Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmidl0 Structured version   Visualization version   GIF version

Theorem prmidl0 31612
Description: The zero ideal of a commutative ring 𝑅 is a prime ideal if and only if 𝑅 is an integral domain. (Contributed by Thierry Arnoux, 30-Jun-2024.)
Hypothesis
Ref Expression
prmidl0.1 0 = (0g𝑅)
Assertion
Ref Expression
prmidl0 ((𝑅 ∈ CRing ∧ { 0 } ∈ (PrmIdeal‘𝑅)) ↔ 𝑅 ∈ IDomn)

Proof of Theorem prmidl0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-3an 1088 . . . 4 (({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ { 0 } → (𝑥 ∈ { 0 } ∨ 𝑦 ∈ { 0 }))) ↔ (({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅)) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ { 0 } → (𝑥 ∈ { 0 } ∨ 𝑦 ∈ { 0 }))))
2 crngring 19783 . . . . . . . . . . . 12 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
32ad2antrr 723 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ { 0 } ∈ (LIdeal‘𝑅)) ∧ ¬ 𝑅 ∈ NzRing) → 𝑅 ∈ Ring)
4 0ringnnzr 20528 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 ↔ ¬ 𝑅 ∈ NzRing))
54biimpar 478 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ ¬ 𝑅 ∈ NzRing) → (♯‘(Base‘𝑅)) = 1)
63, 5sylancom 588 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ { 0 } ∈ (LIdeal‘𝑅)) ∧ ¬ 𝑅 ∈ NzRing) → (♯‘(Base‘𝑅)) = 1)
7 eqid 2738 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
8 prmidl0.1 . . . . . . . . . . . 12 0 = (0g𝑅)
97, 80ring 20529 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (♯‘(Base‘𝑅)) = 1) → (Base‘𝑅) = { 0 })
103, 6, 9syl2anc 584 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ { 0 } ∈ (LIdeal‘𝑅)) ∧ ¬ 𝑅 ∈ NzRing) → (Base‘𝑅) = { 0 })
1110eqcomd 2744 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ { 0 } ∈ (LIdeal‘𝑅)) ∧ ¬ 𝑅 ∈ NzRing) → { 0 } = (Base‘𝑅))
1211ex 413 . . . . . . . 8 ((𝑅 ∈ CRing ∧ { 0 } ∈ (LIdeal‘𝑅)) → (¬ 𝑅 ∈ NzRing → { 0 } = (Base‘𝑅)))
1312necon1ad 2960 . . . . . . 7 ((𝑅 ∈ CRing ∧ { 0 } ∈ (LIdeal‘𝑅)) → ({ 0 } ≠ (Base‘𝑅) → 𝑅 ∈ NzRing))
1413impr 455 . . . . . 6 ((𝑅 ∈ CRing ∧ ({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅))) → 𝑅 ∈ NzRing)
15 nzrring 20520 . . . . . . . . 9 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
16 eqid 2738 . . . . . . . . . 10 (LIdeal‘𝑅) = (LIdeal‘𝑅)
1716, 8lidl0 20478 . . . . . . . . 9 (𝑅 ∈ Ring → { 0 } ∈ (LIdeal‘𝑅))
1815, 17syl 17 . . . . . . . 8 (𝑅 ∈ NzRing → { 0 } ∈ (LIdeal‘𝑅))
198fvexi 6781 . . . . . . . . . . . . 13 0 ∈ V
20 hashsng 14072 . . . . . . . . . . . . 13 ( 0 ∈ V → (♯‘{ 0 }) = 1)
2119, 20ax-mp 5 . . . . . . . . . . . 12 (♯‘{ 0 }) = 1
22 1re 10963 . . . . . . . . . . . 12 1 ∈ ℝ
2321, 22eqeltri 2835 . . . . . . . . . . 11 (♯‘{ 0 }) ∈ ℝ
2423a1i 11 . . . . . . . . . 10 (𝑅 ∈ NzRing → (♯‘{ 0 }) ∈ ℝ)
257isnzr2hash 20523 . . . . . . . . . . . 12 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))))
2625simprbi 497 . . . . . . . . . . 11 (𝑅 ∈ NzRing → 1 < (♯‘(Base‘𝑅)))
2721, 26eqbrtrid 5109 . . . . . . . . . 10 (𝑅 ∈ NzRing → (♯‘{ 0 }) < (♯‘(Base‘𝑅)))
2824, 27ltned 11099 . . . . . . . . 9 (𝑅 ∈ NzRing → (♯‘{ 0 }) ≠ (♯‘(Base‘𝑅)))
29 fveq2 6767 . . . . . . . . . 10 ({ 0 } = (Base‘𝑅) → (♯‘{ 0 }) = (♯‘(Base‘𝑅)))
3029necon3i 2976 . . . . . . . . 9 ((♯‘{ 0 }) ≠ (♯‘(Base‘𝑅)) → { 0 } ≠ (Base‘𝑅))
3128, 30syl 17 . . . . . . . 8 (𝑅 ∈ NzRing → { 0 } ≠ (Base‘𝑅))
3218, 31jca 512 . . . . . . 7 (𝑅 ∈ NzRing → ({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅)))
3332adantl 482 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing) → ({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅)))
3414, 33impbida 798 . . . . 5 (𝑅 ∈ CRing → (({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅)) ↔ 𝑅 ∈ NzRing))
3519elsn2 4601 . . . . . . . 8 ((𝑥(.r𝑅)𝑦) ∈ { 0 } ↔ (𝑥(.r𝑅)𝑦) = 0 )
36 velsn 4578 . . . . . . . . 9 (𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
37 velsn 4578 . . . . . . . . 9 (𝑦 ∈ { 0 } ↔ 𝑦 = 0 )
3836, 37orbi12i 912 . . . . . . . 8 ((𝑥 ∈ { 0 } ∨ 𝑦 ∈ { 0 }) ↔ (𝑥 = 0𝑦 = 0 ))
