| Metamath
Proof Explorer Theorem List (p. 305 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | helloworld 30401 | The classic "Hello world" benchmark has been translated into 314 computer programming languages - see http://helloworldcollection.de. However, for many years it eluded a proof that it is more than just a conjecture, even though a wily mathematician once claimed, "I have discovered a truly marvelous proof of this, which this margin is too narrow to contain." Using an IBM 709 mainframe, a team of mathematicians led by Prof. Loof Lirpa, at the New College of Tahiti, were finally able to put it to rest with a remarkably short proof only four lines long. (Contributed by Prof. Loof Lirpa, 1-Apr-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ¬ (ℎ ∈ (𝐿𝐿0) ∧ 𝑊∅(R1𝑑)) | ||
| Theorem | 1p1e2apr1 30402 | One plus one equals two. Using proof-shortening techniques pioneered by Mr. Mel L. O'Cat, along with the latest supercomputer technology, Prof. Loof Lirpa and colleagues were able to shorten Whitehead and Russell's 360-page proof that 1+1=2 in Principia Mathematica to this remarkable proof only two steps long, thus establishing a new world's record for this famous theorem. (Contributed by Prof. Loof Lirpa, 1-Apr-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (1 + 1) = 2 | ||
| Theorem | eqid1 30403 |
Law of identity (reflexivity of class equality). Theorem 6.4 of [Quine]
p. 41.
This law is thought to have originated with Aristotle (Metaphysics, Book VII, Part 17). It is one of the three axioms of Ayn Rand's philosophy (Atlas Shrugged, Part Three, Chapter VII). While some have proposed extending Rand's axiomatization to include Compassion and Kindness, others fear that such an extension may flirt with logical inconsistency. (Contributed by Stefan Allan, 1-Apr-2009.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐴 = 𝐴 | ||
| Theorem | 1div0apr 30404 | Division by zero is forbidden! If we try, we encounter the DO NOT ENTER sign, which in mathematics means it is foolhardy to venture any further, possibly putting the underlying fabric of reality at risk. Based on a dare by David A. Wheeler. (Contributed by Mario Carneiro, 1-Apr-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (1 / 0) = ∅ | ||
| Theorem | topnfbey 30405 | Nothing seems to be impossible to Prof. Lirpa. After years of intensive research, he managed to find a proof that when given a chance to reach infinity, one could indeed go beyond, thus giving formal soundness to Buzz Lightyear's motto "To infinity... and beyond!" (Contributed by Prof. Loof Lirpa, 1-Apr-2020.) (Revised by Thierry Arnoux, 2-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐵 ∈ (0...+∞) → +∞ < 𝐵) | ||
| Theorem | 9p10ne21 30406 | 9 + 10 is not equal to 21. This disproves a popular meme which asserts that 9 + 10 does equal 21. See https://www.quora.com/Can-someone-try-to-prove-to-me-that-9+10-21 for attempts to prove that 9 + 10 = 21, and see https://tinyurl.com/9p10e21 for the history of the 9 + 10 = 21 meme. (Contributed by BTernaryTau, 25-Aug-2023.) |
| ⊢ (9 + ;10) ≠ ;21 | ||
