| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idomcringd | Structured version Visualization version GIF version | ||
| Description: An integral domain is a commutative ring with unity. (Contributed by Thierry Arnoux, 4-May-2025.) Formerly subproof of idomringd 20613. (Proof shortened by SN, 14-May-2025.) |
| Ref | Expression |
|---|---|
| idomringd.1 | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| Ref | Expression |
|---|---|
| idomcringd | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idomringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
| 2 | df-idom 20581 | . . 3 ⊢ IDomn = (CRing ∩ Domn) | |
| 3 | 1, 2 | eleqtrdi 2838 | . 2 ⊢ (𝜑 → 𝑅 ∈ (CRing ∩ Domn)) |
| 4 | 3 | elin1d 4155 | 1 ⊢ (𝜑 → 𝑅 ∈ CRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∩ cin 3902 CRingccrg 20119 Domncdomn 20577 IDomncidom 20578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-in 3910 df-idom 20581 |
| This theorem is referenced by: idomringd 20613 subridom 33225 fracfld 33247 idomsubr 33248 dvdsruasso2 33323 rsprprmprmidlb 33460 rprmasso 33462 rprmasso2 33463 rprmirredlem 33467 rprmirred 33468 rprmirredb 33469 1arithidomlem1 33472 1arithidom 33474 1arithufdlem1 33481 1arithufdlem3 33483 1arithufdlem4 33484 dfufd2lem 33486 zringfrac 33491 ply1dg3rt0irred 33518 assafld 33604 fldextrspunfld 33643 unitscyglem5 42172 aks5lem7 42173 |
| Copyright terms: Public domain | W3C validator |