Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mxidlirredi Structured version   Visualization version   GIF version

Theorem mxidlirredi 33486
Description: In an integral domain, the generator of a maximal ideal is irreducible. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypotheses
Ref Expression
mxidlirredi.b 𝐵 = (Base‘𝑅)
mxidlirredi.k 𝐾 = (RSpan‘𝑅)
mxidlirredi.0 0 = (0g𝑅)
mxidlirredi.m 𝑀 = (𝐾‘{𝑋})
mxidlirredi.r (𝜑𝑅 ∈ IDomn)
mxidlirredi.x (𝜑𝑋𝐵)
mxidlirredi.y (𝜑𝑋0 )
mxidlirredi.1 (𝜑𝑀 ∈ (MaxIdeal‘𝑅))
Assertion
Ref Expression
mxidlirredi (𝜑𝑋 ∈ (Irred‘𝑅))

Proof of Theorem mxidlirredi
Dummy variables 𝑓 𝑔 𝑞 𝑥 𝑦 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mxidlirredi.x . . 3 (𝜑𝑋𝐵)
2 mxidlirredi.r . . . . . 6 (𝜑𝑅 ∈ IDomn)
32idomringd 20688 . . . . 5 (𝜑𝑅 ∈ Ring)
4 mxidlirredi.1 . . . . 5 (𝜑𝑀 ∈ (MaxIdeal‘𝑅))
5 mxidlirredi.b . . . . . 6 𝐵 = (Base‘𝑅)
65mxidlnr 33479 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀𝐵)
73, 4, 6syl2anc 584 . . . 4 (𝜑𝑀𝐵)
8 eqid 2735 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
9 mxidlirredi.k . . . . . 6 𝐾 = (RSpan‘𝑅)
10 mxidlirredi.m . . . . . 6 𝑀 = (𝐾‘{𝑋})
118, 9, 10, 5, 1, 2unitpidl1 33439 . . . . 5 (𝜑 → (𝑀 = 𝐵𝑋 ∈ (Unit‘𝑅)))
1211necon3abid 2968 . . . 4 (𝜑 → (𝑀𝐵 ↔ ¬ 𝑋 ∈ (Unit‘𝑅)))
137, 12mpbid 232 . . 3 (𝜑 → ¬ 𝑋 ∈ (Unit‘𝑅))
141, 13eldifd 3937 . 2 (𝜑𝑋 ∈ (𝐵 ∖ (Unit‘𝑅)))
153ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → 𝑅 ∈ Ring)
164ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → 𝑀 ∈ (MaxIdeal‘𝑅))
17 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅)))
1817eldifad 3938 . . . . . . . . . 10 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → 𝑔𝐵)
1918snssd 4785 . . . . . . . . 9 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → {𝑔} ⊆ 𝐵)
20 eqid 2735 . . . . . . . . . 10 (LIdeal‘𝑅) = (LIdeal‘𝑅)
219, 5, 20rspcl 21196 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ {𝑔} ⊆ 𝐵) → (𝐾‘{𝑔}) ∈ (LIdeal‘𝑅))
2215, 19, 21syl2anc 584 . . . . . . . 8 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → (𝐾‘{𝑔}) ∈ (LIdeal‘𝑅))
233ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) → 𝑅 ∈ Ring)
2423ad2antrr 726 . . . . . . . . . . . 12 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → 𝑅 ∈ Ring)
25 simp-5r 785 . . . . . . . . . . . . 13 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅)))
2625eldifad 3938 . . . . . . . . . . . 12 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → 𝑔𝐵)
27 eqid 2735 . . . . . . . . . . . . . 14 (.r𝑅) = (.r𝑅)
28 simplr 768 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → 𝑞𝐵)
29 simp-6r 787 . . . . . . . . . . . . . . 15 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → 𝑓 ∈ (𝐵 ∖ (Unit‘𝑅)))
3029eldifad 3938 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → 𝑓𝐵)
315, 27, 24, 28, 30ringcld 20220 . . . . . . . . . . . . 13 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → (𝑞(.r𝑅)𝑓) ∈ 𝐵)
32 oveq1 7412 . . . . . . . . . . . . . . 15 (𝑦 = (𝑞(.r𝑅)𝑓) → (𝑦(.r𝑅)𝑔) = ((𝑞(.r𝑅)𝑓)(.r𝑅)𝑔))
3332eqeq2d 2746 . . . . . . . . . . . . . 14 (𝑦 = (𝑞(.r𝑅)𝑓) → (𝑥 = (𝑦(.r𝑅)𝑔) ↔ 𝑥 = ((𝑞(.r𝑅)𝑓)(.r𝑅)𝑔)))
3433adantl 481 . . . . . . . . . . . . 13 ((((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) ∧ 𝑦 = (𝑞(.r𝑅)𝑓)) → (𝑥 = (𝑦(.r𝑅)𝑔) ↔ 𝑥 = ((𝑞(.r𝑅)𝑓)(.r𝑅)𝑔)))
35 simp-4r 783 . . . . . . . . . . . . . . 15 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → (𝑓(.r𝑅)𝑔) = 𝑋)