| Theorem | 9p10ne21fool 30407 | 9 + 10 equals 21. This astonishing thesis lives as a meme on the internet, and may be believed by quite some people. At least repeated requests to falsify it are a permanent part of the story. Prof. Loof Lirpa did not rest until he finally came up with a computer verifiable mathematical proof, that only a fool can think so. (Contributed by Prof. Loof Lirpa, 26-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((9 + ;10) = ;21 → 𝐹∅(0 · 1)) | ||
| Axiom | ax-flt 30408 | This factoid is e.g. useful for nrt2irr 30409. Andrew has a proof, I'll have a go at formalizing it after my coffee break. In the mean time let's add it as an axiom. (Contributed by Prof. Loof Lirpa, 1-Apr-2025.) (New usage is discouraged.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (𝑋 ∈ ℕ ∧ 𝑌 ∈ ℕ ∧ 𝑍 ∈ ℕ)) → ((𝑋↑𝑁) + (𝑌↑𝑁)) ≠ (𝑍↑𝑁)) | ||
| Theorem | nrt2irr 30409 | The 𝑁-th root of 2 is irrational for 𝑁 greater than 2. For 𝑁 = 2, see sqrt2irr 16224. This short and rather elegant proof has the minor disadvantage that it refers to ax-flt 30408, which is still to be formalized. For a proof not requiring ax-flt 30408, see rtprmirr 26677. (Contributed by Prof. Loof Lirpa, 1-Apr-2025.) (Proof modification is discouraged.) |
| ⊢ (𝑁 ∈ (ℤ≥‘3) → ¬ (2↑𝑐(1 / 𝑁)) ∈ ℚ) | ||
| Syntax | cplig 30410 | Extend class notation with the class of all planar incidence geometries. |
| class Plig | ||
| Definition | df-plig 30411* |
Define the class of planar incidence geometries. We use Hilbert's
axioms and adapt them to planar geometry. We use ∈ for the
incidence relation. We could have used a generic binary relation, but
using ∈ allows to reuse previous results.
Much of what follows is
directly borrowed from Aitken, Incidence-Betweenness Geometry,
2008,
http://public.csusm.edu/aitken_html/m410/betweenness.08.pdf.
The class Plig is the class of planar incidence geometries, where a planar incidence geometry is defined as a set of lines satisfying three axioms. In the definition below, 𝑥 denotes a planar incidence geometry, so ∪ 𝑥 denotes the union of its lines, that is, the set of points in the plane, 𝑙 denotes a line, and 𝑎, 𝑏, 𝑐 denote points. Therefore, the axioms are: 1) for all pairs of (distinct) points, there exists a unique line containing them; 2) all lines contain at least two points; 3) there exist three non-collinear points. (Contributed by FL, 2-Aug-2009.) |
| ⊢ Plig = {𝑥 ∣ (∀𝑎 ∈ ∪ 𝑥∀𝑏 ∈ ∪ 𝑥(𝑎 ≠ 𝑏 → ∃!𝑙 ∈ 𝑥 (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙)) ∧ ∀𝑙 ∈ 𝑥 ∃𝑎 ∈ ∪ 𝑥∃𝑏 ∈ ∪ 𝑥(𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) ∧ ∃𝑎 ∈ ∪ 𝑥∃𝑏 ∈ ∪ 𝑥∃𝑐 ∈ ∪ 𝑥∀𝑙 ∈ 𝑥 ¬ (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙))} | ||
| Theorem | isplig 30412* | The predicate "is a planar incidence geometry" for sets. (Contributed by FL, 2-Aug-2009.) |
| ⊢ 𝑃 = ∪ 𝐺 ⇒ ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ Plig ↔ (∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 → ∃!𝑙 ∈ 𝐺 (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙)) ∧ ∀𝑙 ∈ 𝐺 ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) ∧ ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∀𝑙 ∈ 𝐺 ¬ (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙)))) | ||
| Theorem | ispligb 30413* | The predicate "is a planar incidence geometry". (Contributed by BJ, 2-Dec-2021.) |