3935, 38imbi12i 351 . . . . . . 7 (((𝑥(.r𝑅)𝑦) ∈ { 0 } → (𝑥 ∈ { 0 } ∨ 𝑦 ∈ { 0 })) ↔ ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))
40392ralbii 3092 . . . . . 6 (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ { 0 } → (𝑥 ∈ { 0 } ∨ 𝑦 ∈ { 0 })) ↔ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))
4140a1i 11 . . . . 5 (𝑅 ∈ CRing → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ { 0 } → (𝑥 ∈ { 0 } ∨ 𝑦 ∈ { 0 })) ↔ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
4234, 41anbi12d 631 . . . 4 (𝑅 ∈ CRing → ((({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅)) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ { 0 } → (𝑥 ∈ { 0 } ∨ 𝑦 ∈ { 0 }))) ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))))
431, 42syl5bb 283 . . 3 (𝑅 ∈ CRing → (({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ { 0 } → (𝑥 ∈ { 0 } ∨ 𝑦 ∈ { 0 }))) ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))))
4443pm5.32i 575 . 2 ((𝑅 ∈ CRing ∧ ({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ { 0 } → (𝑥 ∈ { 0 } ∨ 𝑦 ∈ { 0 })))) ↔ (𝑅 ∈ CRing ∧ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))))
45 eqid 2738 . . . 4 (.r𝑅) = (.r𝑅)
467, 45isprmidlc 31609 . . 3 (𝑅 ∈ CRing → ({ 0 } ∈ (PrmIdeal‘𝑅) ↔ ({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ { 0 } → (𝑥 ∈ { 0 } ∨ 𝑦 ∈ { 0 })))))
4746pm5.32i 575 . 2 ((𝑅 ∈ CRing ∧ { 0 } ∈ (PrmIdeal‘𝑅)) ↔ (𝑅 ∈ CRing ∧ ({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ { 0 } → (𝑥 ∈ { 0 } ∨ 𝑦 ∈ { 0 })))))
48 df-idom 20544 . . . 4 IDomn = (CRing ∩ Domn)
4948eleq2i 2830 . . 3 (𝑅 ∈ IDomn ↔ 𝑅 ∈ (CRing ∩ Domn))
50 elin 3903 . . 3 (𝑅 ∈ (CRing ∩ Domn) ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
517, 45, 8isdomn 20553 . . . 4 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
5251anbi2i 623 . . 3 ((𝑅 ∈ CRing ∧ 𝑅 ∈ Domn) ↔ (𝑅 ∈ CRing ∧ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))))
5349, 50, 523bitri 297 . 2 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))))
5444, 47, 533bitr4i 303 1 ((𝑅 ∈ CRing ∧ { 0 } ∈ (PrmIdeal‘𝑅)) ↔ 𝑅 ∈ IDomn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  Vcvv 3430  cin 3886  {csn 4562   class class class wbr 5074  cfv 6427  (class class class)co 7268  cr 10858  1c1 10860   < clt 10997  chash 14032  Basecbs 16900  .rcmulr 16951  0gc0g 17138  Ringcrg 19771  CRingccrg 19772  LIdealclidl 20420  NzRingcnzr 20516  Domncdomn 20539  IDomncidom 20540  PrmIdealcprmidl 31596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579  ax-cnex 10915  ax-resscn 10916  ax-1cn 10917  ax-icn 10918  ax-addcl 10919  ax-addrcl 10920  ax-mulcl 10921  ax-mulrcl 10922  ax-mulcom 10923  ax-addass 10924  ax-mulass 10925  ax-distr 10926  ax-i2m1 10927  ax-1ne0 10928  ax-1rid 10929  ax-rnegex 10930  ax-rrecex 10931  ax-cnre 10932  ax-pre-lttri 10933  ax-pre-lttrn 10934  ax-pre-ltadd 10935  ax-pre-mulgt0 10936
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6263  df-on 6264  df-lim 6265  df-suc 6266  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7704  df-1st 7821  df-2nd 7822  df-frecs 8085  df-wrecs 8116  df-recs 8190  df-rdg 8229  df-1o 8285  df-oadd 8289  df-er 8486  df-en 8722  df-dom 8723  df-sdom 8724  df-fin 8725  df-dju 9647  df-card 9685  df-pnf 10999  df-mnf 11000  df-xr 11001  df-ltxr 11002  df-le 11003  df-sub 11195  df-neg 11196  df-nn 11962  df-2 12024  df-3 12025  df-4 12026  df-5 12027  df-6 12028  df-7 12029  df-8 12030  df-n0 12222  df-xnn0 12294  df-z 12308  df-uz 12571  df-fz 13228  df-hash 14033  df-sets 16853  df-slot 16871  df-ndx 16883  df-base 16901  df-ress 16930  df-plusg 16963  df-mulr 16964  df-sca 16966  df-vsca 16967  df-ip 16968  df-0g 17140  df-mgm 18314  df-sgrp 18363  df-mnd 18374  df-grp 18568  df-minusg 18569  df-sbg 18570  df-subg 18740  df-cmn 19376  df-mgp 19709  df-ur 19726  df-ring 19773  df-cring 19774  df-subrg 20010  df-lmod 20113  df-lss 20182  df-lsp 20222  df-sra 20422  df-rgmod 20423  df-lidl 20424  df-rsp 20425  df-nzr 20517  df-domn 20543  df-idom 20544  df-prmidl 31597
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator