![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isidom | Structured version Visualization version GIF version |
Description: An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.) |
Ref | Expression |
---|---|
isidom | ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-idom 20718 | . 2 ⊢ IDomn = (CRing ∩ Domn) | |
2 | 1 | elin2 4226 | 1 ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 CRingccrg 20261 Domncdomn 20714 IDomncidom 20715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 df-idom 20718 |
This theorem is referenced by: fldidom 20793 fldidomOLD 20794 fiidomfld 20797 znfld 21602 znidomb 21603 recvsOLD 25199 ply1idom 26184 fta1glem1 26227 fta1glem2 26228 fta1g 26229 fta1b 26231 idomrootle 26232 lgsqrlem1 27408 lgsqrlem2 27409 lgsqrlem3 27410 lgsqrlem4 27411 subridom 33255 dvdsruasso 33378 qsidomlem1 33445 qsidomlem2 33446 zringidom 33544 r1pid2OLD 33594 idomnnzpownz 42089 idomnnzgmulnz 42090 aks6d1c5lem3 42094 aks6d1c5lem2 42095 deg1gprod 42097 deg1pow 42098 idomodle 43152 proot1mul 43155 proot1hash 43156 |
Copyright terms: Public domain | W3C validator |