Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmidl0 Structured version   Visualization version   GIF version

Theorem prmidl0 31294
Description: The zero ideal of a commutative ring 𝑅 is a prime ideal if and only if 𝑅 is an integral domain. (Contributed by Thierry Arnoux, 30-Jun-2024.)
Hypothesis
Ref Expression
prmidl0.1 0 = (0g𝑅)
Assertion
Ref Expression
prmidl0 ((𝑅 ∈ CRing ∧ { 0 } ∈ (PrmIdeal‘𝑅)) ↔ 𝑅 ∈ IDomn)

Proof of Theorem prmidl0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-3an 1091 . . . 4 (({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ { 0 } → (𝑥 ∈ { 0 } ∨ 𝑦 ∈ { 0 }))) ↔ (({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅)) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ { 0 } → (𝑥 ∈ { 0 } ∨ 𝑦 ∈ { 0 }))))
2 crngring 19528 . . . . . . . . . . . 12 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
32ad2antrr 726 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ { 0 } ∈ (LIdeal‘𝑅)) ∧ ¬ 𝑅 ∈ NzRing) → 𝑅 ∈ Ring)
4 0ringnnzr 20261 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 ↔ ¬ 𝑅 ∈ NzRing))
54biimpar 481 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ ¬ 𝑅 ∈ NzRing) → (♯‘(Base‘𝑅)) = 1)
63, 5sylancom 591 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ { 0 } ∈ (LIdeal‘𝑅)) ∧ ¬ 𝑅 ∈ NzRing) → (♯‘(Base‘𝑅)) = 1)
7 eqid 2736 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
8 prmidl0.1 . . . . . . . . . . . 12 0 = (0g𝑅)
97, 80ring 20262 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (♯‘(Base‘𝑅)) = 1) → (Base‘𝑅) = { 0 })
103, 6, 9syl2anc 587 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ { 0 } ∈ (LIdeal‘𝑅)) ∧ ¬ 𝑅 ∈ NzRing) → (Base‘𝑅) = { 0 })
1110eqcomd 2742 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ { 0 } ∈ (LIdeal‘𝑅)) ∧ ¬ 𝑅 ∈ NzRing) → { 0 } = (Base‘𝑅))
1211ex 416 . . . . . . . 8 ((𝑅 ∈ CRing ∧ { 0 } ∈ (LIdeal‘𝑅)) → (¬ 𝑅 ∈ NzRing → { 0 } = (Base‘𝑅)))
1312necon1ad 2949 . . . . . . 7 ((𝑅 ∈ CRing ∧ { 0 } ∈ (LIdeal‘𝑅)) → ({ 0 } ≠ (Base‘𝑅) → 𝑅 ∈ NzRing))
1413impr 458 . . . . . 6 ((𝑅 ∈ CRing ∧ ({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅))) → 𝑅 ∈ NzRing)
15 nzrring 20253 . . . . . . . . 9 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
16 eqid 2736 . . . . . . . . . 10 (LIdeal‘𝑅) = (LIdeal‘𝑅)
1716, 8lidl0 20211 . . . . . . . . 9 (𝑅 ∈ Ring → { 0 } ∈ (LIdeal‘𝑅))
1815, 17syl 17 . . . . . . . 8 (𝑅 ∈ NzRing → { 0 } ∈ (LIdeal‘𝑅))
198fvexi 6709 . . . . . . . . . . . . 13 0 ∈ V
20 hashsng 13901 . . . . . . . . . . . . 13 ( 0 ∈ V → (♯‘{ 0 }) = 1)
2119, 20ax-mp 5 . . . . . . . . . . . 12 (♯‘{ 0 }) = 1
22 1re 10798 . . . . . . . . . . . 12 1 ∈ ℝ
2321, 22eqeltri 2827 . . . . . . . . . . 11 (♯‘{ 0 }) ∈ ℝ
2423a1i 11 . . . . . . . . . 10 (𝑅 ∈ NzRing → (♯‘{ 0 }) ∈ ℝ)
257isnzr2hash 20256 . . . . . . . . . . . 12 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))))
2625simprbi 500 . . . . . . . . . . 11 (𝑅 ∈ NzRing → 1 < (♯‘(Base‘𝑅)))
2721, 26eqbrtrid 5074 . . . . . . . . . 10 (𝑅 ∈ NzRing → (♯‘{ 0 }) < (♯‘(Base‘𝑅)))
2824, 27ltned 10933 . . . . . . . . 9 (𝑅 ∈ NzRing → (♯‘{ 0 }) ≠ (♯‘(Base‘𝑅)))
29 fveq2 6695 . . . . . . . . . 10 ({ 0 } = (Base‘𝑅) → (♯‘{ 0 }) = (♯‘(Base‘𝑅)))
3029necon3i 2964 . . . . . . . . 9 ((♯‘{ 0 }) ≠ (♯‘(Base‘𝑅)) → { 0 } ≠ (Base‘𝑅))
3128, 30syl 17 . . . . . . . 8 (𝑅 ∈ NzRing → { 0 } ≠ (Base‘𝑅))
3218, 31jca 515 . . . . . . 7 (𝑅 ∈ NzRing → ({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅)))
3332adantl 485 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing) → ({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅)))
3414, 33impbida 801 . . . . 5 (𝑅 ∈ CRing → (({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅)) ↔ 𝑅 ∈ NzRing))
