| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idomcringd | Structured version Visualization version GIF version | ||
| Description: An integral domain is a commutative ring with unity. (Contributed by Thierry Arnoux, 4-May-2025.) Formerly subproof of idomringd 20644. (Proof shortened by SN, 14-May-2025.) |
| Ref | Expression |
|---|---|
| idomringd.1 | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| Ref | Expression |
|---|---|
| idomcringd | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idomringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
| 2 | df-idom 20612 | . . 3 ⊢ IDomn = (CRing ∩ Domn) | |
| 3 | 1, 2 | eleqtrdi 2839 | . 2 ⊢ (𝜑 → 𝑅 ∈ (CRing ∩ Domn)) |
| 4 | 3 | elin1d 4170 | 1 ⊢ (𝜑 → 𝑅 ∈ CRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∩ cin 3916 CRingccrg 20150 Domncdomn 20608 IDomncidom 20609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-in 3924 df-idom 20612 |
| This theorem is referenced by: idomringd 20644 subridom 33243 fracfld 33265 idomsubr 33266 dvdsruasso2 33364 rsprprmprmidlb 33501 rprmasso 33503 rprmasso2 33504 rprmirredlem 33508 rprmirred 33509 rprmirredb 33510 1arithidomlem1 33513 1arithidom 33515 1arithufdlem1 33522 1arithufdlem3 33524 1arithufdlem4 33525 dfufd2lem 33527 zringfrac 33532 ply1dg3rt0irred 33558 assafld 33640 fldextrspunfld 33678 unitscyglem5 42194 aks5lem7 42195 |
| Copyright terms: Public domain | W3C validator |