![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idomdomd | Structured version Visualization version GIF version |
Description: An integral domain is a domain. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
Ref | Expression |
---|---|
idomringd.1 | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
Ref | Expression |
---|---|
idomdomd | ⊢ (𝜑 → 𝑅 ∈ Domn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idomringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
2 | df-idom 21195 | . . 3 ⊢ IDomn = (CRing ∩ Domn) | |
3 | 1, 2 | eleqtrdi 2837 | . 2 ⊢ (𝜑 → 𝑅 ∈ (CRing ∩ Domn)) |
4 | 3 | elin2d 4194 | 1 ⊢ (𝜑 → 𝑅 ∈ Domn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 ∩ cin 3942 CRingccrg 20139 Domncdomn 21190 IDomncidom 21191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-v 3470 df-in 3950 df-idom 21195 |
This theorem is referenced by: idomrcan 32881 m1pmeq 33165 r1pid2 33184 minplyirredlem 33289 minplyirred 33290 |
Copyright terms: Public domain | W3C validator |