MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idomdomd Structured version   Visualization version   GIF version

Theorem idomdomd 20642
Description: An integral domain is a domain. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypothesis
Ref Expression
idomringd.1 (𝜑𝑅 ∈ IDomn)
Assertion
Ref Expression
idomdomd (𝜑𝑅 ∈ Domn)

Proof of Theorem idomdomd
StepHypRef Expression
1 idomringd.1 . . 3 (𝜑𝑅 ∈ IDomn)
2 df-idom 20612 . . 3 IDomn = (CRing ∩ Domn)
31, 2eleqtrdi 2839 . 2 (𝜑𝑅 ∈ (CRing ∩ Domn))
43elin2d 4171 1 (𝜑𝑅 ∈ Domn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cin 3916  CRingccrg 20150  Domncdomn 20608  IDomncidom 20609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-in 3924  df-idom 20612
This theorem is referenced by:  idomrcan  33236  idomrcanOLD  33239  subridom  33243  fracfld  33265  rprmasso2  33504  1arithufdlem1  33522  1arithufdlem3  33524  dfufd2lem  33527  zringfrac  33532  ply1dg3rt0irred  33558  m1pmeq  33559  r1pid2OLD  33581  assafld  33640  minplyirredlem  33707  minplyirred  33708  algextdeglem7  33720  algextdeglem8  33721  deg1gprod  42135  deg1pow  42136
  Copyright terms: Public domain W3C validator