Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isidom | Structured version Visualization version GIF version |
Description: An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.) |
Ref | Expression |
---|---|
isidom | ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-idom 20131 | . 2 ⊢ IDomn = (CRing ∩ Domn) | |
2 | 1 | elin2 4104 | 1 ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∈ wcel 2111 CRingccrg 19371 Domncdomn 20126 IDomncidom 20127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-in 3867 df-idom 20131 |
This theorem is referenced by: fldidom 20151 fiidomfld 20154 znfld 20333 znidomb 20334 recvs 23852 ply1idom 24829 fta1glem1 24870 fta1glem2 24871 fta1g 24872 fta1b 24874 lgsqrlem1 26034 lgsqrlem2 26035 lgsqrlem3 26036 lgsqrlem4 26037 qsidomlem1 31153 qsidomlem2 31154 idomrootle 40540 idomodle 40541 proot1mul 40544 proot1hash 40545 |
Copyright terms: Public domain | W3C validator |