Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mxidlirredi Structured version   Visualization version   GIF version

Theorem mxidlirredi 33409
Description: In an integral domain, the generator of a maximal ideal is irreducible. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypotheses
Ref Expression
mxidlirredi.b 𝐵 = (Base‘𝑅)
mxidlirredi.k 𝐾 = (RSpan‘𝑅)
mxidlirredi.0 0 = (0g𝑅)
mxidlirredi.m 𝑀 = (𝐾‘{𝑋})
mxidlirredi.r (𝜑𝑅 ∈ IDomn)
mxidlirredi.x (𝜑𝑋𝐵)
mxidlirredi.y (𝜑𝑋0 )
mxidlirredi.1 (𝜑𝑀 ∈ (MaxIdeal‘𝑅))
Assertion
Ref Expression
mxidlirredi (𝜑𝑋 ∈ (Irred‘𝑅))

Proof of Theorem mxidlirredi
Dummy variables 𝑓 𝑔 𝑞 𝑥 𝑦 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mxidlirredi.x . . 3 (𝜑𝑋𝐵)
2 mxidlirredi.r . . . . . 6 (𝜑𝑅 ∈ IDomn)
32idomringd 20613 . . . . 5 (𝜑𝑅 ∈ Ring)
4 mxidlirredi.1 . . . . 5 (𝜑𝑀 ∈ (MaxIdeal‘𝑅))
5 mxidlirredi.b . . . . . 6 𝐵 = (Base‘𝑅)
65mxidlnr 33402 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀𝐵)
73, 4, 6syl2anc 584 . . . 4 (𝜑𝑀𝐵)
8 eqid 2729 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
9 mxidlirredi.k . . . . . 6 𝐾 = (RSpan‘𝑅)
10 mxidlirredi.m . . . . . 6 𝑀 = (𝐾‘{𝑋})
118, 9, 10, 5, 1, 2unitpidl1 33362 . . . . 5 (𝜑 → (𝑀 = 𝐵𝑋 ∈ (Unit‘𝑅)))
1211necon3abid 2961 . . . 4 (𝜑 → (𝑀𝐵 ↔ ¬ 𝑋 ∈ (Unit‘𝑅)))
137, 12mpbid 232 . . 3 (𝜑 → ¬ 𝑋 ∈ (Unit‘𝑅))
141, 13eldifd 3914 . 2 (𝜑𝑋 ∈ (𝐵 ∖ (Unit‘𝑅)))
153ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → 𝑅 ∈ Ring)
164ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → 𝑀 ∈ (MaxIdeal‘𝑅))
17 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅)))
1817eldifad 3915 . . . . . . . . . 10 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → 𝑔𝐵)
1918snssd 4760 . . . . . . . . 9 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → {𝑔} ⊆ 𝐵)
20 eqid 2729 . . . . . . . . . 10 (LIdeal‘𝑅) = (LIdeal‘𝑅)
219, 5, 20rspcl 21142 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ {𝑔} ⊆ 𝐵) → (𝐾‘{𝑔}) ∈ (LIdeal‘𝑅))
2215, 19, 21syl2anc 584 . . . . . . . 8 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → (𝐾‘{𝑔}) ∈ (LIdeal‘𝑅))
233ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) → 𝑅 ∈ Ring)
2423ad2antrr 726 . . . . . . . . . . . 12 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → 𝑅 ∈ Ring)
25 simp-5r 785 . . . . . . . . . . . . 13 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅)))
2625eldifad 3915 . . . . . . . . . . . 12 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → 𝑔𝐵)
27 eqid 2729 . . . . . . . . . . . . . 14 (.r𝑅) = (.r𝑅)
28 simplr 768 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → 𝑞𝐵)
29 simp-6r 787 . . . . . . . . . . . . . . 15 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → 𝑓 ∈ (𝐵 ∖ (Unit‘𝑅)))
3029eldifad 3915 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → 𝑓𝐵)
315, 27, 24, 28, 30ringcld 20145 . . . . . . . . . . . . 13 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → (𝑞(.r𝑅)𝑓) ∈ 𝐵)
32 oveq1 7356 . . . . . . . . . . . . . . 15 (𝑦 = (𝑞(.r𝑅)𝑓) → (𝑦(.r𝑅)𝑔) = ((𝑞(.r𝑅)𝑓)(.r𝑅)𝑔))
3332eqeq2d 2740 . . . . . . . . . . . . . 14 (𝑦 = (𝑞(.r𝑅)𝑓) → (𝑥 = (𝑦(.r𝑅)𝑔) ↔ 𝑥 = ((𝑞(.r𝑅)𝑓)(.r𝑅)𝑔)))
3433adantl 481 . . . . . . . . . . . . 13 ((((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) ∧ 𝑦 = (𝑞(.r𝑅)𝑓)) → (𝑥 = (𝑦(.r𝑅)𝑔) ↔ 𝑥 = ((𝑞(.r𝑅)𝑓)(.r𝑅)𝑔)))
35 simp-4r 783 . . . . . . . . . . . . . . 15 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → (𝑓(.r𝑅)𝑔) = 𝑋)