3635oveq2d 7421 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → (𝑞(.r𝑅)(𝑓(.r𝑅)𝑔)) = (𝑞(.r𝑅)𝑋))
375, 27, 24, 28, 30, 26ringassd 20217 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → ((𝑞(.r𝑅)𝑓)(.r𝑅)𝑔) = (𝑞(.r𝑅)(𝑓(.r𝑅)𝑔)))
38 simpr 484 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → 𝑥 = (𝑞(.r𝑅)𝑋))
3936, 37, 383eqtr4rd 2781 . . . . . . . . . . . . 13 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → 𝑥 = ((𝑞(.r𝑅)𝑓)(.r𝑅)𝑔))
4031, 34, 39rspcedvd 3603 . . . . . . . . . . . 12 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → ∃𝑦𝐵 𝑥 = (𝑦(.r𝑅)𝑔))
415, 27, 9elrspsn 21201 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑔𝐵) → (𝑥 ∈ (𝐾‘{𝑔}) ↔ ∃𝑦𝐵 𝑥 = (𝑦(.r𝑅)𝑔)))
4241biimpar 477 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑔𝐵) ∧ ∃𝑦𝐵 𝑥 = (𝑦(.r𝑅)𝑔)) → 𝑥 ∈ (𝐾‘{𝑔}))
4324, 26, 40, 42syl21anc 837 . . . . . . . . . . 11 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → 𝑥 ∈ (𝐾‘{𝑔}))
441ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) → 𝑋𝐵)
45 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) → 𝑥𝑀)
4645, 10eleqtrdi 2844 . . . . . . . . . . . 12 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) → 𝑥 ∈ (𝐾‘{𝑋}))
475, 27, 9elrspsn 21201 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥 ∈ (𝐾‘{𝑋}) ↔ ∃𝑞𝐵 𝑥 = (𝑞(.r𝑅)𝑋)))
4847biimpa 476 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑥 ∈ (𝐾‘{𝑋})) → ∃𝑞𝐵 𝑥 = (𝑞(.r𝑅)𝑋))
4923, 44, 46, 48syl21anc 837 . . . . . . . . . . 11 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) → ∃𝑞𝐵 𝑥 = (𝑞(.r𝑅)𝑋))
5043, 49r19.29a 3148 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) → 𝑥 ∈ (𝐾‘{𝑔}))
5150ex 412 . . . . . . . . 9 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → (𝑥𝑀𝑥 ∈ (𝐾‘{𝑔})))
5251ssrdv 3964 . . . . . . . 8 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → 𝑀 ⊆ (𝐾‘{𝑔}))
539, 5rspssid 21197 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ {𝑔} ⊆ 𝐵) → {𝑔} ⊆ (𝐾‘{𝑔}))
54 vex 3463 . . . . . . . . . . . 12 𝑔 ∈ V
5554snss 4761 . . . . . . . . . . 11 (𝑔 ∈ (𝐾‘{𝑔}) ↔ {𝑔} ⊆ (𝐾‘{𝑔}))
5653, 55sylibr 234 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ {𝑔} ⊆ 𝐵) → 𝑔 ∈ (𝐾‘{𝑔}))
5715, 19, 56syl2anc 584 . . . . . . . . 9 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → 𝑔 ∈ (𝐾‘{𝑔}))
58 df-idom 20656 . . . . . . . . . . . . . . 15 IDomn = (CRing ∩ Domn)
592, 58eleqtrdi 2844 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ (CRing ∩ Domn))
6059elin1d 4179 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ CRing)
6160ad6antr 736 . . . . . . . . . . . 12 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑅 ∈ CRing)
62 simplr 768 . . . . . . . . . . . 12 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑟𝐵)
63 simp-6r 787 . . . . . . . . . . . . 13 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑓 ∈ (𝐵 ∖ (Unit‘𝑅)))
6463eldifad 3938 . . . . . . . . . . . 12 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑓𝐵)
65 mxidlirredi.0 . . . . . . . . . . . . . 14 0 = (0g𝑅)
6615adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) → 𝑅 ∈ Ring)
6766ad2antrr 726 . . . . . . . . . . . . . . 15 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑅 ∈ Ring)
685, 27, 67, 62, 64ringcld 20220 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → (𝑟(.r𝑅)𝑓) ∈ 𝐵)
69 eqid 2735 . . . . . . . . . . . . . . . . 17 (1r𝑅) = (1r𝑅)
705, 69ringidcl 20225 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
713, 70syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (1r𝑅) ∈ 𝐵)