| ⊢ 𝑃 = ∪ 𝐺 ⇒ ⊢ (𝐺 ∈ Plig ↔ (𝐺 ∈ V ∧ (∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 → ∃!𝑙 ∈ 𝐺 (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙)) ∧ ∀𝑙 ∈ 𝐺 ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) ∧ ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∀𝑙 ∈ 𝐺 ¬ (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙)))) | ||
| Theorem | tncp 30414* | In any planar incidence geometry, there exist three non-collinear points. (Contributed by FL, 3-Aug-2009.) |
| ⊢ 𝑃 = ∪ 𝐺 ⇒ ⊢ (𝐺 ∈ Plig → ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∀𝑙 ∈ 𝐺 ¬ (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙)) | ||
| Theorem | l2p 30415* | For any line in a planar incidence geometry, there exist two different points on the line. (Contributed by AV, 28-Nov-2021.) |
| ⊢ 𝑃 = ∪ 𝐺 ⇒ ⊢ ((𝐺 ∈ Plig ∧ 𝐿 ∈ 𝐺) → ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝐿 ∧ 𝑏 ∈ 𝐿)) | ||
| Theorem | lpni 30416* | For any line in a planar incidence geometry, there exists a point not on the line. (Contributed by Jeff Hankins, 15-Aug-2009.) |
| ⊢ 𝑃 = ∪ 𝐺 ⇒ ⊢ ((𝐺 ∈ Plig ∧ 𝐿 ∈ 𝐺) → ∃𝑎 ∈ 𝑃 𝑎 ∉ 𝐿) | ||
| Theorem | nsnlplig 30417 | There is no "one-point line" in a planar incidence geometry. (Contributed by BJ, 2-Dec-2021.) (Proof shortened by AV, 5-Dec-2021.) |
| ⊢ (𝐺 ∈ Plig → ¬ {𝐴} ∈ 𝐺) | ||
| Theorem | nsnlpligALT 30418 | Alternate version of nsnlplig 30417 using the predicate ∉ instead of ¬ ∈ and whose proof is shorter. (Contributed by AV, 5-Dec-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐺 ∈ Plig → {𝐴} ∉ 𝐺) | ||
| Theorem | n0lplig 30419 | There is no "empty line" in a planar incidence geometry. (Contributed by AV, 28-Nov-2021.) (Proof shortened by BJ, 2-Dec-2021.) |
| ⊢ (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺) | ||
| Theorem | n0lpligALT 30420 | Alternate version of n0lplig 30419 using the predicate ∉ instead of ¬ ∈ and whose proof bypasses nsnlplig 30417. (Contributed by AV, 28-Nov-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐺 ∈ Plig → ∅ ∉ 𝐺) | ||
| Theorem | eulplig 30421* | Through two distinct points of a planar incidence geometry, there is a unique line. (Contributed by BJ, 2-Dec-2021.) |
| ⊢ 𝑃 = ∪ 𝐺 ⇒ ⊢ ((𝐺 ∈ Plig ∧ ((𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃) ∧ 𝐴 ≠ 𝐵)) → ∃!𝑙 ∈ 𝐺 (𝐴 ∈ 𝑙 ∧ 𝐵 ∈ 𝑙)) | ||
| Theorem | pliguhgr 30422 | Any planar incidence geometry 𝐺 can be regarded as a hypergraph with its points as vertices and its lines as edges. See incistruhgr 29013 for a generalization of this case for arbitrary incidence structures (planar incidence geometries are such incidence structures). (Proposed by Gerard Lang, 24-Nov-2021.) (Contributed by AV, 28-Nov-2021.) |
| ⊢ (𝐺 ∈ Plig → 〈∪ 𝐺, ( I ↾ 𝐺)〉 ∈ UHGraph) | ||
This section contains a few aliases that we temporarily keep to prevent broken links. If you land on any of these, please let the originating site and/or us know that the link that made you land here should be changed. | ||
| Theorem | dummylink 30423 |
Alias for a1ii 2 that may be referenced in some older works, and
kept
here to prevent broken links.
If you landed here, please let the originating site and/or us know that the link that made you land here should be changed to a link to a1ii 2. (Contributed by NM, 7-Feb-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ 𝜓 ⇒ ⊢ 𝜑 | ||
| Theorem | id1 30424 |
Alias for idALT 23 that may be referenced in some older works, and
kept
here to prevent broken links.
