| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isidom | Structured version Visualization version GIF version | ||
| Description: An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.) |
| Ref | Expression |
|---|---|
| isidom | ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-idom 20654 | . 2 ⊢ IDomn = (CRing ∩ Domn) | |
| 2 | 1 | elin2 4178 | 1 ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 CRingccrg 20192 Domncdomn 20650 IDomncidom 20651 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-in 3933 df-idom 20654 |
| This theorem is referenced by: fldidom 20729 fiidomfld 20732 znfld 21519 znidomb 21520 recvsOLD 25096 ply1idom 26080 fta1glem1 26123 fta1glem2 26124 fta1g 26125 fta1b 26127 idomrootle 26128 lgsqrlem1 27307 lgsqrlem2 27308 lgsqrlem3 27309 lgsqrlem4 27310 idompropd 33218 subridom 33226 dvdsruasso 33346 qsidomlem1 33413 qsidomlem2 33414 zringidom 33512 r1pid2OLD 33564 idomnnzpownz 42091 idomnnzgmulnz 42092 aks6d1c5lem3 42096 aks6d1c5lem2 42097 deg1gprod 42099 deg1pow 42100 idomodle 43162 proot1mul 43165 proot1hash 43166 |
| Copyright terms: Public domain | W3C validator |