| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unitpidl1 | Structured version Visualization version GIF version | ||
| Description: The ideal 𝐼 generated by an element 𝑋 of an integral domain 𝑅 is the unit ideal 𝐵 iff 𝑋 is a ring unit. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| Ref | Expression |
|---|---|
| unitpidl1.1 | ⊢ 𝑈 = (Unit‘𝑅) |
| unitpidl1.2 | ⊢ 𝐾 = (RSpan‘𝑅) |
| unitpidl1.3 | ⊢ 𝐼 = (𝐾‘{𝑋}) |
| unitpidl1.4 | ⊢ 𝐵 = (Base‘𝑅) |
| unitpidl1.5 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| unitpidl1.6 | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| Ref | Expression |
|---|---|
| unitpidl1 | ⊢ (𝜑 → (𝐼 = 𝐵 ↔ 𝑋 ∈ 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitpidl1.6 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
| 2 | df-idom 20656 | . . . . . . 7 ⊢ IDomn = (CRing ∩ Domn) | |
| 3 | 1, 2 | eleqtrdi 2844 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ (CRing ∩ Domn)) |
| 4 | 3 | elin1d 4179 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ CRing) |
| 5 | 4 | ad3antrrr 730 | . . . 4 ⊢ ((((𝜑 ∧ 𝐼 = 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (1r‘𝑅) = (𝑦(.r‘𝑅)𝑋)) → 𝑅 ∈ CRing) |
| 6 | simplr 768 | . . . 4 ⊢ ((((𝜑 ∧ 𝐼 = 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (1r‘𝑅) = (𝑦(.r‘𝑅)𝑋)) → 𝑦 ∈ 𝐵) | |
| 7 | unitpidl1.5 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 8 | 7 | ad3antrrr 730 | . . . 4 ⊢ ((((𝜑 ∧ 𝐼 = 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (1r‘𝑅) = (𝑦(.r‘𝑅)𝑋)) → 𝑋 ∈ 𝐵) |
| 9 | simpr 484 | . . . . 5 ⊢ ((((𝜑 ∧ 𝐼 = 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (1r‘𝑅) = (𝑦(.r‘𝑅)𝑋)) → (1r‘𝑅) = (𝑦(.r‘𝑅)𝑋)) | |
| 10 | 1 | idomringd 20688 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 11 | unitpidl1.1 | . . . . . . . 8 ⊢ 𝑈 = (Unit‘𝑅) | |
| 12 | eqid 2735 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 13 | 11, 12 | 1unit 20334 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝑈) |
| 14 | 10, 13 | syl 17 | . . . . . 6 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝑈) |
| 15 | 14 | ad3antrrr 730 | . . . . 5 ⊢ ((((𝜑 ∧ 𝐼 = 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (1r‘𝑅) = (𝑦(.r‘𝑅)𝑋)) → (1r‘𝑅) ∈ 𝑈) |
| 16 | 9, 15 | eqeltrrd 2835 | . . . 4 ⊢ ((((𝜑 ∧ 𝐼 = 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (1r‘𝑅) = (𝑦(.r‘𝑅)𝑋)) → (𝑦(.r‘𝑅)𝑋) ∈ 𝑈) |
| 17 | eqid 2735 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 18 | unitpidl1.4 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 19 | 11, 17, 18 | unitmulclb 20341 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑦 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝑦(.r‘𝑅)𝑋) ∈ 𝑈 ↔ (𝑦 ∈ 𝑈 ∧ 𝑋 ∈ 𝑈))) |
| 20 | 19 | simplbda 499 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑦 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ (𝑦(.r‘𝑅)𝑋) ∈ 𝑈) → 𝑋 ∈ 𝑈) |
| 21 | 5, 6, 8, 16, 20 | syl31anc 1375 | . . 3 ⊢ ((((𝜑 ∧ 𝐼 = 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (1r‘𝑅) = (𝑦(.r‘𝑅)𝑋)) → 𝑋 ∈ 𝑈) |
| 22 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 = 𝐵) → 𝑅 ∈ Ring) |
| 23 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 = 𝐵) → 𝑋 ∈ 𝐵) |
| 24 | unitpidl1.3 | . . . . . . . 8 ⊢ 𝐼 = (𝐾‘{𝑋}) | |