3519elsn2 4566 . . . . . . . 8 ((𝑥(.r𝑅)𝑦) ∈ { 0 } ↔ (𝑥(.r𝑅)𝑦) = 0 )
36 velsn 4543 . . . . . . . . 9 (𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
37 velsn 4543 . . . . . . . . 9 (𝑦 ∈ { 0 } ↔ 𝑦 = 0 )
3836, 37orbi12i 915 . . . . . . . 8 ((𝑥 ∈ { 0 } ∨ 𝑦 ∈ { 0 }) ↔ (𝑥 = 0𝑦 = 0 ))
3935, 38imbi12i 354 . . . . . . 7 (((𝑥(.r𝑅)𝑦) ∈ { 0 } → (𝑥 ∈ { 0 } ∨ 𝑦 ∈ { 0 })) ↔ ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))
40392ralbii 3079 . . . . . 6 (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ { 0 } → (𝑥 ∈ { 0 } ∨ 𝑦 ∈ { 0 })) ↔ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))
4140a1i 11 . . . . 5 (𝑅 ∈ CRing → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ { 0 } → (𝑥 ∈ { 0 } ∨ 𝑦 ∈ { 0 })) ↔ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
4234, 41anbi12d 634 . . . 4 (𝑅 ∈ CRing → ((({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅)) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ { 0 } → (𝑥 ∈ { 0 } ∨ 𝑦 ∈ { 0 }))) ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))))
431, 42syl5bb 286 . . 3 (𝑅 ∈ CRing → (({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ { 0 } → (𝑥 ∈ { 0 } ∨ 𝑦 ∈ { 0 }))) ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))))
4443pm5.32i 578 . 2 ((𝑅 ∈ CRing ∧ ({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ { 0 } → (𝑥 ∈ { 0 } ∨ 𝑦 ∈ { 0 })))) ↔ (𝑅 ∈ CRing ∧ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))))
45 eqid 2736 . . . 4 (.r𝑅) = (.r𝑅)
467, 45isprmidlc 31291 . . 3 (𝑅 ∈ CRing → ({ 0 } ∈ (PrmIdeal‘𝑅) ↔ ({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ { 0 } → (𝑥 ∈ { 0 } ∨ 𝑦 ∈ { 0 })))))
4746pm5.32i 578 . 2 ((𝑅 ∈ CRing ∧ { 0 } ∈ (PrmIdeal‘𝑅)) ↔ (𝑅 ∈ CRing ∧ ({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ { 0 } → (𝑥 ∈ { 0 } ∨ 𝑦 ∈ { 0 })))))
48 df-idom 20277 . . . 4 IDomn = (CRing ∩ Domn)
4948eleq2i 2822 . . 3 (𝑅 ∈ IDomn ↔ 𝑅 ∈ (CRing ∩ Domn))
50 elin 3869 . . 3 (𝑅 ∈ (CRing ∩ Domn) ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
517, 45, 8isdomn 20286 . . . 4 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
5251anbi2i 626 . . 3 ((𝑅 ∈ CRing ∧ 𝑅 ∈ Domn) ↔ (𝑅 ∈ CRing ∧ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))))
5349, 50, 523bitri 300 . 2 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))))
5444, 47, 533bitr4i 306 1 ((𝑅 ∈ CRing ∧ { 0 } ∈ (PrmIdeal‘𝑅)) ↔ 𝑅 ∈ IDomn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2112  wne 2932  wral 3051  Vcvv 3398  cin 3852  {csn 4527   class class class wbr 5039  cfv 6358  (class class class)co 7191  cr 10693  1c1 10695   < clt 10832  chash 13861  Basecbs 16666  .rcmulr 16750  0gc0g 16898  Ringcrg 19516  CRingccrg 19517  LIdealclidl 20161  NzRingcnzr 20249  Domncdomn 20272  IDomncidom 20273  PrmIdealcprmidl 31278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-oadd 8184  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-dju 9482  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-n0 12056  df-xnn0 12128  df-z 12142  df-uz 12404  df-fz 13061  df-hash 13862  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-sca 16765  df-vsca 16766  df-ip 16767  df-0g 16900  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-grp 18322  df-minusg 18323  df-sbg 18324  df-subg 18494  df-cmn 19126  df-mgp 19459  df-ur 19471  df-ring 19518  df-cring 19519  df-subrg 19752  df-lmod 19855  df-lss 19923  df-lsp 19963  df-sra 20163  df-rgmod 20164  df-lidl 20165  df-rsp 20166  df-nzr 20250  df-domn 20276  df-idom 20277  df-prmidl 31279
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator