Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > h2hvs | Structured version Visualization version GIF version |
Description: The vector subtraction operation of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
h2h.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
h2h.2 | ⊢ 𝑈 ∈ NrmCVec |
h2h.4 | ⊢ ℋ = (BaseSet‘𝑈) |
Ref | Expression |
---|---|
h2hvs | ⊢ −ℎ = ( −𝑣 ‘𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-hvsub 29209 | . 2 ⊢ −ℎ = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑥 +ℎ (-1 ·ℎ 𝑦))) | |
2 | h2h.2 | . . 3 ⊢ 𝑈 ∈ NrmCVec | |
3 | h2h.4 | . . . 4 ⊢ ℋ = (BaseSet‘𝑈) | |
4 | h2h.1 | . . . . 5 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
5 | 4, 2 | h2hva 29212 | . . . 4 ⊢ +ℎ = ( +𝑣 ‘𝑈) |
6 | 4, 2 | h2hsm 29213 | . . . 4 ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) |
7 | eqid 2739 | . . . 4 ⊢ ( −𝑣 ‘𝑈) = ( −𝑣 ‘𝑈) | |
8 | 3, 5, 6, 7 | nvmfval 28882 | . . 3 ⊢ (𝑈 ∈ NrmCVec → ( −𝑣 ‘𝑈) = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑥 +ℎ (-1 ·ℎ 𝑦)))) |
9 | 2, 8 | ax-mp 5 | . 2 ⊢ ( −𝑣 ‘𝑈) = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑥 +ℎ (-1 ·ℎ 𝑦))) |
10 | 1, 9 | eqtr4i 2770 | 1 ⊢ −ℎ = ( −𝑣 ‘𝑈) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∈ wcel 2112 〈cop 4564 ‘cfv 6415 (class class class)co 7252 ∈ cmpo 7254 1c1 10778 -cneg 11111 NrmCVeccnv 28822 BaseSetcba 28824 −𝑣 cnsb 28827 ℋchba 29157 +ℎ cva 29158 ·ℎ csm 29159 normℎcno 29161 −ℎ cmv 29163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5203 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-id 5479 df-po 5493 df-so 5494 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-riota 7209 df-ov 7255 df-oprab 7256 df-mpo 7257 df-1st 7801 df-2nd 7802 df-er 8433 df-en 8669 df-dom 8670 df-sdom 8671 df-pnf 10917 df-mnf 10918 df-ltxr 10920 df-sub 11112 df-neg 11113 df-grpo 28731 df-gid 28732 df-ginv 28733 df-gdiv 28734 df-ablo 28783 df-vc 28797 df-nv 28830 df-va 28833 df-ba 28834 df-sm 28835 df-0v 28836 df-vs 28837 df-nmcv 28838 df-hvsub 29209 |
This theorem is referenced by: h2hmetdval 29216 hhvs 29408 |
Copyright terms: Public domain | W3C validator |