![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idomdomd | Structured version Visualization version GIF version |
Description: An integral domain is a domain. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
Ref | Expression |
---|---|
idomringd.1 | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
Ref | Expression |
---|---|
idomdomd | ⊢ (𝜑 → 𝑅 ∈ Domn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idomringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
2 | df-idom 20712 | . . 3 ⊢ IDomn = (CRing ∩ Domn) | |
3 | 1, 2 | eleqtrdi 2848 | . 2 ⊢ (𝜑 → 𝑅 ∈ (CRing ∩ Domn)) |
4 | 3 | elin2d 4214 | 1 ⊢ (𝜑 → 𝑅 ∈ Domn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ∩ cin 3961 CRingccrg 20251 Domncdomn 20708 IDomncidom 20709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-in 3969 df-idom 20712 |
This theorem is referenced by: idomrcan 33262 idomrcanOLD 33265 subridom 33269 fracfld 33289 rprmasso2 33533 1arithufdlem1 33551 1arithufdlem3 33553 dfufd2lem 33556 zringfrac 33561 ply1dg3rt0irred 33586 m1pmeq 33587 r1pid2OLD 33608 assafld 33664 minplyirredlem 33717 minplyirred 33718 algextdeglem7 33728 algextdeglem8 33729 deg1gprod 42121 deg1pow 42122 |
Copyright terms: Public domain | W3C validator |