| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unitpidl1 | Structured version Visualization version GIF version | ||
| Description: The ideal 𝐼 generated by an element 𝑋 of an integral domain 𝑅 is the unit ideal 𝐵 iff 𝑋 is a ring unit. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| Ref | Expression |
|---|---|
| unitpidl1.1 | ⊢ 𝑈 = (Unit‘𝑅) |
| unitpidl1.2 | ⊢ 𝐾 = (RSpan‘𝑅) |
| unitpidl1.3 | ⊢ 𝐼 = (𝐾‘{𝑋}) |
| unitpidl1.4 | ⊢ 𝐵 = (Base‘𝑅) |
| unitpidl1.5 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| unitpidl1.6 | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| Ref | Expression |
|---|---|
| unitpidl1 | ⊢ (𝜑 → (𝐼 = 𝐵 ↔ 𝑋 ∈ 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitpidl1.6 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
| 2 | df-idom 20613 | . . . . . . 7 ⊢ IDomn = (CRing ∩ Domn) | |
| 3 | 1, 2 | eleqtrdi 2843 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ (CRing ∩ Domn)) |
| 4 | 3 | elin1d 4153 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ CRing) |
| 5 | 4 | ad3antrrr 730 | . . . 4 ⊢ ((((𝜑 ∧ 𝐼 = 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (1r‘𝑅) = (𝑦(.r‘𝑅)𝑋)) → 𝑅 ∈ CRing) |
| 6 | simplr 768 | . . . 4 ⊢ ((((𝜑 ∧ 𝐼 = 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (1r‘𝑅) = (𝑦(.r‘𝑅)𝑋)) → 𝑦 ∈ 𝐵) | |
| 7 | unitpidl1.5 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 8 | 7 | ad3antrrr 730 | . . . 4 ⊢ ((((𝜑 ∧ 𝐼 = 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (1r‘𝑅) = (𝑦(.r‘𝑅)𝑋)) → 𝑋 ∈ 𝐵) |
| 9 | simpr 484 | . . . . 5 ⊢ ((((𝜑 ∧ 𝐼 = 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (1r‘𝑅) = (𝑦(.r‘𝑅)𝑋)) → (1r‘𝑅) = (𝑦(.r‘𝑅)𝑋)) | |
| 10 | 1 | idomringd 20645 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 11 | unitpidl1.1 | . . . . . . . 8 ⊢ 𝑈 = (Unit‘𝑅) | |
| 12 | eqid 2733 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 13 | 11, 12 | 1unit 20294 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝑈) |
| 14 | 10, 13 | syl 17 | . . . . . 6 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝑈) |
| 15 | 14 | ad3antrrr 730 | . . . . 5 ⊢ ((((𝜑 ∧ 𝐼 = 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (1r‘𝑅) = (𝑦(.r‘𝑅)𝑋)) → (1r‘𝑅) ∈ 𝑈) |
| 16 | 9, 15 | eqeltrrd 2834 | . . . 4 ⊢ ((((𝜑 ∧ 𝐼 = 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (1r‘𝑅) = (𝑦(.r‘𝑅)𝑋)) → (𝑦(.r‘𝑅)𝑋) ∈ 𝑈) |
| 17 | eqid 2733 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 18 | unitpidl1.4 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 19 | 11, 17, 18 | unitmulclb 20301 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑦 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝑦(.r‘𝑅)𝑋) ∈ 𝑈 ↔ (𝑦 ∈ 𝑈 ∧ 𝑋 ∈ 𝑈))) |
| 20 | 19 | simplbda 499 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑦 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ (𝑦(.r‘𝑅)𝑋) ∈ 𝑈) → 𝑋 ∈ 𝑈) |
| 21 | 5, 6, 8, 16, 20 | syl31anc 1375 | . . 3 ⊢ ((((𝜑 ∧ 𝐼 = 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (1r‘𝑅) = (𝑦(.r‘𝑅)𝑋)) → 𝑋 ∈ 𝑈) |
| 22 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 = 𝐵) → 𝑅 ∈ Ring) |
| 23 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 = 𝐵) → 𝑋 ∈ 𝐵) |
| 24 | unitpidl1.3 | . . . . . . . 8 ⊢ 𝐼 = (𝐾‘{𝑋}) | |
| 25 | 7 | snssd 4760 | . . . . . . . . 9 ⊢ (𝜑 → {𝑋} ⊆ 𝐵) |
