| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idomdomd | Structured version Visualization version GIF version | ||
| Description: An integral domain is a domain. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| Ref | Expression |
|---|---|
| idomringd.1 | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| Ref | Expression |
|---|---|
| idomdomd | ⊢ (𝜑 → 𝑅 ∈ Domn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idomringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
| 2 | df-idom 20611 | . . 3 ⊢ IDomn = (CRing ∩ Domn) | |
| 3 | 1, 2 | eleqtrdi 2841 | . 2 ⊢ (𝜑 → 𝑅 ∈ (CRing ∩ Domn)) |
| 4 | 3 | elin2d 4152 | 1 ⊢ (𝜑 → 𝑅 ∈ Domn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∩ cin 3896 CRingccrg 20152 Domncdomn 20607 IDomncidom 20608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3904 df-idom 20611 |
| This theorem is referenced by: idomrcan 33245 idomrcanOLD 33248 subridom 33252 fracfld 33274 rprmasso2 33491 1arithufdlem1 33509 1arithufdlem3 33511 dfufd2lem 33514 zringfrac 33519 ply1dg3rt0irred 33546 m1pmeq 33547 r1pid2OLD 33569 assafld 33650 minplyirredlem 33723 minplyirred 33724 algextdeglem7 33736 algextdeglem8 33737 deg1gprod 42181 deg1pow 42182 |
| Copyright terms: Public domain | W3C validator |