Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isidom | Structured version Visualization version GIF version |
Description: An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.) |
Ref | Expression |
---|---|
isidom | ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-idom 20556 | . 2 ⊢ IDomn = (CRing ∩ Domn) | |
2 | 1 | elin2 4131 | 1 ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2106 CRingccrg 19784 Domncdomn 20551 IDomncidom 20552 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-idom 20556 |
This theorem is referenced by: fldidom 20576 fldidomOLD 20577 fiidomfld 20580 znfld 20768 znidomb 20769 recvsOLD 24310 ply1idom 25289 fta1glem1 25330 fta1glem2 25331 fta1g 25332 fta1b 25334 lgsqrlem1 26494 lgsqrlem2 26495 lgsqrlem3 26496 lgsqrlem4 26497 qsidomlem1 31628 qsidomlem2 31629 idomrootle 41020 idomodle 41021 proot1mul 41024 proot1hash 41025 |
Copyright terms: Public domain | W3C validator |