![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idomcringd | Structured version Visualization version GIF version |
Description: An integral domain is a commutative ring with unity. (Contributed by Thierry Arnoux, 4-May-2025.) Formerly subproof of idomringd 20701. (Proof shortened by SN, 14-May-2025.) |
Ref | Expression |
---|---|
idomringd.1 | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
Ref | Expression |
---|---|
idomcringd | ⊢ (𝜑 → 𝑅 ∈ CRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idomringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
2 | df-idom 20669 | . . 3 ⊢ IDomn = (CRing ∩ Domn) | |
3 | 1, 2 | eleqtrdi 2836 | . 2 ⊢ (𝜑 → 𝑅 ∈ (CRing ∩ Domn)) |
4 | 3 | elin1d 4198 | 1 ⊢ (𝜑 → 𝑅 ∈ CRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 ∩ cin 3947 CRingccrg 20212 Domncdomn 20665 IDomncidom 20666 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-v 3466 df-in 3955 df-idom 20669 |
This theorem is referenced by: idomringd 20701 subridom 33142 fracfld 33162 idomsubr 33163 dvdsruasso2 33266 rsprprmprmidlb 33403 rprmasso 33405 rprmasso2 33406 rprmirredlem 33410 rprmirred 33411 rprmirredb 33412 1arithidomlem1 33415 1arithidom 33417 1arithufdlem1 33424 1arithufdlem3 33426 1arithufdlem4 33427 dfufd2lem 33429 zringfrac 33434 ply1dg3rt0irred 33459 |
Copyright terms: Public domain | W3C validator |