![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isidom | Structured version Visualization version GIF version |
Description: An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.) |
Ref | Expression |
---|---|
isidom | ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-idom 20712 | . 2 ⊢ IDomn = (CRing ∩ Domn) | |
2 | 1 | elin2 4212 | 1 ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2105 CRingccrg 20251 Domncdomn 20708 IDomncidom 20709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-in 3969 df-idom 20712 |
This theorem is referenced by: fldidom 20787 fldidomOLD 20788 fiidomfld 20791 znfld 21596 znidomb 21597 recvsOLD 25193 ply1idom 26178 fta1glem1 26221 fta1glem2 26222 fta1g 26223 fta1b 26225 idomrootle 26226 lgsqrlem1 27404 lgsqrlem2 27405 lgsqrlem3 27406 lgsqrlem4 27407 subridom 33269 dvdsruasso 33392 qsidomlem1 33459 qsidomlem2 33460 zringidom 33558 r1pid2OLD 33608 idomnnzpownz 42113 idomnnzgmulnz 42114 aks6d1c5lem3 42118 aks6d1c5lem2 42119 deg1gprod 42121 deg1pow 42122 idomodle 43179 proot1mul 43182 proot1hash 43183 |
Copyright terms: Public domain | W3C validator |