Step | Hyp | Ref
| Expression |
1 | | unitpidl1.6 |
. . . . . . 7
β’ (π β π
β IDomn) |
2 | | df-idom 20900 |
. . . . . . 7
β’ IDomn =
(CRing β© Domn) |
3 | 1, 2 | eleqtrdi 2843 |
. . . . . 6
β’ (π β π
β (CRing β© Domn)) |
4 | 3 | elin1d 4198 |
. . . . 5
β’ (π β π
β CRing) |
5 | 4 | ad3antrrr 728 |
. . . 4
β’ ((((π β§ πΌ = π΅) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π)) β π
β CRing) |
6 | | simplr 767 |
. . . 4
β’ ((((π β§ πΌ = π΅) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π)) β π¦ β π΅) |
7 | | unitpidl1.5 |
. . . . 5
β’ (π β π β π΅) |
8 | 7 | ad3antrrr 728 |
. . . 4
β’ ((((π β§ πΌ = π΅) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π)) β π β π΅) |
9 | | simpr 485 |
. . . . 5
β’ ((((π β§ πΌ = π΅) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π)) β (1rβπ
) = (π¦(.rβπ
)π)) |
10 | 1 | idomringd 32370 |
. . . . . . 7
β’ (π β π
β Ring) |
11 | | unitpidl1.1 |
. . . . . . . 8
β’ π = (Unitβπ
) |
12 | | eqid 2732 |
. . . . . . . 8
β’
(1rβπ
) = (1rβπ
) |
13 | 11, 12 | 1unit 20187 |
. . . . . . 7
β’ (π
β Ring β
(1rβπ
)
β π) |
14 | 10, 13 | syl 17 |
. . . . . 6
β’ (π β (1rβπ
) β π) |
15 | 14 | ad3antrrr 728 |
. . . . 5
β’ ((((π β§ πΌ = π΅) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π)) β (1rβπ
) β π) |
16 | 9, 15 | eqeltrrd 2834 |
. . . 4
β’ ((((π β§ πΌ = π΅) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π)) β (π¦(.rβπ
)π) β π) |
17 | | eqid 2732 |
. . . . . 6
β’
(.rβπ
) = (.rβπ
) |
18 | | unitpidl1.4 |
. . . . . 6
β’ π΅ = (Baseβπ
) |
19 | 11, 17, 18 | unitmulclb 20194 |
. . . . 5
β’ ((π
β CRing β§ π¦ β π΅ β§ π β π΅) β ((π¦(.rβπ
)π) β π β (π¦ β π β§ π β π))) |
20 | 19 | simplbda 500 |
. . . 4
β’ (((π
β CRing β§ π¦ β π΅ β§ π β π΅) β§ (π¦(.rβπ
)π) β π) β π β π) |
21 | 5, 6, 8, 16, 20 | syl31anc 1373 |
. . 3
β’ ((((π β§ πΌ = π΅) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π)) β π β π) |
22 | 10 | adantr 481 |
. . . 4
β’ ((π β§ πΌ = π΅) β π
β Ring) |
23 | 7 | adantr 481 |
. . . 4
β’ ((π β§ πΌ = π΅) β π β π΅) |
24 | | unitpidl1.3 |
. . . . . . . 8
β’ πΌ = (πΎβ{π}) |
25 | 7 | snssd 4812 |
. . . . . . . . 9
β’ (π β {π} β π΅) |
26 | | unitpidl1.2 |
. . . . . . . . . 10
β’ πΎ = (RSpanβπ
) |
27 | | eqid 2732 |
. . . . . . . . . 10
β’
(LIdealβπ
) =
(LIdealβπ
) |
28 | 26, 18, 27 | rspcl 20846 |
. . . . . . . . 9
β’ ((π
β Ring β§ {π} β π΅) β (πΎβ{π}) β (LIdealβπ
)) |
29 | 10, 25, 28 | syl2anc 584 |
. . . . . . . 8
β’ (π β (πΎβ{π}) β (LIdealβπ
)) |
30 | 24, 29 | eqeltrid 2837 |
. . . . . . 7
β’ (π β πΌ β (LIdealβπ
)) |
31 | 30 | adantr 481 |
. . . . . 6
β’ ((π β§ πΌ = π΅) β πΌ β (LIdealβπ
)) |
32 | | simpr 485 |
. . . . . 6
β’ ((π β§ πΌ = π΅) β πΌ = π΅) |
33 | 27, 18, 12 | lidl1el 20840 |
. . . . . . 7
β’ ((π
β Ring β§ πΌ β (LIdealβπ
)) β
((1rβπ
)
β πΌ β πΌ = π΅)) |
34 | 33 | biimpar 478 |
. . . . . 6
β’ (((π
β Ring β§ πΌ β (LIdealβπ
)) β§ πΌ = π΅) β (1rβπ
) β πΌ) |
35 | 22, 31, 32, 34 | syl21anc 836 |
. . . . 5
β’ ((π β§ πΌ = π΅) β (1rβπ
) β πΌ) |
36 | 35, 24 | eleqtrdi 2843 |
. . . 4
β’ ((π β§ πΌ = π΅) β (1rβπ
) β (πΎβ{π})) |
37 | 18, 17, 26 | rspsnel 32479 |
. . . . 5
β’ ((π
β Ring β§ π β π΅) β ((1rβπ
) β (πΎβ{π}) β βπ¦ β π΅ (1rβπ
) = (π¦(.rβπ
)π))) |
38 | 37 | biimpa 477 |
. . . 4
β’ (((π
β Ring β§ π β π΅) β§ (1rβπ
) β (πΎβ{π})) β βπ¦ β π΅ (1rβπ
) = (π¦(.rβπ
)π)) |
39 | 22, 23, 36, 38 | syl21anc 836 |
. . 3
β’ ((π β§ πΌ = π΅) β βπ¦ β π΅ (1rβπ
) = (π¦(.rβπ
)π)) |
40 | 21, 39 | r19.29a 3162 |
. 2
β’ ((π β§ πΌ = π΅) β π β π) |
41 | | simpr 485 |
. . 3
β’ ((π β§ π β π) β π β π) |
42 | 26, 18 | rspssid 20847 |
. . . . . . 7
β’ ((π
β Ring β§ {π} β π΅) β {π} β (πΎβ{π})) |
43 | 10, 25, 42 | syl2anc 584 |
. . . . . 6
β’ (π β {π} β (πΎβ{π})) |
44 | 43, 24 | sseqtrrdi 4033 |
. . . . 5
β’ (π β {π} β πΌ) |
45 | | snssg 4787 |
. . . . . 6
β’ (π β π΅ β (π β πΌ β {π} β πΌ)) |
46 | 45 | biimpar 478 |
. . . . 5
β’ ((π β π΅ β§ {π} β πΌ) β π β πΌ) |
47 | 7, 44, 46 | syl2anc 584 |
. . . 4
β’ (π β π β πΌ) |
48 | 47 | adantr 481 |
. . 3
β’ ((π β§ π β π) β π β πΌ) |
49 | 10 | adantr 481 |
. . 3
β’ ((π β§ π β π) β π
β Ring) |
50 | 30 | adantr 481 |
. . 3
β’ ((π β§ π β π) β πΌ β (LIdealβπ
)) |
51 | 18, 11, 41, 48, 49, 50 | lidlunitel 32536 |
. 2
β’ ((π β§ π β π) β πΌ = π΅) |
52 | 40, 51 | impbida 799 |
1
β’ (π β (πΌ = π΅ β π β π)) |