| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idomcringd | Structured version Visualization version GIF version | ||
| Description: An integral domain is a commutative ring with unity. (Contributed by Thierry Arnoux, 4-May-2025.) Formerly subproof of idomringd 20638. (Proof shortened by SN, 14-May-2025.) |
| Ref | Expression |
|---|---|
| idomringd.1 | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| Ref | Expression |
|---|---|
| idomcringd | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idomringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
| 2 | df-idom 20606 | . . 3 ⊢ IDomn = (CRing ∩ Domn) | |
| 3 | 1, 2 | eleqtrdi 2841 | . 2 ⊢ (𝜑 → 𝑅 ∈ (CRing ∩ Domn)) |
| 4 | 3 | elin1d 4149 | 1 ⊢ (𝜑 → 𝑅 ∈ CRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∩ cin 3896 CRingccrg 20147 Domncdomn 20602 IDomncidom 20603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3904 df-idom 20606 |
| This theorem is referenced by: idomringd 20638 subridom 33244 fracfld 33266 idomsubr 33267 dvdsruasso2 33343 rsprprmprmidlb 33480 rprmasso 33482 rprmasso2 33483 rprmirredlem 33487 rprmirred 33488 rprmirredb 33489 1arithidomlem1 33492 1arithidom 33494 1arithufdlem1 33501 1arithufdlem3 33503 1arithufdlem4 33504 dfufd2lem 33506 zringfrac 33511 ply1dg3rt0irred 33538 assafld 33642 fldextrspunfld 33681 unitscyglem5 42232 aks5lem7 42233 |
| Copyright terms: Public domain | W3C validator |