Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unitpidl1 Structured version   Visualization version   GIF version

Theorem unitpidl1 33401
Description: The ideal 𝐼 generated by an element 𝑋 of an integral domain 𝑅 is the unit ideal 𝐵 iff 𝑋 is a ring unit. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypotheses
Ref Expression
unitpidl1.1 𝑈 = (Unit‘𝑅)
unitpidl1.2 𝐾 = (RSpan‘𝑅)
unitpidl1.3 𝐼 = (𝐾‘{𝑋})
unitpidl1.4 𝐵 = (Base‘𝑅)
unitpidl1.5 (𝜑𝑋𝐵)
unitpidl1.6 (𝜑𝑅 ∈ IDomn)
Assertion
Ref Expression
unitpidl1 (𝜑 → (𝐼 = 𝐵𝑋𝑈))

Proof of Theorem unitpidl1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 unitpidl1.6 . . . . . . 7 (𝜑𝑅 ∈ IDomn)
2 df-idom 20611 . . . . . . 7 IDomn = (CRing ∩ Domn)
31, 2eleqtrdi 2839 . . . . . 6 (𝜑𝑅 ∈ (CRing ∩ Domn))
43elin1d 4169 . . . . 5 (𝜑𝑅 ∈ CRing)
54ad3antrrr 730 . . . 4 ((((𝜑𝐼 = 𝐵) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑋)) → 𝑅 ∈ CRing)
6 simplr 768 . . . 4 ((((𝜑𝐼 = 𝐵) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑋)) → 𝑦𝐵)
7 unitpidl1.5 . . . . 5 (𝜑𝑋𝐵)
87ad3antrrr 730 . . . 4 ((((𝜑𝐼 = 𝐵) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑋)) → 𝑋𝐵)
9 simpr 484 . . . . 5 ((((𝜑𝐼 = 𝐵) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑋)) → (1r𝑅) = (𝑦(.r𝑅)𝑋))
101idomringd 20643 . . . . . . 7 (𝜑𝑅 ∈ Ring)
11 unitpidl1.1 . . . . . . . 8 𝑈 = (Unit‘𝑅)
12 eqid 2730 . . . . . . . 8 (1r𝑅) = (1r𝑅)
1311, 121unit 20289 . . . . . . 7 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝑈)
1410, 13syl 17 . . . . . 6 (𝜑 → (1r𝑅) ∈ 𝑈)
1514ad3antrrr 730 . . . . 5 ((((𝜑𝐼 = 𝐵) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑋)) → (1r𝑅) ∈ 𝑈)
169, 15eqeltrrd 2830 . . . 4 ((((𝜑𝐼 = 𝐵) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑋)) → (𝑦(.r𝑅)𝑋) ∈ 𝑈)
17 eqid 2730 . . . . . 6 (.r𝑅) = (.r𝑅)
18 unitpidl1.4 . . . . . 6 𝐵 = (Base‘𝑅)
1911, 17, 18unitmulclb 20296 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑦𝐵𝑋𝐵) → ((𝑦(.r𝑅)𝑋) ∈ 𝑈 ↔ (𝑦𝑈𝑋𝑈)))
2019simplbda 499 . . . 4 (((𝑅 ∈ CRing ∧ 𝑦𝐵𝑋𝐵) ∧ (𝑦(.r𝑅)𝑋) ∈ 𝑈) → 𝑋𝑈)
215, 6, 8, 16, 20syl31anc 1375 . . 3 ((((𝜑𝐼 = 𝐵) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑋)) → 𝑋𝑈)
2210adantr 480 . . . 4 ((𝜑𝐼 = 𝐵) → 𝑅 ∈ Ring)
237adantr 480 . . . 4 ((𝜑𝐼 = 𝐵) → 𝑋𝐵)
24 unitpidl1.3 . . . . . . . 8 𝐼 = (𝐾‘{𝑋})
257snssd 4775 . . . . . . . . 9 (𝜑 → {𝑋} ⊆ 𝐵)
26 unitpidl1.2 . . . . . . . . . 10 𝐾 = (RSpan‘𝑅)
27 eqid 2730 . . . . . . . . . 10 (LIdeal‘𝑅) = (LIdeal‘𝑅)
