| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idomcringd | Structured version Visualization version GIF version | ||
| Description: An integral domain is a commutative ring with unity. (Contributed by Thierry Arnoux, 4-May-2025.) Formerly subproof of idomringd 20637. (Proof shortened by SN, 14-May-2025.) |
| Ref | Expression |
|---|---|
| idomringd.1 | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| Ref | Expression |
|---|---|
| idomcringd | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idomringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
| 2 | df-idom 20605 | . . 3 ⊢ IDomn = (CRing ∩ Domn) | |
| 3 | 1, 2 | eleqtrdi 2838 | . 2 ⊢ (𝜑 → 𝑅 ∈ (CRing ∩ Domn)) |
| 4 | 3 | elin1d 4167 | 1 ⊢ (𝜑 → 𝑅 ∈ CRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∩ cin 3913 CRingccrg 20143 Domncdomn 20601 IDomncidom 20602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-in 3921 df-idom 20605 |
| This theorem is referenced by: idomringd 20637 subridom 33236 fracfld 33258 idomsubr 33259 dvdsruasso2 33357 rsprprmprmidlb 33494 rprmasso 33496 rprmasso2 33497 rprmirredlem 33501 rprmirred 33502 rprmirredb 33503 1arithidomlem1 33506 1arithidom 33508 1arithufdlem1 33515 1arithufdlem3 33517 1arithufdlem4 33518 dfufd2lem 33520 zringfrac 33525 ply1dg3rt0irred 33551 assafld 33633 fldextrspunfld 33671 unitscyglem5 42187 aks5lem7 42188 |
| Copyright terms: Public domain | W3C validator |