| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isidom | Structured version Visualization version GIF version | ||
| Description: An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.) |
| Ref | Expression |
|---|---|
| isidom | ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-idom 20641 | . 2 ⊢ IDomn = (CRing ∩ Domn) | |
| 2 | 1 | elin2 4176 | 1 ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2107 CRingccrg 20179 Domncdomn 20637 IDomncidom 20638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3459 df-in 3931 df-idom 20641 |
| This theorem is referenced by: fldidom 20716 fiidomfld 20719 znfld 21506 znidomb 21507 recvsOLD 25083 ply1idom 26067 fta1glem1 26110 fta1glem2 26111 fta1g 26112 fta1b 26114 idomrootle 26115 lgsqrlem1 27293 lgsqrlem2 27294 lgsqrlem3 27295 lgsqrlem4 27296 idompropd 33190 subridom 33198 dvdsruasso 33318 qsidomlem1 33385 qsidomlem2 33386 zringidom 33484 r1pid2OLD 33534 idomnnzpownz 42067 idomnnzgmulnz 42068 aks6d1c5lem3 42072 aks6d1c5lem2 42073 deg1gprod 42075 deg1pow 42076 idomodle 43140 proot1mul 43143 proot1hash 43144 |
| Copyright terms: Public domain | W3C validator |