2826, 18, 27rspcl 21151 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ {𝑋} ⊆ 𝐵) → (𝐾‘{𝑋}) ∈ (LIdeal‘𝑅))
2910, 25, 28syl2anc 584 . . . . . . . 8 (𝜑 → (𝐾‘{𝑋}) ∈ (LIdeal‘𝑅))
3024, 29eqeltrid 2833 . . . . . . 7 (𝜑𝐼 ∈ (LIdeal‘𝑅))
3130adantr 480 . . . . . 6 ((𝜑𝐼 = 𝐵) → 𝐼 ∈ (LIdeal‘𝑅))
32 simpr 484 . . . . . 6 ((𝜑𝐼 = 𝐵) → 𝐼 = 𝐵)
3327, 18, 12lidl1el 21142 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ((1r𝑅) ∈ 𝐼𝐼 = 𝐵))
3433biimpar 477 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼 = 𝐵) → (1r𝑅) ∈ 𝐼)
3522, 31, 32, 34syl21anc 837 . . . . 5 ((𝜑𝐼 = 𝐵) → (1r𝑅) ∈ 𝐼)
3635, 24eleqtrdi 2839 . . . 4 ((𝜑𝐼 = 𝐵) → (1r𝑅) ∈ (𝐾‘{𝑋}))
3718, 17, 26elrspsn 21156 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((1r𝑅) ∈ (𝐾‘{𝑋}) ↔ ∃𝑦𝐵 (1r𝑅) = (𝑦(.r𝑅)𝑋)))
3837biimpa 476 . . . 4 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (1r𝑅) ∈ (𝐾‘{𝑋})) → ∃𝑦𝐵 (1r𝑅) = (𝑦(.r𝑅)𝑋))
3922, 23, 36, 38syl21anc 837 . . 3 ((𝜑𝐼 = 𝐵) → ∃𝑦𝐵 (1r𝑅) = (𝑦(.r𝑅)𝑋))
4021, 39r19.29a 3142 . 2 ((𝜑𝐼 = 𝐵) → 𝑋𝑈)
41 simpr 484 . . 3 ((𝜑𝑋𝑈) → 𝑋𝑈)
4226, 18rspssid 21152 . . . . . . 7 ((𝑅 ∈ Ring ∧ {𝑋} ⊆ 𝐵) → {𝑋} ⊆ (𝐾‘{𝑋}))
4310, 25, 42syl2anc 584 . . . . . 6 (𝜑 → {𝑋} ⊆ (𝐾‘{𝑋}))
4443, 24sseqtrrdi 3990 . . . . 5 (𝜑 → {𝑋} ⊆ 𝐼)
45 snssg 4749 . . . . . 6 (𝑋𝐵 → (𝑋𝐼 ↔ {𝑋} ⊆ 𝐼))
4645biimpar 477 . . . . 5 ((𝑋𝐵 ∧ {𝑋} ⊆ 𝐼) → 𝑋𝐼)
477, 44, 46syl2anc 584 . . . 4 (𝜑𝑋𝐼)
4847adantr 480 . . 3 ((𝜑𝑋𝑈) → 𝑋𝐼)
4910adantr 480 . . 3 ((𝜑𝑋𝑈) → 𝑅 ∈ Ring)
5030adantr 480 . . 3 ((𝜑𝑋𝑈) → 𝐼 ∈ (LIdeal‘𝑅))
5118, 11, 41, 48, 49, 50lidlunitel 33400 . 2 ((𝜑𝑋𝑈) → 𝐼 = 𝐵)
5240, 51impbida 800 1 (𝜑 → (𝐼 = 𝐵𝑋𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3054  cin 3915  wss 3916  {csn 4591  cfv 6513  (class class class)co 7389  Basecbs 17185  .rcmulr 17227  1rcur 20096  Ringcrg 20148  CRingccrg 20149  Unitcui 20270  Domncdomn 20607  IDomncidom 20608  LIdealclidl 21122  RSpancrsp 21123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-ip 17244  df-0g 17410  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-grp 18874  df-minusg 18875  df-sbg 18876  df-subg 19061  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-cring 20151  df-oppr 20252  df-dvdsr 20272  df-unit 20273  df-invr 20303  df-subrg 20485  df-idom 20611  df-lmod 20774  df-lss 20844  df-lsp 20884  df-sra 21086  df-rgmod 21087  df-lidl 21124  df-rsp 21125
This theorem is referenced by:  mxidlirredi  33448  mxidlirred  33449  rsprprmprmidlb  33500
  Copyright terms: Public domain W3C validator