Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isidom | Structured version Visualization version GIF version |
Description: An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.) |
Ref | Expression |
---|---|
isidom | ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-idom 20469 | . 2 ⊢ IDomn = (CRing ∩ Domn) | |
2 | 1 | elin2 4127 | 1 ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2108 CRingccrg 19699 Domncdomn 20464 IDomncidom 20465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-idom 20469 |
This theorem is referenced by: fldidom 20489 fldidomOLD 20490 fiidomfld 20493 znfld 20680 znidomb 20681 recvs 24215 ply1idom 25194 fta1glem1 25235 fta1glem2 25236 fta1g 25237 fta1b 25239 lgsqrlem1 26399 lgsqrlem2 26400 lgsqrlem3 26401 lgsqrlem4 26402 qsidomlem1 31530 qsidomlem2 31531 idomrootle 40936 idomodle 40937 proot1mul 40940 proot1hash 40941 |
Copyright terms: Public domain | W3C validator |