If you landed here, please let the originating site and/or us know that the link that made you land here should be changed to a link to idALT 23. (Contributed by NM, 30-Sep-1992.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝜑) | ||
The intent is for this deprecated section to be deleted once its theorems have extensible structure versions (or are not useful). You can make a list of "terminal" theorems (i.e., theorems not referenced by anything else) and for each theorem see if there exists an extensible structure version (or decide it is not useful), and if so, delete it. Then, repeat this recursively. One way to search for terminal theorems is to log the output ("MM> OPEN LOG xxx.txt") of "MM> SHOW USAGE <label-match>" in the Metamath program and search for "(None)". | ||
This section contains an earlier development of groups that was defined before extensible structures were introduced. The intent is for this deprecated section to be deleted once the corresponding definitions and theorems for complex topological vector spaces, which are using them, are revised accordingly. | ||
| Syntax | cgr 30425 | Extend class notation with the class of all group operations. |
| class GrpOp | ||
| Syntax | cgi 30426 | Extend class notation with a function mapping a group operation to the group's identity element. |
| class GId | ||
| Syntax | cgn 30427 | Extend class notation with a function mapping a group operation to the inverse function for the group. |
| class inv | ||
| Syntax | cgs 30428 | Extend class notation with a function mapping a group operation to the division (or subtraction) operation for the group. |
| class /𝑔 | ||
| Definition | df-grpo 30429* | Define the class of all group operations. The base set for a group can be determined from its group operation. Based on the definition in Exercise 28 of [Herstein] p. 54. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.) |
| ⊢ GrpOp = {𝑔 ∣ ∃𝑡(𝑔:(𝑡 × 𝑡)⟶𝑡 ∧ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 ∀𝑧 ∈ 𝑡 ((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) ∧ ∃𝑢 ∈ 𝑡 ∀𝑥 ∈ 𝑡 ((𝑢𝑔𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑡 (𝑦𝑔𝑥) = 𝑢))} | ||
| Definition | df-gid 30430* | Define a function that maps a group operation to the group's identity element. (Contributed by FL, 5-Feb-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| ⊢ GId = (𝑔 ∈ V ↦ (℩𝑢 ∈ ran 𝑔∀𝑥 ∈ ran 𝑔((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥))) | ||
| Definition | df-ginv 30431* | Define a function that maps a group operation to the group's inverse function. (Contributed by NM, 26-Oct-2006.) (New usage is discouraged.) |
| ⊢ inv = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔 ↦ (℩𝑧 ∈ ran 𝑔(𝑧𝑔𝑥) = (GId‘𝑔)))) | ||
| Definition | df-gdiv 30432* | Define a function that maps a group operation to the group's division (or subtraction) operation. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
| ⊢ /𝑔 = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦)))) | ||
| Theorem | isgrpo 30433* | The predicate "is a group operation." Note that 𝑋 is the base set of the group. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ GrpOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑢)))) | ||
| Theorem | isgrpoi 30434* | Properties that determine a group operation. Read 𝑁 as 𝑁(𝑥). (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 ∈ V & ⊢ 𝐺:(𝑋 × 𝑋)⟶𝑋 & ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))) & ⊢ 𝑈 ∈ 𝑋 & ⊢ (𝑥 ∈ 𝑋 → (𝑈𝐺𝑥) = 𝑥) & ⊢ (𝑥 ∈ 𝑋 → 𝑁 ∈ 𝑋) & ⊢ (𝑥 ∈ 𝑋 → (𝑁𝐺𝑥) = 𝑈) ⇒ ⊢ 𝐺 ∈ GrpOp | ||
| Theorem | grpofo 30435 | A group operation maps onto the group's underlying set. (Contributed by NM, 30-Oct-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ GrpOp → 𝐺:(𝑋 × 𝑋)–onto→𝑋) | ||
| Theorem | grpocl 30436 | Closure law for a group operation. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) | ||
| Theorem | grpolidinv 30437* | A group has a left identity element, and every member has a left inverse. (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ GrpOp → ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑢)) | ||
