺. (Contributed by Thierry Arnoux, 30-Dec-2019.) |
⊢ 𝐻 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐻‘〈𝑋, 𝑌〉) = 〈(𝐹‘𝑋), (𝐺‘𝑌)〉) | ||
Theorem | fimaproj 30446* | Image of a cartesian product for a function on pairs, given two projections 𝐹 and 𝐺. (Contributed by Thierry Arnoux, 30-Dec-2019.) |
⊢ 𝐻 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) & ⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐺 Fn 𝐵) & ⊢ (𝜑 → 𝑋 ⊆ 𝐴) & ⊢ (𝜑 → 𝑌 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐻 “ (𝑋 × 𝑌)) = ((𝐹 “ 𝑋) × (𝐺 “ 𝑌))) | ||
Theorem | txomap 30447* | Given two open maps 𝐹 and 𝐺, 𝐻 mapping pairs of sets, is also an open map for the product topology. (Contributed by Thierry Arnoux, 29-Dec-2019.) |
⊢ (𝜑 → 𝐹:𝑋⟶𝑍) & ⊢ (𝜑 → 𝐺:𝑌⟶𝑇) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) & ⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑇)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ 𝑥) ∈ 𝐿) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝐺 “ 𝑦) ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ (𝐽 ×t 𝐾)) & ⊢ 𝐻 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) ⇒ ⊢ (𝜑 → (𝐻 “ 𝐴) ∈ (𝐿 ×t 𝑀)) | ||
Theorem | qtopt1 30448* | If every equivalence class is closed, then the quotient space is T1 . (Contributed by Thierry Arnoux, 5-Jan-2020.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐽 ∈ Fre) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (◡𝐹 “ {𝑥}) ∈ (Clsd‘𝐽)) ⇒ ⊢ (𝜑 → (𝐽 qTop 𝐹) ∈ Fre) | ||
Theorem | qtophaus 30449* | If an open map's graph in the product space (𝐽 ×t 𝐽) is closed, then its quotient topology is Hausdorff. (Contributed by Thierry Arnoux, 4-Jan-2020.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ ∼ = (◡𝐹 ∘ 𝐹) & ⊢ 𝐻 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) & ⊢ (𝜑 → 𝐽 ∈ Haus) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ 𝑥) ∈ (𝐽 qTop 𝐹)) & ⊢ (𝜑 → ∼ ∈ (Clsd‘(𝐽 ×t 𝐽))) ⇒ ⊢ (𝜑 → (𝐽 qTop 𝐹) ∈ Haus) | ||
Theorem | circtopn 30450* | The topology of the unit circle is generated by open intervals of the polar coordinate. (Contributed by Thierry Arnoux, 4-Jan-2020.) |
⊢ 𝐼 = (0[,](2 · π)) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (exp‘(i · 𝑥))) & ⊢ 𝐶 = (◡abs “ {1}) ⇒ ⊢ (𝐽 qTop 𝐹) = (TopOpen‘(𝐹 “s ℝfld)) | ||
Theorem | circcn 30451* | The function gluing the real line into the unit circle is continuous. (Contributed by Thierry Arnoux, 5-Jan-2020.) |
⊢ 𝐼 = (0[,](2 · π)) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (exp‘(i · 𝑥))) & ⊢ 𝐶 = (◡abs “ {1}) ⇒ ⊢ 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)) | ||
Theorem | reff 30452* | For any cover refinement, there exists a function associating with each set in the refinement a set in the original cover containing it. This is sometimes used as a defintion of refinement. Note that this definition uses the axiom of choice through ac6sg 9626. (Contributed by Thierry Arnoux, 12-Jan-2020.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴Ref𝐵 ↔ (∪ 𝐵 ⊆ ∪ 𝐴 ∧ ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑣 ∈ 𝐴 𝑣 ⊆ (𝑓‘𝑣))))) | ||
Theorem | locfinreflem 30453* | A locally finite refinement of an open cover induces a locally finite open cover with the original index set. This is fact 2 of http://at.yorku.ca/p/a/c/a/02.pdf, it is expressed by exposing a function 𝑓 from the original cover 𝑈, which is taken as the index set. The solution is constructed by building unions, so the same method can be used to prove a similar theorem about closed covers. (Contributed by Thierry Arnoux, 29-Jan-2020.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝑈 ⊆ 𝐽) & ⊢ (𝜑 → 𝑋 = ∪ 𝑈) & ⊢ (𝜑 → 𝑉 ⊆ 𝐽) & ⊢ (𝜑 → 𝑉Ref𝑈) & ⊢ (𝜑 → 𝑉 ∈ (LocFin‘𝐽)) ⇒ ⊢ (𝜑 → ∃𝑓((Fun 𝑓 ∧ dom 𝑓 ⊆ 𝑈 ∧ ran 𝑓 ⊆ 𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))) | ||
