| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idomcringd | Structured version Visualization version GIF version | ||
| Description: An integral domain is a commutative ring with unity. (Contributed by Thierry Arnoux, 4-May-2025.) Formerly subproof of idomringd 20688. (Proof shortened by SN, 14-May-2025.) |
| Ref | Expression |
|---|---|
| idomringd.1 | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| Ref | Expression |
|---|---|
| idomcringd | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idomringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
| 2 | df-idom 20656 | . . 3 ⊢ IDomn = (CRing ∩ Domn) | |
| 3 | 1, 2 | eleqtrdi 2844 | . 2 ⊢ (𝜑 → 𝑅 ∈ (CRing ∩ Domn)) |
| 4 | 3 | elin1d 4179 | 1 ⊢ (𝜑 → 𝑅 ∈ CRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ∩ cin 3925 CRingccrg 20194 Domncdomn 20652 IDomncidom 20653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-in 3933 df-idom 20656 |
| This theorem is referenced by: idomringd 20688 subridom 33280 fracfld 33302 idomsubr 33303 dvdsruasso2 33401 rsprprmprmidlb 33538 rprmasso 33540 rprmasso2 33541 rprmirredlem 33545 rprmirred 33546 rprmirredb 33547 1arithidomlem1 33550 1arithidom 33552 1arithufdlem1 33559 1arithufdlem3 33561 1arithufdlem4 33562 dfufd2lem 33564 zringfrac 33569 ply1dg3rt0irred 33595 assafld 33677 fldextrspunfld 33717 unitscyglem5 42212 aks5lem7 42213 |
| Copyright terms: Public domain | W3C validator |