| Theorem | grpon0 30438 | The base set of a group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ GrpOp → 𝑋 ≠ ∅) | ||
| Theorem | grpoass 30439 | A group operation is associative. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = (𝐴𝐺(𝐵𝐺𝐶))) | ||
| Theorem | grpoidinvlem1 30440 | Lemma for grpoidinv 30444. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝐺 ∈ GrpOp ∧ (𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) ∧ ((𝑌𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝐴) = 𝐴)) → (𝑈𝐺𝐴) = 𝑈) | ||
| Theorem | grpoidinvlem2 30441 | Lemma for grpoidinv 30444. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝐺 ∈ GrpOp ∧ (𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) ∧ ((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈)) → ((𝐴𝐺𝑌)𝐺(𝐴𝐺𝑌)) = (𝐴𝐺𝑌)) | ||
| Theorem | grpoidinvlem3 30442* | Lemma for grpoidinv 30444. (Contributed by NM, 11-Oct-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝑋 (𝑈𝐺𝑥) = 𝑥) & ⊢ (𝜓 ↔ ∀𝑥 ∈ 𝑋 ∃𝑧 ∈ 𝑋 (𝑧𝐺𝑥) = 𝑈) ⇒ ⊢ ((((𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)) | ||
| Theorem | grpoidinvlem4 30443* | Lemma for grpoidinv 30444. (Contributed by NM, 14-Oct-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)) → (𝐴𝐺𝑈) = (𝑈𝐺𝐴)) | ||
| Theorem | grpoidinv 30444* | A group has a left and right identity element, and every member has a left and right inverse. (Contributed by NM, 14-Oct-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ GrpOp → ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢))) | ||
| Theorem | grpoideu 30445* | The left identity element of a group is unique. Lemma 2.2.1(a) of [Herstein] p. 55. (Contributed by NM, 14-Oct-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ GrpOp → ∃!𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥) | ||
| Theorem | grporndm 30446 | A group's range in terms of its domain. (Contributed by NM, 6-Apr-2008.) (New usage is discouraged.) |
| ⊢ (𝐺 ∈ GrpOp → ran 𝐺 = dom dom 𝐺) | ||
| Theorem | 0ngrp 30447 | The empty set is not a group. (Contributed by NM, 25-Apr-2007.) (New usage is discouraged.) |
| ⊢ ¬ ∅ ∈ GrpOp | ||
| Theorem | gidval 30448* | The value of the identity element of a group. (Contributed by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ 𝑉 → (GId‘𝐺) = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) | ||
| Theorem | grpoidval 30449* | Lemma for grpoidcl 30450 and others. (Contributed by NM, 5-Feb-2010.) (Proof shortened by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) ⇒ ⊢ (𝐺 ∈ GrpOp → 𝑈 = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥)) | ||
| Theorem | grpoidcl 30450 | The identity element of a group belongs to the group. (Contributed by NM, 24-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) ⇒ ⊢ (𝐺 ∈ GrpOp → 𝑈 ∈ 𝑋) | ||
| Theorem | grpoidinv2 30451* | A group's properties using the explicit identity element. (Contributed by NM, 5-Feb-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈))) | ||
| Theorem | grpolid 30452 | The identity element of a group is a left identity. (Contributed by NM, 24-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑈𝐺𝐴) = 𝐴) | ||
| Theorem | grporid 30453 | The identity element of a group is a right identity. (Contributed by NM, 24-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝑈) = 𝐴) | ||
| Theorem | grporcan 30454 | Right cancellation law for groups. (Contributed by NM, 26-Oct-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐶) = (𝐵𝐺𝐶) ↔ 𝐴 = 𝐵)) | ||
| Theorem | grpoinveu 30455* | The left inverse element of a group is unique. Lemma 2.2.1(b) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ∃!𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈) | ||
| Theorem | grpoid 30456 | Two ways of saying that an element of a group is the identity element. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴 = 𝑈 ↔ (𝐴𝐺𝐴) = 𝐴)) | ||
| Theorem | grporn 30457 | The range of a group operation. Useful for satisfying group base set hypotheses of the form 𝑋 = ran 𝐺. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.) |
