| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isidom | Structured version Visualization version GIF version | ||
| Description: An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.) |
| Ref | Expression |
|---|---|
| isidom | ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-idom 20605 | . 2 ⊢ IDomn = (CRing ∩ Domn) | |
| 2 | 1 | elin2 4166 | 1 ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 CRingccrg 20143 Domncdomn 20601 IDomncidom 20602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-in 3921 df-idom 20605 |
| This theorem is referenced by: fldidom 20680 fiidomfld 20683 znfld 21470 znidomb 21471 ply1idom 26030 fta1glem1 26073 fta1glem2 26074 fta1g 26075 fta1b 26077 idomrootle 26078 lgsqrlem1 27257 lgsqrlem2 27258 lgsqrlem3 27259 lgsqrlem4 27260 idompropd 33228 subridom 33236 dvdsruasso 33356 qsidomlem1 33423 qsidomlem2 33424 zringidom 33522 r1pid2OLD 33574 idomnnzpownz 42120 idomnnzgmulnz 42121 aks6d1c5lem3 42125 aks6d1c5lem2 42126 deg1gprod 42128 deg1pow 42129 idomodle 43180 proot1mul 43183 proot1hash 43184 |
| Copyright terms: Public domain | W3C validator |