| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isidom | Structured version Visualization version GIF version | ||
| Description: An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.) |
| Ref | Expression |
|---|---|
| isidom | ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-idom 20612 | . 2 ⊢ IDomn = (CRing ∩ Domn) | |
| 2 | 1 | elin2 4169 | 1 ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 CRingccrg 20150 Domncdomn 20608 IDomncidom 20609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-in 3924 df-idom 20612 |
| This theorem is referenced by: fldidom 20687 fiidomfld 20690 znfld 21477 znidomb 21478 ply1idom 26037 fta1glem1 26080 fta1glem2 26081 fta1g 26082 fta1b 26084 idomrootle 26085 lgsqrlem1 27264 lgsqrlem2 27265 lgsqrlem3 27266 lgsqrlem4 27267 idompropd 33235 subridom 33243 dvdsruasso 33363 qsidomlem1 33430 qsidomlem2 33431 zringidom 33529 r1pid2OLD 33581 idomnnzpownz 42127 idomnnzgmulnz 42128 aks6d1c5lem3 42132 aks6d1c5lem2 42133 deg1gprod 42135 deg1pow 42136 idomodle 43187 proot1mul 43190 proot1hash 43191 |
| Copyright terms: Public domain | W3C validator |