7271ad6antr 736 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → (1r𝑅) ∈ 𝐵)
7318ad3antrrr 730 . . . . . . . . . . . . . . 15 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑔𝐵)
74 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) ∧ 𝑔 = 0 ) → 𝑔 = 0 )
7574oveq2d 7421 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) ∧ 𝑔 = 0 ) → (𝑓(.r𝑅)𝑔) = (𝑓(.r𝑅) 0 ))
76 simp-5r 785 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) ∧ 𝑔 = 0 ) → (𝑓(.r𝑅)𝑔) = 𝑋)
7766ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) ∧ 𝑔 = 0 ) → 𝑅 ∈ Ring)
7864adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) ∧ 𝑔 = 0 ) → 𝑓𝐵)
795, 27, 65ringrz 20254 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Ring ∧ 𝑓𝐵) → (𝑓(.r𝑅) 0 ) = 0 )
8077, 78, 79syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) ∧ 𝑔 = 0 ) → (𝑓(.r𝑅) 0 ) = 0 )
8175, 76, 803eqtr3d 2778 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) ∧ 𝑔 = 0 ) → 𝑋 = 0 )
82 mxidlirredi.y . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋0 )
8382neneqd 2937 . . . . . . . . . . . . . . . . . 18 (𝜑 → ¬ 𝑋 = 0 )
8483ad7antr 738 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) ∧ 𝑔 = 0 ) → ¬ 𝑋 = 0 )
8581, 84pm2.65da 816 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → ¬ 𝑔 = 0 )
8685neqned 2939 . . . . . . . . . . . . . . 15 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑔0 )
87 eldifsn 4762 . . . . . . . . . . . . . . 15 (𝑔 ∈ (𝐵 ∖ { 0 }) ↔ (𝑔𝐵𝑔0 ))
8873, 86, 87sylanbrc 583 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑔 ∈ (𝐵 ∖ { 0 }))
892ad6antr 736 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑅 ∈ IDomn)
905, 27, 69, 67, 73ringlidmd 20232 . . . . . . . . . . . . . . 15 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → ((1r𝑅)(.r𝑅)𝑔) = 𝑔)
91 simpr 484 . . . . . . . . . . . . . . 15 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑔 = (𝑟(.r𝑅)𝑋))
925, 27, 67, 62, 64, 73ringassd 20217 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → ((𝑟(.r𝑅)𝑓)(.r𝑅)𝑔) = (𝑟(.r𝑅)(𝑓(.r𝑅)𝑔)))
93 simp-4r 783 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → (𝑓(.r𝑅)𝑔) = 𝑋)
9493oveq2d 7421 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → (𝑟(.r𝑅)(𝑓(.r𝑅)𝑔)) = (𝑟(.r𝑅)𝑋))
9592, 94eqtr2d 2771 . . . . . . . . . . . . . . 15 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → (𝑟(.r𝑅)𝑋) = ((𝑟(.r𝑅)𝑓)(.r𝑅)𝑔))
9690, 91, 953eqtrrd 2775 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → ((𝑟(.r𝑅)𝑓)(.r𝑅)𝑔) = ((1r𝑅)(.r𝑅)𝑔))
975, 65, 27, 68, 72, 88, 89, 96idomrcan 33273 . . . . . . . . . . . . 13 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → (𝑟(.r𝑅)𝑓) = (1r𝑅))
988, 691unit 20334 . . . . . . . . . . . . . . 15 (𝑅 ∈ Ring → (1r𝑅) ∈ (Unit‘𝑅))
993, 98syl 17 . . . . . . . . . . . . . 14 (𝜑 → (1r𝑅) ∈ (Unit‘𝑅))
10099ad6antr 736 . . . . . . . . . . . . 13 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → (1r𝑅) ∈ (Unit‘𝑅))
10197, 100eqeltrd 2834 . . . . . . . . . . . 12 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → (𝑟(.r𝑅)𝑓) ∈ (Unit‘𝑅))
1028, 27, 5unitmulclb 20341 . . . . . . . . . . . . 13 ((𝑅 ∈ CRing ∧ 𝑟𝐵𝑓𝐵) → ((𝑟(.r𝑅)𝑓) ∈ (Unit‘𝑅) ↔ (𝑟 ∈ (Unit‘𝑅) ∧ 𝑓 ∈ (Unit‘𝑅))))
103102simplbda 499 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ 𝑟𝐵𝑓𝐵) ∧ (𝑟(.r𝑅)𝑓) ∈ (Unit‘𝑅)) → 𝑓 ∈ (Unit‘𝑅))
10461, 62, 64, 101, 103syl31anc 1375 . . . . . . . . . . 11 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑓 ∈ (Unit‘𝑅))
