HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h2hvs Structured version   Visualization version   GIF version

Theorem h2hvs 29471
Description: The vector subtraction operation of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
h2h.1 𝑈 = ⟨⟨ + , · ⟩, norm
h2h.2 𝑈 ∈ NrmCVec
h2h.4 ℋ = (BaseSet‘𝑈)
Assertion
Ref Expression
h2hvs = ( −𝑣𝑈)

Proof of Theorem h2hvs
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-hvsub 29465 . 2 = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑥 + (-1 · 𝑦)))
2 h2h.2 . . 3 𝑈 ∈ NrmCVec
3 h2h.4 . . . 4 ℋ = (BaseSet‘𝑈)
4 h2h.1 . . . . 5 𝑈 = ⟨⟨ + , · ⟩, norm
54, 2h2hva 29468 . . . 4 + = ( +𝑣𝑈)
64, 2h2hsm 29469 . . . 4 · = ( ·𝑠OLD𝑈)
7 eqid 2736 . . . 4 ( −𝑣𝑈) = ( −𝑣𝑈)
83, 5, 6, 7nvmfval 29138 . . 3 (𝑈 ∈ NrmCVec → ( −𝑣𝑈) = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑥 + (-1 · 𝑦))))
92, 8ax-mp 5 . 2 ( −𝑣𝑈) = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑥 + (-1 · 𝑦)))
101, 9eqtr4i 2767 1 = ( −𝑣𝑈)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2105  cop 4576  cfv 6465  (class class class)co 7316  cmpo 7318  1c1 10951  -cneg 11285  NrmCVeccnv 29078  BaseSetcba 29080  𝑣 cnsb 29083  chba 29413   + cva 29414   · csm 29415  normcno 29417   cmv 29419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-resscn 11007  ax-1cn 11008  ax-icn 11009  ax-addcl 11010  ax-addrcl 11011  ax-mulcl 11012  ax-mulrcl 11013  ax-mulcom 11014  ax-addass 11015  ax-mulass 11016  ax-distr 11017  ax-i2m1 11018  ax-1ne0 11019  ax-1rid 11020  ax-rnegex 11021  ax-rrecex 11022  ax-cnre 11023  ax-pre-lttri 11024  ax-pre-lttrn 11025  ax-pre-ltadd 11026
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-id 5506  df-po 5520  df-so 5521  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-1st 7877  df-2nd 7878  df-er 8547  df-en 8783  df-dom 8784  df-sdom 8785  df-pnf 11090  df-mnf 11091  df-ltxr 11093  df-sub 11286  df-neg 11287  df-grpo 28987  df-gid 28988  df-ginv 28989  df-gdiv 28990  df-ablo 29039  df-vc 29053  df-nv 29086  df-va 29089  df-ba 29090  df-sm 29091  df-0v 29092  df-vs 29093  df-nmcv 29094  df-hvsub 29465
This theorem is referenced by:  h2hmetdval  29472  hhvs  29664
  Copyright terms: Public domain W3C validator