Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvsubf | Structured version Visualization version GIF version |
Description: Mapping domain and codomain of vector subtraction. (Contributed by NM, 6-Sep-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvsubf | ⊢ −ℎ :( ℋ × ℋ)⟶ ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1cn 12180 | . . . . 5 ⊢ -1 ∈ ℂ | |
2 | hvmulcl 29604 | . . . . 5 ⊢ ((-1 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (-1 ·ℎ 𝑦) ∈ ℋ) | |
3 | 1, 2 | mpan 687 | . . . 4 ⊢ (𝑦 ∈ ℋ → (-1 ·ℎ 𝑦) ∈ ℋ) |
4 | hvaddcl 29603 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ (-1 ·ℎ 𝑦) ∈ ℋ) → (𝑥 +ℎ (-1 ·ℎ 𝑦)) ∈ ℋ) | |
5 | 3, 4 | sylan2 593 | . . 3 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 +ℎ (-1 ·ℎ 𝑦)) ∈ ℋ) |
6 | 5 | rgen2 3190 | . 2 ⊢ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 +ℎ (-1 ·ℎ 𝑦)) ∈ ℋ |
7 | df-hvsub 29562 | . . 3 ⊢ −ℎ = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑥 +ℎ (-1 ·ℎ 𝑦))) | |
8 | 7 | fmpo 7968 | . 2 ⊢ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 +ℎ (-1 ·ℎ 𝑦)) ∈ ℋ ↔ −ℎ :( ℋ × ℋ)⟶ ℋ) |
9 | 6, 8 | mpbi 229 | 1 ⊢ −ℎ :( ℋ × ℋ)⟶ ℋ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 ∀wral 3061 × cxp 5612 ⟶wf 6469 (class class class)co 7329 ℂcc 10962 1c1 10965 -cneg 11299 ℋchba 29510 +ℎ cva 29511 ·ℎ csm 29512 −ℎ cmv 29516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-hfvadd 29591 ax-hfvmul 29596 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-po 5526 df-so 5527 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-1st 7891 df-2nd 7892 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-pnf 11104 df-mnf 11105 df-ltxr 11107 df-sub 11300 df-neg 11301 df-hvsub 29562 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |