| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idomdomd | Structured version Visualization version GIF version | ||
| Description: An integral domain is a domain. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| Ref | Expression |
|---|---|
| idomringd.1 | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| Ref | Expression |
|---|---|
| idomdomd | ⊢ (𝜑 → 𝑅 ∈ Domn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idomringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
| 2 | df-idom 20654 | . . 3 ⊢ IDomn = (CRing ∩ Domn) | |
| 3 | 1, 2 | eleqtrdi 2844 | . 2 ⊢ (𝜑 → 𝑅 ∈ (CRing ∩ Domn)) |
| 4 | 3 | elin2d 4180 | 1 ⊢ (𝜑 → 𝑅 ∈ Domn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ∩ cin 3925 CRingccrg 20192 Domncdomn 20650 IDomncidom 20651 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-in 3933 df-idom 20654 |
| This theorem is referenced by: idomrcan 33219 idomrcanOLD 33222 subridom 33226 fracfld 33248 rprmasso2 33487 1arithufdlem1 33505 1arithufdlem3 33507 dfufd2lem 33510 zringfrac 33515 ply1dg3rt0irred 33541 m1pmeq 33542 r1pid2OLD 33564 assafld 33623 minplyirredlem 33690 minplyirred 33691 algextdeglem7 33703 algextdeglem8 33704 deg1gprod 42099 deg1pow 42100 |
| Copyright terms: Public domain | W3C validator |