| ⊢ 𝐺 ∈ GrpOp & ⊢ dom 𝐺 = (𝑋 × 𝑋) ⇒ ⊢ 𝑋 = ran 𝐺 | ||
| Theorem | grpoinvfval 30458* | The inverse function of a group. (Contributed by NM, 26-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ (𝐺 ∈ GrpOp → 𝑁 = (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))) | ||
| Theorem | grpoinvval 30459* | The inverse of a group element. (Contributed by NM, 26-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈)) | ||
| Theorem | grpoinvcl 30460 | A group element's inverse is a group element. (Contributed by NM, 27-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ 𝑋) | ||
| Theorem | grpoinv 30461 | The properties of a group element's inverse. (Contributed by NM, 27-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (((𝑁‘𝐴)𝐺𝐴) = 𝑈 ∧ (𝐴𝐺(𝑁‘𝐴)) = 𝑈)) | ||
| Theorem | grpolinv 30462 | The left inverse of a group element. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴)𝐺𝐴) = 𝑈) | ||
| Theorem | grporinv 30463 | The right inverse of a group element. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(𝑁‘𝐴)) = 𝑈) | ||
| Theorem | grpoinvid1 30464 | The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘𝐴) = 𝐵 ↔ (𝐴𝐺𝐵) = 𝑈)) | ||
| Theorem | grpoinvid2 30465 | The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘𝐴) = 𝐵 ↔ (𝐵𝐺𝐴) = 𝑈)) | ||
| Theorem | grpolcan 30466 | Left cancellation law for groups. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐶𝐺𝐴) = (𝐶𝐺𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | grpo2inv 30467 | Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘(𝑁‘𝐴)) = 𝐴) | ||
| Theorem | grpoinvf 30468 | Mapping of the inverse function of a group. (Contributed by NM, 29-Mar-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ (𝐺 ∈ GrpOp → 𝑁:𝑋–1-1-onto→𝑋) | ||
| Theorem | grpoinvop 30469 | The inverse of the group operation reverses the arguments. Lemma 2.2.1(d) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐺𝐵)) = ((𝑁‘𝐵)𝐺(𝑁‘𝐴))) | ||
| Theorem | grpodivfval 30470* | Group division (or subtraction) operation. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑁 = (inv‘𝐺) & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ (𝐺 ∈ GrpOp → 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦)))) | ||
| Theorem | grpodivval 30471 | Group division (or subtraction) operation value. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑁 = (inv‘𝐺) & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐴𝐺(𝑁‘𝐵))) | ||
| Theorem | grpodivinv 30472 | Group division by an inverse. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑁 = (inv‘𝐺) & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷(𝑁‘𝐵)) = (𝐴𝐺𝐵)) | ||
| Theorem | grpoinvdiv 30473 | Inverse of a group division. (Contributed by NM, 24-Feb-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑁 = (inv‘𝐺) & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐷𝐵)) = (𝐵𝐷𝐴)) | ||
| Theorem | grpodivf 30474 | Mapping for group division. (Contributed by NM, 10-Apr-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ (𝐺 ∈ GrpOp → 𝐷:(𝑋 × 𝑋)⟶𝑋) | ||
| Theorem | grpodivcl 30475 | Closure of group division (or subtraction) operation. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ 𝑋) | ||
| Theorem | grpodivdiv 30476 | Double group division. (Contributed by NM, 24-Feb-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷(𝐵𝐷𝐶)) = (𝐴𝐺(𝐶𝐷𝐵))) | ||
| Theorem | grpomuldivass 30477 | Associative-type law for multiplication and division. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = (𝐴𝐺(𝐵𝐷𝐶))) | ||
| Theorem | grpodivid 30478 | Division of a group member by itself. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) & ⊢ 𝑈 = (GId‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = 𝑈) | ||
| Theorem | grponpcan 30479 | Cancellation law for group division. (npcan 11437 analog.) (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵)𝐺𝐵) = 𝐴) | ||
| Syntax | cablo 30480 | Extend class notation with the class of all Abelian group operations. |
| class AbelOp | ||
| Definition | df-ablo 30481* | Define the class of all Abelian group operations. (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.) |