Theorem | locfinref 30454* | A locally finite refinement of an open cover induces a locally finite open cover with the original index set. This is fact 2 of http://at.yorku.ca/p/a/c/a/02.pdf, it is expressed by exposing a function 𝑓 from the original cover 𝑈, which is taken as the index set. (Contributed by Thierry Arnoux, 31-Jan-2020.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝑈 ⊆ 𝐽) & ⊢ (𝜑 → 𝑋 = ∪ 𝑈) & ⊢ (𝜑 → 𝑉 ⊆ 𝐽) & ⊢ (𝜑 → 𝑉Ref𝑈) & ⊢ (𝜑 → 𝑉 ∈ (LocFin‘𝐽)) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:𝑈⟶𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))) | ||
Syntax | ccref 30455 | The "every open cover has an 𝐴 refinement" predicate. |
class CovHasRef𝐴 | ||
Definition | df-cref 30456* | Define a statement "every open cover has an 𝐴 refinement" , where 𝐴 is a property for refinements like "finite", "countable", "point finite" or "locally finite". (Contributed by Thierry Arnoux, 7-Jan-2020.) |
⊢ CovHasRef𝐴 = {𝑗 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦)} | ||
Theorem | iscref 30457* | The property that every open cover has an 𝐴 refinement for the topological space 𝐽. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ CovHasRef𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦))) | ||
Theorem | crefeq 30458 | Equality theorem for the "every open cover has an A refinement" predicate. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
⊢ (𝐴 = 𝐵 → CovHasRef𝐴 = CovHasRef𝐵) | ||
Theorem | creftop 30459 | A space where every open cover has an 𝐴 refinement is a topological space. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
⊢ (𝐽 ∈ CovHasRef𝐴 → 𝐽 ∈ Top) | ||
Theorem | crefi 30460* | The property that every open cover has an 𝐴 refinement for the topological space 𝐽. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝐶) | ||
Theorem | crefdf 30461* | A formulation of crefi 30460 easier to use for definitions. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐵 = CovHasRef𝐴 & ⊢ (𝑧 ∈ 𝐴 → 𝜑) ⇒ ⊢ ((𝐽 ∈ 𝐵 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → ∃𝑧 ∈ 𝒫 𝐽(𝜑 ∧ 𝑧Ref𝐶)) | ||
Theorem | crefss 30462 | The "every open cover has an 𝐴 refinement" predicate respects inclusion. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
⊢ (𝐴 ⊆ 𝐵 → CovHasRef𝐴 ⊆ CovHasRef𝐵) | ||
Theorem | cmpcref 30463 | Equivalent definition of compact space in terms of open cover refinements. Compact spaces are topologies with finite open cover refinements. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
⊢ Comp = CovHasRefFin | ||
Theorem | cmpfiref 30464* | Every open cover of a Compact space has a finite refinement. (Contributed by Thierry Arnoux, 1-Feb-2020.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Comp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ∈ Fin ∧ 𝑣Ref𝑈)) | ||
Syntax | cldlf 30465 | Extend class notation with the class of all Lindelöf spaces. |
class Ldlf | ||
Definition | df-ldlf 30466 | Definition of a Lindelöf space. A Lindelöf space is a topological space in which every open cover has a countable subcover. Definition 1 of [BourbakiTop2] p. 195. (Contributed by Thierry Arnoux, 30-Jan-2020.) |
⊢ Ldlf = CovHasRef{𝑥 ∣ 𝑥 ≼ ω} | ||
Theorem | ldlfcntref 30467* | Every open cover of a Lindelöf space has a countable refinement. (Contributed by Thierry Arnoux, 1-Feb-2020.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Ldlf ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ≼ ω ∧ 𝑣Ref𝑈)) | ||
Syntax | cpcmp 30468 | Extend class notation with the class of all paracompact topologies. |
class Paracomp | ||
Definition | df-pcmp 30469 | Definition of a paracompact topology. A topology is said to be paracompact iff every open cover has an open refinement that is locally finite. The definition 6 of [BourbakiTop1] p. I.69. also requires the topology to be Hausdorff, but this is dropped here. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
