| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isidom | Structured version Visualization version GIF version | ||
| Description: An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.) |
| Ref | Expression |
|---|---|
| isidom | ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-idom 20611 | . 2 ⊢ IDomn = (CRing ∩ Domn) | |
| 2 | 1 | elin2 4150 | 1 ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2111 CRingccrg 20152 Domncdomn 20607 IDomncidom 20608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3904 df-idom 20611 |
| This theorem is referenced by: fldidom 20686 fiidomfld 20689 znfld 21497 znidomb 21498 ply1idom 26057 fta1glem1 26100 fta1glem2 26101 fta1g 26102 fta1b 26104 idomrootle 26105 lgsqrlem1 27284 lgsqrlem2 27285 lgsqrlem3 27286 lgsqrlem4 27287 idompropd 33244 subridom 33252 dvdsruasso 33350 qsidomlem1 33417 qsidomlem2 33418 zringidom 33516 r1pid2OLD 33569 idomnnzpownz 42235 idomnnzgmulnz 42236 aks6d1c5lem3 42240 aks6d1c5lem2 42241 deg1gprod 42243 deg1pow 42244 idomodle 43294 proot1mul 43297 proot1hash 43298 |
| Copyright terms: Public domain | W3C validator |