| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idomdomd | Structured version Visualization version GIF version | ||
| Description: An integral domain is a domain. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| Ref | Expression |
|---|---|
| idomringd.1 | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| Ref | Expression |
|---|---|
| idomdomd | ⊢ (𝜑 → 𝑅 ∈ Domn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idomringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
| 2 | df-idom 20612 | . . 3 ⊢ IDomn = (CRing ∩ Domn) | |
| 3 | 1, 2 | eleqtrdi 2839 | . 2 ⊢ (𝜑 → 𝑅 ∈ (CRing ∩ Domn)) |
| 4 | 3 | elin2d 4171 | 1 ⊢ (𝜑 → 𝑅 ∈ Domn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∩ cin 3916 CRingccrg 20150 Domncdomn 20608 IDomncidom 20609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-in 3924 df-idom 20612 |
| This theorem is referenced by: idomrcan 33236 idomrcanOLD 33239 subridom 33243 fracfld 33265 rprmasso2 33504 1arithufdlem1 33522 1arithufdlem3 33524 dfufd2lem 33527 zringfrac 33532 ply1dg3rt0irred 33558 m1pmeq 33559 r1pid2OLD 33581 assafld 33640 minplyirredlem 33707 minplyirred 33708 algextdeglem7 33720 algextdeglem8 33721 deg1gprod 42135 deg1pow 42136 |
| Copyright terms: Public domain | W3C validator |