| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unitpidl1 | Structured version Visualization version GIF version | ||
| Description: The ideal 𝐼 generated by an element 𝑋 of an integral domain 𝑅 is the unit ideal 𝐵 iff 𝑋 is a ring unit. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| Ref | Expression |
|---|---|
| unitpidl1.1 | ⊢ 𝑈 = (Unit‘𝑅) |
| unitpidl1.2 | ⊢ 𝐾 = (RSpan‘𝑅) |
| unitpidl1.3 | ⊢ 𝐼 = (𝐾‘{𝑋}) |
| unitpidl1.4 | ⊢ 𝐵 = (Base‘𝑅) |
| unitpidl1.5 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| unitpidl1.6 | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| Ref | Expression |
|---|---|
| unitpidl1 | ⊢ (𝜑 → (𝐼 = 𝐵 ↔ 𝑋 ∈ 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitpidl1.6 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
| 2 | df-idom 20605 | . . . . . . 7 ⊢ IDomn = (CRing ∩ Domn) | |
| 3 | 1, 2 | eleqtrdi 2838 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ (CRing ∩ Domn)) |
| 4 | 3 | elin1d 4167 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ CRing) |
| 5 | 4 | ad3antrrr 730 | . . . 4 ⊢ ((((𝜑 ∧ 𝐼 = 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (1r‘𝑅) = (𝑦(.r‘𝑅)𝑋)) → 𝑅 ∈ CRing) |
| 6 | simplr 768 | . . . 4 ⊢ ((((𝜑 ∧ 𝐼 = 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (1r‘𝑅) = (𝑦(.r‘𝑅)𝑋)) → 𝑦 ∈ 𝐵) | |
| 7 | unitpidl1.5 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 8 | 7 | ad3antrrr 730 | . . . 4 ⊢ ((((𝜑 ∧ 𝐼 = 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (1r‘𝑅) = (𝑦(.r‘𝑅)𝑋)) → 𝑋 ∈ 𝐵) |
| 9 | simpr 484 | . . . . 5 ⊢ ((((𝜑 ∧ 𝐼 = 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (1r‘𝑅) = (𝑦(.r‘𝑅)𝑋)) → (1r‘𝑅) = (𝑦(.r‘𝑅)𝑋)) | |
| 10 | 1 | idomringd 20637 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 11 | unitpidl1.1 | . . . . . . . 8 ⊢ 𝑈 = (Unit‘𝑅) | |
| 12 | eqid 2729 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 13 | 11, 12 | 1unit 20283 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝑈) |
| 14 | 10, 13 | syl 17 | . . . . . 6 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝑈) |
| 15 | 14 | ad3antrrr 730 | . . . . 5 ⊢ ((((𝜑 ∧ 𝐼 = 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (1r‘𝑅) = (𝑦(.r‘𝑅)𝑋)) → (1r‘𝑅) ∈ 𝑈) |
| 16 | 9, 15 | eqeltrrd 2829 | . . . 4 ⊢ ((((𝜑 ∧ 𝐼 = 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (1r‘𝑅) = (𝑦(.r‘𝑅)𝑋)) → (𝑦(.r‘𝑅)𝑋) ∈ 𝑈) |
| 17 | eqid 2729 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 18 | unitpidl1.4 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 19 | 11, 17, 18 | unitmulclb 20290 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑦 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝑦(.r‘𝑅)𝑋) ∈ 𝑈 ↔ (𝑦 ∈ 𝑈 ∧ 𝑋 ∈ 𝑈))) |
| 20 | 19 | simplbda 499 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑦 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ (𝑦(.r‘𝑅)𝑋) ∈ 𝑈) → 𝑋 ∈ 𝑈) |
| 21 | 5, 6, 8, 16, 20 | syl31anc 1375 | . . 3 ⊢ ((((𝜑 ∧ 𝐼 = 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (1r‘𝑅) = (𝑦(.r‘𝑅)𝑋)) → 𝑋 ∈ 𝑈) |
| 22 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 = 𝐵) → 𝑅 ∈ Ring) |
| 23 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 = 𝐵) → 𝑋 ∈ 𝐵) |
| 24 | unitpidl1.3 | . . . . . . . 8 ⊢ 𝐼 = (𝐾‘{𝑋}) | |
