![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idomcringd | Structured version Visualization version GIF version |
Description: An integral domain is a commutative ring with unity. (Contributed by Thierry Arnoux, 4-May-2025.) Formerly subproof of idomringd 20750. (Proof shortened by SN, 14-May-2025.) |
Ref | Expression |
---|---|
idomringd.1 | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
Ref | Expression |
---|---|
idomcringd | ⊢ (𝜑 → 𝑅 ∈ CRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idomringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
2 | df-idom 20718 | . . 3 ⊢ IDomn = (CRing ∩ Domn) | |
3 | 1, 2 | eleqtrdi 2854 | . 2 ⊢ (𝜑 → 𝑅 ∈ (CRing ∩ Domn)) |
4 | 3 | elin1d 4227 | 1 ⊢ (𝜑 → 𝑅 ∈ CRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∩ cin 3975 CRingccrg 20261 Domncdomn 20714 IDomncidom 20715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 df-idom 20718 |
This theorem is referenced by: idomringd 20750 subridom 33255 fracfld 33275 idomsubr 33276 dvdsruasso2 33379 rsprprmprmidlb 33516 rprmasso 33518 rprmasso2 33519 rprmirredlem 33523 rprmirred 33524 rprmirredb 33525 1arithidomlem1 33528 1arithidom 33530 1arithufdlem1 33537 1arithufdlem3 33539 1arithufdlem4 33540 dfufd2lem 33542 zringfrac 33547 ply1dg3rt0irred 33572 assafld 33650 unitscyglem5 42156 aks5lem7 42157 |
Copyright terms: Public domain | W3C validator |