| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idomdomd | Structured version Visualization version GIF version | ||
| Description: An integral domain is a domain. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| Ref | Expression |
|---|---|
| idomringd.1 | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| Ref | Expression |
|---|---|
| idomdomd | ⊢ (𝜑 → 𝑅 ∈ Domn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idomringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
| 2 | df-idom 20605 | . . 3 ⊢ IDomn = (CRing ∩ Domn) | |
| 3 | 1, 2 | eleqtrdi 2838 | . 2 ⊢ (𝜑 → 𝑅 ∈ (CRing ∩ Domn)) |
| 4 | 3 | elin2d 4168 | 1 ⊢ (𝜑 → 𝑅 ∈ Domn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∩ cin 3913 CRingccrg 20143 Domncdomn 20601 IDomncidom 20602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-in 3921 df-idom 20605 |
| This theorem is referenced by: idomrcan 33229 idomrcanOLD 33232 subridom 33236 fracfld 33258 rprmasso2 33497 1arithufdlem1 33515 1arithufdlem3 33517 dfufd2lem 33520 zringfrac 33525 ply1dg3rt0irred 33551 m1pmeq 33552 r1pid2OLD 33574 assafld 33633 minplyirredlem 33700 minplyirred 33701 algextdeglem7 33713 algextdeglem8 33714 deg1gprod 42128 deg1pow 42129 |
| Copyright terms: Public domain | W3C validator |