Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmidl0 Structured version   Visualization version   GIF version

Theorem prmidl0 33428
Description: The zero ideal of a commutative ring 𝑅 is a prime ideal if and only if 𝑅 is an integral domain. (Contributed by Thierry Arnoux, 30-Jun-2024.)
Hypothesis
Ref Expression
prmidl0.1 0 = (0g𝑅)
Assertion
Ref Expression
prmidl0 ((𝑅 ∈ CRing ∧ { 0 } ∈ (PrmIdeal‘𝑅)) ↔ 𝑅 ∈ IDomn)

Proof of Theorem prmidl0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-3an 1088 . . . 4 (({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ { 0 } → (𝑥 ∈ { 0 } ∨ 𝑦 ∈ { 0 }))) ↔ (({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅)) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ { 0 } → (𝑥 ∈ { 0 } ∨ 𝑦 ∈ { 0 }))))
2 crngring 20161 . . . . . . . . . . . 12 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
32ad2antrr 726 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ { 0 } ∈ (LIdeal‘𝑅)) ∧ ¬ 𝑅 ∈ NzRing) → 𝑅 ∈ Ring)
4 0ringnnzr 20441 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 ↔ ¬ 𝑅 ∈ NzRing))
54biimpar 477 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ ¬ 𝑅 ∈ NzRing) → (♯‘(Base‘𝑅)) = 1)
63, 5sylancom 588 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ { 0 } ∈ (LIdeal‘𝑅)) ∧ ¬ 𝑅 ∈ NzRing) → (♯‘(Base‘𝑅)) = 1)
7 eqid 2730 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
8 prmidl0.1 . . . . . . . . . . . 12 0 = (0g𝑅)
97, 80ring 20442 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (♯‘(Base‘𝑅)) = 1) → (Base‘𝑅) = { 0 })
103, 6, 9syl2anc 584 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ { 0 } ∈ (LIdeal‘𝑅)) ∧ ¬ 𝑅 ∈ NzRing) → (Base‘𝑅) = { 0 })
1110eqcomd 2736 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ { 0 } ∈ (LIdeal‘𝑅)) ∧ ¬ 𝑅 ∈ NzRing) → { 0 } = (Base‘𝑅))
1211ex 412 . . . . . . . 8 ((𝑅 ∈ CRing ∧ { 0 } ∈ (LIdeal‘𝑅)) → (¬ 𝑅 ∈ NzRing → { 0 } = (Base‘𝑅)))
1312necon1ad 2943 . . . . . . 7 ((𝑅 ∈ CRing ∧ { 0 } ∈ (LIdeal‘𝑅)) → ({ 0 } ≠ (Base‘𝑅) → 𝑅 ∈ NzRing))
1413impr 454 . . . . . 6 ((𝑅 ∈ CRing ∧ ({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅))) → 𝑅 ∈ NzRing)
15 nzrring 20432 . . . . . . . . 9 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
16 eqid 2730 . . . . . . . . . 10 (LIdeal‘𝑅) = (LIdeal‘𝑅)
1716, 8lidl0 21147 . . . . . . . . 9 (𝑅 ∈ Ring → { 0 } ∈ (LIdeal‘𝑅))
1815, 17syl 17 . . . . . . . 8 (𝑅 ∈ NzRing → { 0 } ∈ (LIdeal‘𝑅))
198fvexi 6875 . . . . . . . . . . . . 13 0 ∈ V
20 hashsng 14341 . . . . . . . . . . . . 13 ( 0 ∈ V → (♯‘{ 0 }) = 1)
2119, 20ax-mp 5 . . . . . . . . . . . 12 (♯‘{ 0 }) = 1
22 1re 11181 . . . . . . . . . . . 12 1 ∈ ℝ
2321, 22eqeltri 2825 . . . . . . . . . . 11 (♯‘{ 0 }) ∈ ℝ
2423a1i 11 . . . . . . . . . 10 (𝑅 ∈ NzRing → (♯‘{ 0 }) ∈ ℝ)
257isnzr2hash 20435 . . . . . . . . . . . 12 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))))
2625simprbi 496 . . . . . . . . . . 11 (𝑅 ∈ NzRing → 1 < (♯‘(Base‘𝑅)))
2721, 26eqbrtrid 5145 . . . . . . . . . 10 (𝑅 ∈ NzRing → (♯‘{ 0 }) < (♯‘(Base‘𝑅)))
2824, 27ltned 11317 . . . . . . . . 9 (𝑅 ∈ NzRing → (♯‘{ 0 }) ≠ (♯‘(Base‘𝑅)))
29 fveq2 6861 . . . . . . . . . 10 ({ 0 } = (Base‘𝑅) → (♯‘{ 0 }) = (♯‘(Base‘𝑅)))
3029necon3i 2958 . . . . . . . . 9 ((♯‘{ 0 }) ≠ (♯‘(Base‘𝑅)) → { 0 } ≠ (Base‘𝑅))
3128, 30syl 17 . . . . . . . 8 (𝑅 ∈ NzRing → { 0 } ≠ (Base‘𝑅))
3218, 31jca 511 . . . . . . 7 (𝑅 ∈ NzRing → ({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅)))