| 25 | 7 | snssd 4785 | . . . . . . . . 9 ⊢ (𝜑 → {𝑋} ⊆ 𝐵) |
| 26 | unitpidl1.2 | . . . . . . . . . 10 ⊢ 𝐾 = (RSpan‘𝑅) | |
| 27 | eqid 2735 | . . . . . . . . . 10 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 28 | 26, 18, 27 | rspcl 21196 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ {𝑋} ⊆ 𝐵) → (𝐾‘{𝑋}) ∈ (LIdeal‘𝑅)) |
| 29 | 10, 25, 28 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝐾‘{𝑋}) ∈ (LIdeal‘𝑅)) |
| 30 | 24, 29 | eqeltrid 2838 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
| 31 | 30 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐼 = 𝐵) → 𝐼 ∈ (LIdeal‘𝑅)) |
| 32 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐼 = 𝐵) → 𝐼 = 𝐵) | |
| 33 | 27, 18, 12 | lidl1el 21187 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ((1r‘𝑅) ∈ 𝐼 ↔ 𝐼 = 𝐵)) |
| 34 | 33 | biimpar 477 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼 = 𝐵) → (1r‘𝑅) ∈ 𝐼) |
| 35 | 22, 31, 32, 34 | syl21anc 837 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 = 𝐵) → (1r‘𝑅) ∈ 𝐼) |
| 36 | 35, 24 | eleqtrdi 2844 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 = 𝐵) → (1r‘𝑅) ∈ (𝐾‘{𝑋})) |
| 37 | 18, 17, 26 | elrspsn 21201 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ((1r‘𝑅) ∈ (𝐾‘{𝑋}) ↔ ∃𝑦 ∈ 𝐵 (1r‘𝑅) = (𝑦(.r‘𝑅)𝑋))) |
| 38 | 37 | biimpa 476 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (1r‘𝑅) ∈ (𝐾‘{𝑋})) → ∃𝑦 ∈ 𝐵 (1r‘𝑅) = (𝑦(.r‘𝑅)𝑋)) |
| 39 | 22, 23, 36, 38 | syl21anc 837 | . . 3 ⊢ ((𝜑 ∧ 𝐼 = 𝐵) → ∃𝑦 ∈ 𝐵 (1r‘𝑅) = (𝑦(.r‘𝑅)𝑋)) |
| 40 | 21, 39 | r19.29a 3148 | . 2 ⊢ ((𝜑 ∧ 𝐼 = 𝐵) → 𝑋 ∈ 𝑈) |
| 41 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑈) | |
| 42 | 26, 18 | rspssid 21197 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ {𝑋} ⊆ 𝐵) → {𝑋} ⊆ (𝐾‘{𝑋})) |
| 43 | 10, 25, 42 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → {𝑋} ⊆ (𝐾‘{𝑋})) |
| 44 | 43, 24 | sseqtrrdi 4000 | . . . . 5 ⊢ (𝜑 → {𝑋} ⊆ 𝐼) |
| 45 | snssg 4759 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → (𝑋 ∈ 𝐼 ↔ {𝑋} ⊆ 𝐼)) | |
| 46 | 45 | biimpar 477 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ {𝑋} ⊆ 𝐼) → 𝑋 ∈ 𝐼) |
| 47 | 7, 44, 46 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| 48 | 47 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝐼) |
| 49 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑅 ∈ Ring) |
| 50 | 30 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝐼 ∈ (LIdeal‘𝑅)) |
| 51 | 18, 11, 41, 48, 49, 50 | lidlunitel 33438 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝐼 = 𝐵) |
| 52 | 40, 51 | impbida 800 | 1 ⊢ (𝜑 → (𝐼 = 𝐵 ↔ 𝑋 ∈ 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 ∩ cin 3925 ⊆ wss 3926 {csn 4601 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 .rcmulr 17272 1rcur 20141 Ringcrg 20193 CRingccrg 20194 Unitcui 20315 Domncdomn 20652 IDomncidom 20653 LIdealclidl 21167 RSpancrsp 21168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-cring 20196 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-subrg 20530 df-idom 20656 df-lmod 20819 df-lss 20889 df-lsp 20929 df-sra 21131 df-rgmod 21132 df-lidl 21169 df-rsp 21170 |
| This theorem is referenced by: mxidlirredi 33486 mxidlirred 33487 rsprprmprmidlb 33538 |
| Copyright terms: Public domain | W3C validator |