| ⊢ AbelOp = {𝑔 ∈ GrpOp ∣ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥)} | ||
| Theorem | isablo 30482* | The predicate "is an Abelian (commutative) group operation." (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥))) | ||
| Theorem | ablogrpo 30483 | An Abelian group operation is a group operation. (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.) |
| ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) | ||
| Theorem | ablocom 30484 | An Abelian group operation is commutative. (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴)) | ||
| Theorem | ablo32 30485 | Commutative/associative law for Abelian groups. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐺𝐵)) | ||
| Theorem | ablo4 30486 | Commutative/associative law for Abelian groups. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺(𝐶𝐺𝐷)) = ((𝐴𝐺𝐶)𝐺(𝐵𝐺𝐷))) | ||
| Theorem | isabloi 30487* | Properties that determine an Abelian group operation. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.) |
| ⊢ 𝐺 ∈ GrpOp & ⊢ dom 𝐺 = (𝑋 × 𝑋) & ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) ⇒ ⊢ 𝐺 ∈ AbelOp | ||
| Theorem | ablomuldiv 30488 | Law for group multiplication and division. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐺𝐵)) | ||
| Theorem | ablodivdiv 30489 | Law for double group division. (Contributed by NM, 29-Feb-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷(𝐵𝐷𝐶)) = ((𝐴𝐷𝐵)𝐺𝐶)) | ||
| Theorem | ablodivdiv4 30490 | Law for double group division. (Contributed by NM, 29-Feb-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐵)𝐷𝐶) = (𝐴𝐷(𝐵𝐺𝐶))) | ||
| Theorem | ablodiv32 30491 | Swap the second and third terms in a double division. (Contributed by NM, 29-Feb-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐷𝐵)) | ||
| Theorem | ablonncan 30492 | Cancellation law for group division. (nncan 11458 analog.) (Contributed by NM, 7-Mar-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷(𝐴𝐷𝐵)) = 𝐵) | ||
| Theorem | ablonnncan1 30493 | Cancellation law for group division. (nnncan1 11465 analog.) (Contributed by NM, 7-Mar-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐵)𝐷(𝐴𝐷𝐶)) = (𝐶𝐷𝐵)) | ||
| Syntax | cvc 30494 | Extend class notation with the class of all complex vector spaces. |
| class CVecOLD | ||
| Definition | df-vc 30495* | Define the class of all complex vector spaces. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.) |
| ⊢ CVecOLD = {〈𝑔, 𝑠〉 ∣ (𝑔 ∈ AbelOp ∧ 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ∧ ∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))} | ||
| Theorem | vcrel 30496 | The class of all complex vector spaces is a relation. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.) |
| ⊢ Rel CVecOLD | ||
| Theorem | vciOLD 30497* | Obsolete version of cvsi 25037. The properties of a complex vector space, which is an Abelian group (i.e. the vectors, with the operation of vector addition) accompanied by a scalar multiplication operation on the field of complex numbers. The variable 𝑊 was chosen because V is already used for the universal class. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝐺 = (1st ‘𝑊) & ⊢ 𝑆 = (2nd ‘𝑊) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑊 ∈ CVecOLD → (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))) | ||
| Theorem | vcsm 30498 | Functionality of th scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.) |
| ⊢ 𝐺 = (1st ‘𝑊) & ⊢ 𝑆 = (2nd ‘𝑊) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑊 ∈ CVecOLD → 𝑆:(ℂ × 𝑋)⟶𝑋) | ||
| Theorem | vccl 30499 | Closure of the scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.) |
| ⊢ 𝐺 = (1st ‘𝑊) & ⊢ 𝑆 = (2nd ‘𝑊) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (𝐴𝑆𝐵) ∈ 𝑋) | ||
| Theorem | vcidOLD 30500 | Identity element for the scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006.) Obsolete theorem, use clmvs1 25000 together with cvsclm 25033 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝐺 = (1st ‘𝑊) & ⊢ 𝑆 = (2nd ‘𝑊) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (1𝑆𝐴) = 𝐴) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |