![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > h2hvs | Structured version Visualization version GIF version |
Description: The vector subtraction operation of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
h2h.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
h2h.2 | ⊢ 𝑈 ∈ NrmCVec |
h2h.4 | ⊢ ℋ = (BaseSet‘𝑈) |
Ref | Expression |
---|---|
h2hvs | ⊢ −ℎ = ( −𝑣 ‘𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-hvsub 30873 | . 2 ⊢ −ℎ = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑥 +ℎ (-1 ·ℎ 𝑦))) | |
2 | h2h.2 | . . 3 ⊢ 𝑈 ∈ NrmCVec | |
3 | h2h.4 | . . . 4 ⊢ ℋ = (BaseSet‘𝑈) | |
4 | h2h.1 | . . . . 5 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
5 | 4, 2 | h2hva 30876 | . . . 4 ⊢ +ℎ = ( +𝑣 ‘𝑈) |
6 | 4, 2 | h2hsm 30877 | . . . 4 ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) |
7 | eqid 2725 | . . . 4 ⊢ ( −𝑣 ‘𝑈) = ( −𝑣 ‘𝑈) | |
8 | 3, 5, 6, 7 | nvmfval 30546 | . . 3 ⊢ (𝑈 ∈ NrmCVec → ( −𝑣 ‘𝑈) = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑥 +ℎ (-1 ·ℎ 𝑦)))) |
9 | 2, 8 | ax-mp 5 | . 2 ⊢ ( −𝑣 ‘𝑈) = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑥 +ℎ (-1 ·ℎ 𝑦))) |
10 | 1, 9 | eqtr4i 2756 | 1 ⊢ −ℎ = ( −𝑣 ‘𝑈) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 〈cop 4636 ‘cfv 6549 (class class class)co 7419 ∈ cmpo 7421 1c1 11146 -cneg 11482 NrmCVeccnv 30486 BaseSetcba 30488 −𝑣 cnsb 30491 ℋchba 30821 +ℎ cva 30822 ·ℎ csm 30823 normℎcno 30825 −ℎ cmv 30827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-1st 7994 df-2nd 7995 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11287 df-mnf 11288 df-ltxr 11290 df-sub 11483 df-neg 11484 df-grpo 30395 df-gid 30396 df-ginv 30397 df-gdiv 30398 df-ablo 30447 df-vc 30461 df-nv 30494 df-va 30497 df-ba 30498 df-sm 30499 df-0v 30500 df-vs 30501 df-nmcv 30502 df-hvsub 30873 |
This theorem is referenced by: h2hmetdval 30880 hhvs 31072 |
Copyright terms: Public domain | W3C validator |