![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idomcringd | Structured version Visualization version GIF version |
Description: An integral domain is a commutative ring with unity. (Contributed by Thierry Arnoux, 4-May-2025.) Formerly subproof of idomringd 20745. (Proof shortened by SN, 14-May-2025.) |
Ref | Expression |
---|---|
idomringd.1 | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
Ref | Expression |
---|---|
idomcringd | ⊢ (𝜑 → 𝑅 ∈ CRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idomringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
2 | df-idom 20713 | . . 3 ⊢ IDomn = (CRing ∩ Domn) | |
3 | 1, 2 | eleqtrdi 2849 | . 2 ⊢ (𝜑 → 𝑅 ∈ (CRing ∩ Domn)) |
4 | 3 | elin1d 4214 | 1 ⊢ (𝜑 → 𝑅 ∈ CRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∩ cin 3962 CRingccrg 20252 Domncdomn 20709 IDomncidom 20710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-in 3970 df-idom 20713 |
This theorem is referenced by: idomringd 20745 subridom 33270 fracfld 33290 idomsubr 33291 dvdsruasso2 33394 rsprprmprmidlb 33531 rprmasso 33533 rprmasso2 33534 rprmirredlem 33538 rprmirred 33539 rprmirredb 33540 1arithidomlem1 33543 1arithidom 33545 1arithufdlem1 33552 1arithufdlem3 33554 1arithufdlem4 33555 dfufd2lem 33557 zringfrac 33562 ply1dg3rt0irred 33587 assafld 33665 unitscyglem5 42181 aks5lem7 42182 |
Copyright terms: Public domain | W3C validator |