| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idomdomd | Structured version Visualization version GIF version | ||
| Description: An integral domain is a domain. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| Ref | Expression |
|---|---|
| idomringd.1 | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| Ref | Expression |
|---|---|
| idomdomd | ⊢ (𝜑 → 𝑅 ∈ Domn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idomringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
| 2 | df-idom 20616 | . . 3 ⊢ IDomn = (CRing ∩ Domn) | |
| 3 | 1, 2 | eleqtrdi 2838 | . 2 ⊢ (𝜑 → 𝑅 ∈ (CRing ∩ Domn)) |
| 4 | 3 | elin2d 4164 | 1 ⊢ (𝜑 → 𝑅 ∈ Domn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∩ cin 3910 CRingccrg 20154 Domncdomn 20612 IDomncidom 20613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-in 3918 df-idom 20616 |
| This theorem is referenced by: idomrcan 33245 idomrcanOLD 33248 subridom 33252 fracfld 33274 rprmasso2 33490 1arithufdlem1 33508 1arithufdlem3 33510 dfufd2lem 33513 zringfrac 33518 ply1dg3rt0irred 33544 m1pmeq 33545 r1pid2OLD 33567 assafld 33626 minplyirredlem 33693 minplyirred 33694 algextdeglem7 33706 algextdeglem8 33707 deg1gprod 42121 deg1pow 42122 |
| Copyright terms: Public domain | W3C validator |