⊢ Paracomp = {𝑗 ∣ 𝑗 ∈ CovHasRef(LocFin‘𝑗)} | ||
Theorem | ispcmp 30470 | The predicate "is a paracompact topology". (Contributed by Thierry Arnoux, 7-Jan-2020.) |
⊢ (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽)) | ||
Theorem | cmppcmp 30471 | Every compact space is paracompact. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
⊢ (𝐽 ∈ Comp → 𝐽 ∈ Paracomp) | ||
Theorem | dispcmp 30472 | Every discrete space is paracompact. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ Paracomp) | ||
Theorem | pcmplfin 30473* | Given a paracompact topology 𝐽 and an open cover 𝑈, there exists an open refinement 𝑣 that is locally finite. (Contributed by Thierry Arnoux, 31-Jan-2020.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) | ||
Theorem | pcmplfinf 30474* | Given a paracompact topology 𝐽 and an open cover 𝑈, there exists an open refinement ran 𝑓 that is locally finite, using the same index as the original cover 𝑈. (Contributed by Thierry Arnoux, 31-Jan-2020.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → ∃𝑓(𝑓:𝑈⟶𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))) | ||
Syntax | cmetid 30475 | Extend class notation with the class of metric identifications. |
class ~Met | ||
Syntax | cpstm 30476 | Extend class notation with the metric induced by a pseudometric. |
class pstoMet | ||
Definition | df-metid 30477* | Define the metric identification relation for a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
⊢ ~Met = (𝑑 ∈ ∪ ran PsMet ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ dom dom 𝑑 ∧ 𝑦 ∈ dom dom 𝑑) ∧ (𝑥𝑑𝑦) = 0)}) | ||
Definition | df-pstm 30478* | Define the metric induced by a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
⊢ pstoMet = (𝑑 ∈ ∪ ran PsMet ↦ (𝑎 ∈ (dom dom 𝑑 / (~Met‘𝑑)), 𝑏 ∈ (dom dom 𝑑 / (~Met‘𝑑)) ↦ ∪ {𝑧 ∣ ∃𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝑑𝑦)})) | ||
Theorem | metidval 30479* | Value of the metric identification relation. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
⊢ (𝐷 ∈ (PsMet‘𝑋) → (~Met‘𝐷) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝑥𝐷𝑦) = 0)}) | ||
Theorem | metidss 30480 | As a relation, the metric identification is a subset of a Cartesian product. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
⊢ (𝐷 ∈ (PsMet‘𝑋) → (~Met‘𝐷) ⊆ (𝑋 × 𝑋)) | ||
Theorem | metidv 30481 | 𝐴 and 𝐵 identify by the metric 𝐷 if their distance is zero. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴(~Met‘𝐷)𝐵 ↔ (𝐴𝐷𝐵) = 0)) | ||
Theorem | metideq 30482 | Basic property of the metric identification relation. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → (𝐴𝐷𝐸) = (𝐵𝐷𝐹)) | ||
Theorem | metider 30483 | The metric identification is an equivalence relation. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
⊢ (𝐷 ∈ (PsMet‘𝑋) → (~Met‘𝐷) Er 𝑋) | ||
Theorem | pstmval 30484* | Value of the metric induced by a pseudometric 𝐷. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
⊢ ∼ = (~Met‘𝐷) ⇒ ⊢ (𝐷 ∈ (PsMet‘𝑋) → (pstoMet‘𝐷) = (𝑎 ∈ (𝑋 / ∼ ), 𝑏 ∈ (𝑋 / ∼ ) ↦ ∪ {𝑧 ∣ ∃𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝐷𝑦)})) | ||
Theorem | pstmfval 30485 | Function value of the metric induced by a pseudometric 𝐷 (Contributed by Thierry Arnoux, 11-Feb-2018.) |
⊢ ∼ = (~Met‘𝐷) ⇒ ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ([𝐴] ∼ (pstoMet‘𝐷)[𝐵] ∼ ) = (𝐴𝐷𝐵)) | ||
Theorem | pstmxmet 30486 | The metric induced by a pseudometric is a full-fledged metric on the equivalence classes of the metric identification. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
⊢ ∼ = (~Met‘𝐷) ⇒ ⊢ (𝐷 ∈ (PsMet‘𝑋) → (pstoMet‘𝐷) ∈ (∞Met‘(𝑋 / ∼ ))) | ||