3332adantl 481 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing) → ({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅)))
3414, 33impbida 800 . . . . 5 (𝑅 ∈ CRing → (({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅)) ↔ 𝑅 ∈ NzRing))
3519elsn2 4632 . . . . . . . 8 ((𝑥(.r𝑅)𝑦) ∈ { 0 } ↔ (𝑥(.r𝑅)𝑦) = 0 )
36 velsn 4608 . . . . . . . . 9 (𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
37 velsn 4608 . . . . . . . . 9 (𝑦 ∈ { 0 } ↔ 𝑦 = 0 )
3836, 37orbi12i 914 . . . . . . . 8 ((𝑥 ∈ { 0 } ∨ 𝑦 ∈ { 0 }) ↔ (𝑥 = 0𝑦 = 0 ))
3935, 38imbi12i 350 . . . . . . 7 (((𝑥(.r𝑅)𝑦) ∈ { 0 } → (𝑥 ∈ { 0 } ∨ 𝑦 ∈ { 0 })) ↔ ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))
40392ralbii 3109 . . . . . 6 (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ { 0 } → (𝑥 ∈ { 0 } ∨ 𝑦 ∈ { 0 })) ↔ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))
4140a1i 11 . . . . 5 (𝑅 ∈ CRing → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ { 0 } → (𝑥 ∈ { 0 } ∨ 𝑦 ∈ { 0 })) ↔ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
4234, 41anbi12d 632 . . . 4 (𝑅 ∈ CRing → ((({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅)) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ { 0 } → (𝑥 ∈ { 0 } ∨ 𝑦 ∈ { 0 }))) ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))))
431, 42bitrid 283 . . 3 (𝑅 ∈ CRing → (({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ { 0 } → (𝑥 ∈ { 0 } ∨ 𝑦 ∈ { 0 }))) ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))))
4443pm5.32i 574 . 2 ((𝑅 ∈ CRing ∧ ({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ { 0 } → (𝑥 ∈ { 0 } ∨ 𝑦 ∈ { 0 })))) ↔ (𝑅 ∈ CRing ∧ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))))
45 eqid 2730 . . . 4 (.r𝑅) = (.r𝑅)
467, 45isprmidlc 33425 . . 3 (𝑅 ∈ CRing → ({ 0 } ∈ (PrmIdeal‘𝑅) ↔ ({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ { 0 } → (𝑥 ∈ { 0 } ∨ 𝑦 ∈ { 0 })))))
4746pm5.32i 574 . 2 ((𝑅 ∈ CRing ∧ { 0 } ∈ (PrmIdeal‘𝑅)) ↔ (𝑅 ∈ CRing ∧ ({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ { 0 } → (𝑥 ∈ { 0 } ∨ 𝑦 ∈ { 0 })))))
48 df-idom 20612 . . . 4 IDomn = (CRing ∩ Domn)
4948eleq2i 2821 . . 3 (𝑅 ∈ IDomn ↔ 𝑅 ∈ (CRing ∩ Domn))
50 elin 3933 . . 3 (𝑅 ∈ (CRing ∩ Domn) ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
517, 45, 8isdomn 20621 . . . 4 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
5251anbi2i 623 . . 3 ((𝑅 ∈ CRing ∧ 𝑅 ∈ Domn) ↔ (𝑅 ∈ CRing ∧ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))))
5349, 50, 523bitri 297 . 2 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))))
5444, 47, 533bitr4i 303 1 ((𝑅 ∈ CRing ∧ { 0 } ∈ (PrmIdeal‘𝑅)) ↔ 𝑅 ∈ IDomn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  Vcvv 3450  cin 3916  {csn 4592   class class class wbr 5110  cfv 6514  (class class class)co 7390  cr 11074  1c1 11076   < clt 11215  chash 14302  Basecbs 17186  .rcmulr 17228  0gc0g 17409  Ringcrg 20149  CRingccrg 20150  NzRingcnzr 20428  Domncdomn 20608  IDomncidom 20609  LIdealclidl 21123  PrmIdealcprmidl 33413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-hash 14303  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-nzr 20429  df-subrg 20486  df-domn 20611  df-idom 20612  df-lmod 20775  df-lss 20845  df-lsp 20885  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-rsp 21126  df-prmidl 33414
This theorem is referenced by:  ply1annprmidl  33704
  Copyright terms: Public domain W3C validator