| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isidom | Structured version Visualization version GIF version | ||
| Description: An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.) |
| Ref | Expression |
|---|---|
| isidom | ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-idom 20581 | . 2 ⊢ IDomn = (CRing ∩ Domn) | |
| 2 | 1 | elin2 4154 | 1 ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 CRingccrg 20119 Domncdomn 20577 IDomncidom 20578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-in 3910 df-idom 20581 |
| This theorem is referenced by: fldidom 20656 fiidomfld 20659 znfld 21467 znidomb 21468 ply1idom 26028 fta1glem1 26071 fta1glem2 26072 fta1g 26073 fta1b 26075 idomrootle 26076 lgsqrlem1 27255 lgsqrlem2 27256 lgsqrlem3 27257 lgsqrlem4 27258 idompropd 33217 subridom 33225 dvdsruasso 33322 qsidomlem1 33389 qsidomlem2 33390 zringidom 33488 r1pid2OLD 33541 idomnnzpownz 42109 idomnnzgmulnz 42110 aks6d1c5lem3 42114 aks6d1c5lem2 42115 deg1gprod 42117 deg1pow 42118 idomodle 43168 proot1mul 43171 proot1hash 43172 |
| Copyright terms: Public domain | W3C validator |