Theorem | hauseqcn 30487 | In a Hausdorff topology, two continuous functions which agree on a dense set agree everywhere. (Contributed by Thierry Arnoux, 28-Dec-2017.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐾 ∈ Haus) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → (𝐹 ↾ 𝐴) = (𝐺 ↾ 𝐴)) & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → ((cls‘𝐽)‘𝐴) = 𝑋) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
Theorem | unitsscn 30488 | The closed unit interval is a subset of the set of the complex numbers. Useful lemma for manipulating probabilities within the closed unit interval. (Contributed by Thierry Arnoux, 12-Dec-2016.) |
⊢ (0[,]1) ⊆ ℂ | ||
Theorem | elunitrn 30489 | The closed unit interval is a subset of the set of the real numbers. Useful lemma for manipulating probabilities within the closed unit interval. (Contributed by Thierry Arnoux, 21-Dec-2016.) |
⊢ (𝐴 ∈ (0[,]1) → 𝐴 ∈ ℝ) | ||
Theorem | elunitcn 30490 | The closed unit interval is a subset of the set of the complext numbers. Useful lemma for manipulating probabilities within the closed unit interval. (Contributed by Thierry Arnoux, 21-Dec-2016.) |
⊢ (𝐴 ∈ (0[,]1) → 𝐴 ∈ ℂ) | ||
Theorem | elunitge0 30491 | An element of the closed unit interval is positive. Useful lemma for manipulating probabilities within the closed unit interval. (Contributed by Thierry Arnoux, 20-Dec-2016.) |
⊢ (𝐴 ∈ (0[,]1) → 0 ≤ 𝐴) | ||
Theorem | unitssxrge0 30492 | The closed unit interval is a subset of the set of the extended nonnegative reals. Useful lemma for manipulating probabilities within the closed unit interval. (Contributed by Thierry Arnoux, 12-Dec-2016.) |
⊢ (0[,]1) ⊆ (0[,]+∞) | ||
Theorem | unitdivcld 30493 | Necessary conditions for a quotient to be in the closed unit interval. (somewhat too strong, it would be sufficient that A and B are in RR+) (Contributed by Thierry Arnoux, 20-Dec-2016.) |
⊢ ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴 ≤ 𝐵 ↔ (𝐴 / 𝐵) ∈ (0[,]1))) | ||
Theorem | iistmd 30494 | The closed unit interval forms a topological monoid under multiplication. (Contributed by Thierry Arnoux, 25-Mar-2017.) |
⊢ 𝐼 = ((mulGrp‘ℂfld) ↾s (0[,]1)) ⇒ ⊢ 𝐼 ∈ TopMnd | ||
Theorem | unicls 30495 | The union of the closed set is the underlying set of the topology. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
⊢ 𝐽 ∈ Top & ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ∪ (Clsd‘𝐽) = 𝑋 | ||
Theorem | tpr2tp 30496 | The usual topology on (ℝ × ℝ) is the product topology of the usual topology on ℝ. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) ⇒ ⊢ (𝐽 ×t 𝐽) ∈ (TopOn‘(ℝ × ℝ)) | ||
Theorem | tpr2uni 30497 | The usual topology on (ℝ × ℝ) is the product topology of the usual topology on ℝ. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) ⇒ ⊢ ∪ (𝐽 ×t 𝐽) = (ℝ × ℝ) | ||
Theorem | xpinpreima 30498 | Rewrite the cartesian product of two sets as the intersection of their preimage by 1st and 2nd, the projections on the first and second elements. (Contributed by Thierry Arnoux, 22-Sep-2017.) |
⊢ (𝐴 × 𝐵) = ((◡(1st ↾ (V × V)) “ 𝐴) ∩ (◡(2nd ↾ (V × V)) “ 𝐵)) | ||
Theorem | xpinpreima2 30499 | Rewrite the cartesian product of two sets as the intersection of their preimage by 1st and 2nd, the projections on the first and second elements. (Contributed by Thierry Arnoux, 22-Sep-2017.) |
⊢ ((𝐴 ⊆ 𝐸 ∧ 𝐵 ⊆ 𝐹) → (𝐴 × 𝐵) = ((◡(1st ↾ (𝐸 × 𝐹)) “ 𝐴) ∩ (◡(2nd ↾ (𝐸 × 𝐹)) “ 𝐵))) | ||
Theorem | sqsscirc1 30500 | The complex square of side 𝐷 is a subset of the complex circle of radius 𝐷. (Contributed by Thierry Arnoux, 25-Sep-2017.) |
⊢ ((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) → ((𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2)) → (√‘((𝑋↑2) + (𝑌↑2))) < 𝐷)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |