MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isidom Structured version   Visualization version   GIF version

Theorem isidom 20914
Description: An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.)
Assertion
Ref Expression
isidom (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))

Proof of Theorem isidom
StepHypRef Expression
1 df-idom 20893 . 2 IDomn = (CRing ∩ Domn)
21elin2 4196 1 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wcel 2106  CRingccrg 20050  Domncdomn 20888  IDomncidom 20889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-in 3954  df-idom 20893
This theorem is referenced by:  fldidom  20915  fldidomOLD  20916  fiidomfld  20919  znfld  21107  znidomb  21108  recvsOLD  24654  ply1idom  25633  fta1glem1  25674  fta1glem2  25675  fta1g  25676  fta1b  25678  lgsqrlem1  26838  lgsqrlem2  26839  lgsqrlem3  26840  lgsqrlem4  26841  dvdsruasso  32478  qsidomlem1  32559  qsidomlem2  32560  idomrootle  41922  idomodle  41923  proot1mul  41926  proot1hash  41927
  Copyright terms: Public domain W3C validator