![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > h2hvs | Structured version Visualization version GIF version |
Description: The vector subtraction operation of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
h2h.1 | β’ π = β¨β¨ +β , Β·β β©, normββ© |
h2h.2 | β’ π β NrmCVec |
h2h.4 | β’ β = (BaseSetβπ) |
Ref | Expression |
---|---|
h2hvs | β’ ββ = ( βπ£ βπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-hvsub 30219 | . 2 β’ ββ = (π₯ β β, π¦ β β β¦ (π₯ +β (-1 Β·β π¦))) | |
2 | h2h.2 | . . 3 β’ π β NrmCVec | |
3 | h2h.4 | . . . 4 β’ β = (BaseSetβπ) | |
4 | h2h.1 | . . . . 5 β’ π = β¨β¨ +β , Β·β β©, normββ© | |
5 | 4, 2 | h2hva 30222 | . . . 4 β’ +β = ( +π£ βπ) |
6 | 4, 2 | h2hsm 30223 | . . . 4 β’ Β·β = ( Β·π OLD βπ) |
7 | eqid 2732 | . . . 4 β’ ( βπ£ βπ) = ( βπ£ βπ) | |
8 | 3, 5, 6, 7 | nvmfval 29892 | . . 3 β’ (π β NrmCVec β ( βπ£ βπ) = (π₯ β β, π¦ β β β¦ (π₯ +β (-1 Β·β π¦)))) |
9 | 2, 8 | ax-mp 5 | . 2 β’ ( βπ£ βπ) = (π₯ β β, π¦ β β β¦ (π₯ +β (-1 Β·β π¦))) |
10 | 1, 9 | eqtr4i 2763 | 1 β’ ββ = ( βπ£ βπ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 β wcel 2106 β¨cop 4634 βcfv 6543 (class class class)co 7408 β cmpo 7410 1c1 11110 -cneg 11444 NrmCVeccnv 29832 BaseSetcba 29834 βπ£ cnsb 29837 βchba 30167 +β cva 30168 Β·β csm 30169 normβcno 30171 ββ cmv 30173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-ltxr 11252 df-sub 11445 df-neg 11446 df-grpo 29741 df-gid 29742 df-ginv 29743 df-gdiv 29744 df-ablo 29793 df-vc 29807 df-nv 29840 df-va 29843 df-ba 29844 df-sm 29845 df-0v 29846 df-vs 29847 df-nmcv 29848 df-hvsub 30219 |
This theorem is referenced by: h2hmetdval 30226 hhvs 30418 |
Copyright terms: Public domain | W3C validator |