| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isidom | Structured version Visualization version GIF version | ||
| Description: An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.) |
| Ref | Expression |
|---|---|
| isidom | ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-idom 20616 | . 2 ⊢ IDomn = (CRing ∩ Domn) | |
| 2 | 1 | elin2 4162 | 1 ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 CRingccrg 20154 Domncdomn 20612 IDomncidom 20613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-in 3918 df-idom 20616 |
| This theorem is referenced by: fldidom 20691 fiidomfld 20694 znfld 21502 znidomb 21503 ply1idom 26063 fta1glem1 26106 fta1glem2 26107 fta1g 26108 fta1b 26110 idomrootle 26111 lgsqrlem1 27290 lgsqrlem2 27291 lgsqrlem3 27292 lgsqrlem4 27293 idompropd 33244 subridom 33252 dvdsruasso 33349 qsidomlem1 33416 qsidomlem2 33417 zringidom 33515 r1pid2OLD 33567 idomnnzpownz 42113 idomnnzgmulnz 42114 aks6d1c5lem3 42118 aks6d1c5lem2 42119 deg1gprod 42121 deg1pow 42122 idomodle 43173 proot1mul 43176 proot1hash 43177 |
| Copyright terms: Public domain | W3C validator |