Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > h2hvs | Structured version Visualization version GIF version |
Description: The vector subtraction operation of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
h2h.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
h2h.2 | ⊢ 𝑈 ∈ NrmCVec |
h2h.4 | ⊢ ℋ = (BaseSet‘𝑈) |
Ref | Expression |
---|---|
h2hvs | ⊢ −ℎ = ( −𝑣 ‘𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-hvsub 29465 | . 2 ⊢ −ℎ = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑥 +ℎ (-1 ·ℎ 𝑦))) | |
2 | h2h.2 | . . 3 ⊢ 𝑈 ∈ NrmCVec | |
3 | h2h.4 | . . . 4 ⊢ ℋ = (BaseSet‘𝑈) | |
4 | h2h.1 | . . . . 5 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
5 | 4, 2 | h2hva 29468 | . . . 4 ⊢ +ℎ = ( +𝑣 ‘𝑈) |
6 | 4, 2 | h2hsm 29469 | . . . 4 ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) |
7 | eqid 2736 | . . . 4 ⊢ ( −𝑣 ‘𝑈) = ( −𝑣 ‘𝑈) | |
8 | 3, 5, 6, 7 | nvmfval 29138 | . . 3 ⊢ (𝑈 ∈ NrmCVec → ( −𝑣 ‘𝑈) = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑥 +ℎ (-1 ·ℎ 𝑦)))) |
9 | 2, 8 | ax-mp 5 | . 2 ⊢ ( −𝑣 ‘𝑈) = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑥 +ℎ (-1 ·ℎ 𝑦))) |
10 | 1, 9 | eqtr4i 2767 | 1 ⊢ −ℎ = ( −𝑣 ‘𝑈) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 〈cop 4576 ‘cfv 6465 (class class class)co 7316 ∈ cmpo 7318 1c1 10951 -cneg 11285 NrmCVeccnv 29078 BaseSetcba 29080 −𝑣 cnsb 29083 ℋchba 29413 +ℎ cva 29414 ·ℎ csm 29415 normℎcno 29417 −ℎ cmv 29419 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-id 5506 df-po 5520 df-so 5521 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-1st 7877 df-2nd 7878 df-er 8547 df-en 8783 df-dom 8784 df-sdom 8785 df-pnf 11090 df-mnf 11091 df-ltxr 11093 df-sub 11286 df-neg 11287 df-grpo 28987 df-gid 28988 df-ginv 28989 df-gdiv 28990 df-ablo 29039 df-vc 29053 df-nv 29086 df-va 29089 df-ba 29090 df-sm 29091 df-0v 29092 df-vs 29093 df-nmcv 29094 df-hvsub 29465 |
This theorem is referenced by: h2hmetdval 29472 hhvs 29664 |
Copyright terms: Public domain | W3C validator |