MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idomdomd Structured version   Visualization version   GIF version

Theorem idomdomd 21217
Description: An integral domain is a domain. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypothesis
Ref Expression
idomringd.1 (𝜑𝑅 ∈ IDomn)
Assertion
Ref Expression
idomdomd (𝜑𝑅 ∈ Domn)

Proof of Theorem idomdomd
StepHypRef Expression
1 idomringd.1 . . 3 (𝜑𝑅 ∈ IDomn)
2 df-idom 21195 . . 3 IDomn = (CRing ∩ Domn)
31, 2eleqtrdi 2837 . 2 (𝜑𝑅 ∈ (CRing ∩ Domn))
43elin2d 4194 1 (𝜑𝑅 ∈ Domn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  cin 3942  CRingccrg 20139  Domncdomn 21190  IDomncidom 21191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-v 3470  df-in 3950  df-idom 21195
This theorem is referenced by:  idomrcan  32881  m1pmeq  33165  r1pid2  33184  minplyirredlem  33289  minplyirred  33290
  Copyright terms: Public domain W3C validator