1051ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) → 𝑋𝐵)
106 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) → 𝑔𝑀)
107106, 10eleqtrdi 2844 . . . . . . . . . . . 12 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) → 𝑔 ∈ (𝐾‘{𝑋}))
1085, 27, 9elrspsn 21201 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑔 ∈ (𝐾‘{𝑋}) ↔ ∃𝑟𝐵 𝑔 = (𝑟(.r𝑅)𝑋)))
109108biimpa 476 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑔 ∈ (𝐾‘{𝑋})) → ∃𝑟𝐵 𝑔 = (𝑟(.r𝑅)𝑋))
11066, 105, 107, 109syl21anc 837 . . . . . . . . . . 11 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) → ∃𝑟𝐵 𝑔 = (𝑟(.r𝑅)𝑋))
111104, 110r19.29a 3148 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) → 𝑓 ∈ (Unit‘𝑅))
112 simp-4r 783 . . . . . . . . . . 11 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) → 𝑓 ∈ (𝐵 ∖ (Unit‘𝑅)))
113112eldifbd 3939 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) → ¬ 𝑓 ∈ (Unit‘𝑅))
114111, 113pm2.65da 816 . . . . . . . . 9 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → ¬ 𝑔𝑀)
11557, 114eldifd 3937 . . . . . . . 8 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → 𝑔 ∈ ((𝐾‘{𝑔}) ∖ 𝑀))
1165, 15, 16, 22, 52, 115mxidlmaxv 33483 . . . . . . 7 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → (𝐾‘{𝑔}) = 𝐵)
117 eqid 2735 . . . . . . . 8 (𝐾‘{𝑔}) = (𝐾‘{𝑔})
1182ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → 𝑅 ∈ IDomn)
1198, 9, 117, 5, 18, 118unitpidl1 33439 . . . . . . 7 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → ((𝐾‘{𝑔}) = 𝐵𝑔 ∈ (Unit‘𝑅)))
120116, 119mpbid 232 . . . . . 6 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → 𝑔 ∈ (Unit‘𝑅))
12117eldifbd 3939 . . . . . 6 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → ¬ 𝑔 ∈ (Unit‘𝑅))
122120, 121pm2.65da 816 . . . . 5 (((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) → ¬ (𝑓(.r𝑅)𝑔) = 𝑋)
123122anasss 466 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐵 ∖ (Unit‘𝑅)) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅)))) → ¬ (𝑓(.r𝑅)𝑔) = 𝑋)
124123neqned 2939 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝐵 ∖ (Unit‘𝑅)) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅)))) → (𝑓(.r𝑅)𝑔) ≠ 𝑋)
125124ralrimivva 3187 . 2 (𝜑 → ∀𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))∀𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))(𝑓(.r𝑅)𝑔) ≠ 𝑋)
126 eqid 2735 . . 3 (Irred‘𝑅) = (Irred‘𝑅)
127 eqid 2735 . . 3 (𝐵 ∖ (Unit‘𝑅)) = (𝐵 ∖ (Unit‘𝑅))
1285, 8, 126, 127, 27isirred 20379 . 2 (𝑋 ∈ (Irred‘𝑅) ↔ (𝑋 ∈ (𝐵 ∖ (Unit‘𝑅)) ∧ ∀𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))∀𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))(𝑓(.r𝑅)𝑔) ≠ 𝑋))
12914, 125, 128sylanbrc 583 1 (𝜑𝑋 ∈ (Irred‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  cdif 3923  cin 3925  wss 3926  {csn 4601  cfv 6531  (class class class)co 7405  Basecbs 17228  .rcmulr 17272  0gc0g 17453  1rcur 20141  Ringcrg 20193  CRingccrg 20194  Unitcui 20315  Irredcir 20316  Domncdomn 20652  IDomncidom 20653  LIdealclidl 21167  RSpancrsp 21168  MaxIdealcmxidl 33474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-sbg 18921  df-subg 19106  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-irred 20319  df-invr 20348  df-nzr 20473  df-subrg 20530  df-domn 20655  df-idom 20656  df-lmod 20819  df-lss 20889  df-lsp 20929  df-sra 21131  df-rgmod 21132  df-lidl 21169  df-rsp 21170  df-mxidl 33475
This theorem is referenced by:  mxidlirred  33487
  Copyright terms: Public domain W3C validator