![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isidom | Structured version Visualization version GIF version |
Description: An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.) |
Ref | Expression |
---|---|
isidom | ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-idom 21187 | . 2 ⊢ IDomn = (CRing ∩ Domn) | |
2 | 1 | elin2 4190 | 1 ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2098 CRingccrg 20131 Domncdomn 21182 IDomncidom 21183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-in 3948 df-idom 21187 |
This theorem is referenced by: fldidom 21209 fldidomOLD 21210 fiidomfld 21213 znfld 21425 znidomb 21426 recvsOLD 24998 ply1idom 25984 fta1glem1 26025 fta1glem2 26026 fta1g 26027 fta1b 26029 lgsqrlem1 27198 lgsqrlem2 27199 lgsqrlem3 27200 lgsqrlem4 27201 dvdsruasso 32962 qsidomlem1 33043 qsidomlem2 33044 r1pid2 33148 idomrootle 42451 idomodle 42452 proot1mul 42455 proot1hash 42456 |
Copyright terms: Public domain | W3C validator |