![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > idomdomd | Structured version Visualization version GIF version |
Description: An integral domain is a domain. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
Ref | Expression |
---|---|
idomringd.1 | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
Ref | Expression |
---|---|
idomdomd | ⊢ (𝜑 → 𝑅 ∈ Domn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idomringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
2 | df-idom 20900 | . . 3 ⊢ IDomn = (CRing ∩ Domn) | |
3 | 1, 2 | eleqtrdi 2843 | . 2 ⊢ (𝜑 → 𝑅 ∈ (CRing ∩ Domn)) |
4 | 3 | elin2d 4199 | 1 ⊢ (𝜑 → 𝑅 ∈ Domn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∩ cin 3947 CRingccrg 20056 Domncdomn 20895 IDomncidom 20896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-in 3955 df-idom 20900 |
This theorem is referenced by: idomrcan 32372 minplyirredlem 32764 minplyirred 32765 |
Copyright terms: Public domain | W3C validator |