| 26 | unitpidl1.2 | . . . . . . . . . 10 ⊢ 𝐾 = (RSpan‘𝑅) | |
| 27 | eqid 2733 | . . . . . . . . . 10 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 28 | 26, 18, 27 | rspcl 21174 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ {𝑋} ⊆ 𝐵) → (𝐾‘{𝑋}) ∈ (LIdeal‘𝑅)) |
| 29 | 10, 25, 28 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝐾‘{𝑋}) ∈ (LIdeal‘𝑅)) |
| 30 | 24, 29 | eqeltrid 2837 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
| 31 | 30 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐼 = 𝐵) → 𝐼 ∈ (LIdeal‘𝑅)) |
| 32 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐼 = 𝐵) → 𝐼 = 𝐵) | |
| 33 | 27, 18, 12 | lidl1el 21165 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ((1r‘𝑅) ∈ 𝐼 ↔ 𝐼 = 𝐵)) |
| 34 | 33 | biimpar 477 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼 = 𝐵) → (1r‘𝑅) ∈ 𝐼) |
| 35 | 22, 31, 32, 34 | syl21anc 837 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 = 𝐵) → (1r‘𝑅) ∈ 𝐼) |
| 36 | 35, 24 | eleqtrdi 2843 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 = 𝐵) → (1r‘𝑅) ∈ (𝐾‘{𝑋})) |
| 37 | 18, 17, 26 | elrspsn 21179 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ((1r‘𝑅) ∈ (𝐾‘{𝑋}) ↔ ∃𝑦 ∈ 𝐵 (1r‘𝑅) = (𝑦(.r‘𝑅)𝑋))) |
| 38 | 37 | biimpa 476 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (1r‘𝑅) ∈ (𝐾‘{𝑋})) → ∃𝑦 ∈ 𝐵 (1r‘𝑅) = (𝑦(.r‘𝑅)𝑋)) |
| 39 | 22, 23, 36, 38 | syl21anc 837 | . . 3 ⊢ ((𝜑 ∧ 𝐼 = 𝐵) → ∃𝑦 ∈ 𝐵 (1r‘𝑅) = (𝑦(.r‘𝑅)𝑋)) |
| 40 | 21, 39 | r19.29a 3141 | . 2 ⊢ ((𝜑 ∧ 𝐼 = 𝐵) → 𝑋 ∈ 𝑈) |
| 41 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑈) | |
| 42 | 26, 18 | rspssid 21175 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ {𝑋} ⊆ 𝐵) → {𝑋} ⊆ (𝐾‘{𝑋})) |
| 43 | 10, 25, 42 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → {𝑋} ⊆ (𝐾‘{𝑋})) |
| 44 | 43, 24 | sseqtrrdi 3972 | . . . . 5 ⊢ (𝜑 → {𝑋} ⊆ 𝐼) |
| 45 | snssg 4735 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → (𝑋 ∈ 𝐼 ↔ {𝑋} ⊆ 𝐼)) | |
| 46 | 45 | biimpar 477 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ {𝑋} ⊆ 𝐼) → 𝑋 ∈ 𝐼) |
| 47 | 7, 44, 46 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| 48 | 47 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝐼) |
| 49 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑅 ∈ Ring) |
| 50 | 30 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝐼 ∈ (LIdeal‘𝑅)) |
| 51 | 18, 11, 41, 48, 49, 50 | lidlunitel 33395 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝐼 = 𝐵) |
| 52 | 40, 51 | impbida 800 | 1 ⊢ (𝜑 → (𝐼 = 𝐵 ↔ 𝑋 ∈ 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 ∩ cin 3897 ⊆ wss 3898 {csn 4575 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 .rcmulr 17164 1rcur 20101 Ringcrg 20153 CRingccrg 20154 Unitcui 20275 Domncdomn 20609 IDomncidom 20610 LIdealclidl 21145 RSpancrsp 21146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-sca 17179 df-vsca 17180 df-ip 17181 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-minusg 18852 df-sbg 18853 df-subg 19038 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-subrg 20487 df-idom 20613 df-lmod 20797 df-lss 20867 df-lsp 20907 df-sra 21109 df-rgmod 21110 df-lidl 21147 df-rsp 21148 |
| This theorem is referenced by: mxidlirredi 33443 mxidlirred 33444 rsprprmprmidlb 33495 |
| Copyright terms: Public domain | W3C validator |