| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isidom | Structured version Visualization version GIF version | ||
| Description: An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.) |
| Ref | Expression |
|---|---|
| isidom | ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-idom 20581 | . 2 ⊢ IDomn = (CRing ∩ Domn) | |
| 2 | 1 | elin2 4162 | 1 ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 CRingccrg 20119 Domncdomn 20577 IDomncidom 20578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-in 3918 df-idom 20581 |
| This theorem is referenced by: fldidom 20656 fiidomfld 20659 znfld 21446 znidomb 21447 ply1idom 26006 fta1glem1 26049 fta1glem2 26050 fta1g 26051 fta1b 26053 idomrootle 26054 lgsqrlem1 27233 lgsqrlem2 27234 lgsqrlem3 27235 lgsqrlem4 27236 idompropd 33201 subridom 33209 dvdsruasso 33329 qsidomlem1 33396 qsidomlem2 33397 zringidom 33495 r1pid2OLD 33547 idomnnzpownz 42093 idomnnzgmulnz 42094 aks6d1c5lem3 42098 aks6d1c5lem2 42099 deg1gprod 42101 deg1pow 42102 idomodle 43153 proot1mul 43156 proot1hash 43157 |
| Copyright terms: Public domain | W3C validator |