| 25 | 7 | snssd 4773 | . . . . . . . . 9 ⊢ (𝜑 → {𝑋} ⊆ 𝐵) |
| 26 | unitpidl1.2 | . . . . . . . . . 10 ⊢ 𝐾 = (RSpan‘𝑅) | |
| 27 | eqid 2729 | . . . . . . . . . 10 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 28 | 26, 18, 27 | rspcl 21145 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ {𝑋} ⊆ 𝐵) → (𝐾‘{𝑋}) ∈ (LIdeal‘𝑅)) |
| 29 | 10, 25, 28 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝐾‘{𝑋}) ∈ (LIdeal‘𝑅)) |
| 30 | 24, 29 | eqeltrid 2832 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
| 31 | 30 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐼 = 𝐵) → 𝐼 ∈ (LIdeal‘𝑅)) |
| 32 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐼 = 𝐵) → 𝐼 = 𝐵) | |
| 33 | 27, 18, 12 | lidl1el 21136 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ((1r‘𝑅) ∈ 𝐼 ↔ 𝐼 = 𝐵)) |
| 34 | 33 | biimpar 477 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼 = 𝐵) → (1r‘𝑅) ∈ 𝐼) |
| 35 | 22, 31, 32, 34 | syl21anc 837 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 = 𝐵) → (1r‘𝑅) ∈ 𝐼) |
| 36 | 35, 24 | eleqtrdi 2838 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 = 𝐵) → (1r‘𝑅) ∈ (𝐾‘{𝑋})) |
| 37 | 18, 17, 26 | elrspsn 21150 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ((1r‘𝑅) ∈ (𝐾‘{𝑋}) ↔ ∃𝑦 ∈ 𝐵 (1r‘𝑅) = (𝑦(.r‘𝑅)𝑋))) |
| 38 | 37 | biimpa 476 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (1r‘𝑅) ∈ (𝐾‘{𝑋})) → ∃𝑦 ∈ 𝐵 (1r‘𝑅) = (𝑦(.r‘𝑅)𝑋)) |
| 39 | 22, 23, 36, 38 | syl21anc 837 | . . 3 ⊢ ((𝜑 ∧ 𝐼 = 𝐵) → ∃𝑦 ∈ 𝐵 (1r‘𝑅) = (𝑦(.r‘𝑅)𝑋)) |
| 40 | 21, 39 | r19.29a 3141 | . 2 ⊢ ((𝜑 ∧ 𝐼 = 𝐵) → 𝑋 ∈ 𝑈) |
| 41 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑈) | |
| 42 | 26, 18 | rspssid 21146 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ {𝑋} ⊆ 𝐵) → {𝑋} ⊆ (𝐾‘{𝑋})) |
| 43 | 10, 25, 42 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → {𝑋} ⊆ (𝐾‘{𝑋})) |
| 44 | 43, 24 | sseqtrrdi 3988 | . . . . 5 ⊢ (𝜑 → {𝑋} ⊆ 𝐼) |
| 45 | snssg 4747 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → (𝑋 ∈ 𝐼 ↔ {𝑋} ⊆ 𝐼)) | |
| 46 | 45 | biimpar 477 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ {𝑋} ⊆ 𝐼) → 𝑋 ∈ 𝐼) |
| 47 | 7, 44, 46 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| 48 | 47 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝐼) |
| 49 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑅 ∈ Ring) |
| 50 | 30 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝐼 ∈ (LIdeal‘𝑅)) |
| 51 | 18, 11, 41, 48, 49, 50 | lidlunitel 33394 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝐼 = 𝐵) |
| 52 | 40, 51 | impbida 800 | 1 ⊢ (𝜑 → (𝐼 = 𝐵 ↔ 𝑋 ∈ 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∩ cin 3913 ⊆ wss 3914 {csn 4589 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 .rcmulr 17221 1rcur 20090 Ringcrg 20142 CRingccrg 20143 Unitcui 20264 Domncdomn 20601 IDomncidom 20602 LIdealclidl 21116 RSpancrsp 21117 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-subrg 20479 df-idom 20605 df-lmod 20768 df-lss 20838 df-lsp 20878 df-sra 21080 df-rgmod 21081 df-lidl 21118 df-rsp 21119 |
| This theorem is referenced by: mxidlirredi 33442 mxidlirred 33443 rsprprmprmidlb 33494 |
| Copyright terms: Public domain | W3C validator |