3635oveq2d 7365 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → (𝑞(.r𝑅)(𝑓(.r𝑅)𝑔)) = (𝑞(.r𝑅)𝑋))
375, 27, 24, 28, 30, 26ringassd 20142 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → ((𝑞(.r𝑅)𝑓)(.r𝑅)𝑔) = (𝑞(.r𝑅)(𝑓(.r𝑅)𝑔)))
38 simpr 484 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → 𝑥 = (𝑞(.r𝑅)𝑋))
3936, 37, 383eqtr4rd 2775 . . . . . . . . . . . . 13 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → 𝑥 = ((𝑞(.r𝑅)𝑓)(.r𝑅)𝑔))
4031, 34, 39rspcedvd 3579 . . . . . . . . . . . 12 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → ∃𝑦𝐵 𝑥 = (𝑦(.r𝑅)𝑔))
415, 27, 9elrspsn 21147 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑔𝐵) → (𝑥 ∈ (𝐾‘{𝑔}) ↔ ∃𝑦𝐵 𝑥 = (𝑦(.r𝑅)𝑔)))
4241biimpar 477 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑔𝐵) ∧ ∃𝑦𝐵 𝑥 = (𝑦(.r𝑅)𝑔)) → 𝑥 ∈ (𝐾‘{𝑔}))
4324, 26, 40, 42syl21anc 837 . . . . . . . . . . 11 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → 𝑥 ∈ (𝐾‘{𝑔}))
441ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) → 𝑋𝐵)
45 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) → 𝑥𝑀)
4645, 10eleqtrdi 2838 . . . . . . . . . . . 12 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) → 𝑥 ∈ (𝐾‘{𝑋}))
475, 27, 9elrspsn 21147 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥 ∈ (𝐾‘{𝑋}) ↔ ∃𝑞𝐵 𝑥 = (𝑞(.r𝑅)𝑋)))
4847biimpa 476 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑥 ∈ (𝐾‘{𝑋})) → ∃𝑞𝐵 𝑥 = (𝑞(.r𝑅)𝑋))
4923, 44, 46, 48syl21anc 837 . . . . . . . . . . 11 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) → ∃𝑞𝐵 𝑥 = (𝑞(.r𝑅)𝑋))
5043, 49r19.29a 3137 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) → 𝑥 ∈ (𝐾‘{𝑔}))
5150ex 412 . . . . . . . . 9 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → (𝑥𝑀𝑥 ∈ (𝐾‘{𝑔})))
5251ssrdv 3941 . . . . . . . 8 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → 𝑀 ⊆ (𝐾‘{𝑔}))
539, 5rspssid 21143 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ {𝑔} ⊆ 𝐵) → {𝑔} ⊆ (𝐾‘{𝑔}))
54 vex 3440 . . . . . . . . . . . 12 𝑔 ∈ V
5554snss 4736 . . . . . . . . . . 11 (𝑔 ∈ (𝐾‘{𝑔}) ↔ {𝑔} ⊆ (𝐾‘{𝑔}))
5653, 55sylibr 234 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ {𝑔} ⊆ 𝐵) → 𝑔 ∈ (𝐾‘{𝑔}))
5715, 19, 56syl2anc 584 . . . . . . . . 9 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → 𝑔 ∈ (𝐾‘{𝑔}))
58 df-idom 20581 . . . . . . . . . . . . . . 15 IDomn = (CRing ∩ Domn)
592, 58eleqtrdi 2838 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ (CRing ∩ Domn))
6059elin1d 4155 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ CRing)
6160ad6antr 736 . . . . . . . . . . . 12 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑅 ∈ CRing)
62 simplr 768 . . . . . . . . . . . 12 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑟𝐵)
63 simp-6r 787 . . . . . . . . . . . . 13 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑓 ∈ (𝐵 ∖ (Unit‘𝑅)))
6463eldifad 3915 . . . . . . . . . . . 12 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑓𝐵)
65 mxidlirredi.0 . . . . . . . . . . . . . 14 0 = (0g𝑅)
6615adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) → 𝑅 ∈ Ring)
6766ad2antrr 726 . . . . . . . . . . . . . . 15 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑅 ∈ Ring)
685, 27, 67, 62, 64ringcld 20145 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → (𝑟(.r𝑅)𝑓) ∈ 𝐵)
69 eqid 2729 . . . . . . . . . . . . . . . . 17 (1r𝑅) = (1r𝑅)
705, 69ringidcl 20150 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
713, 70syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (1r𝑅) ∈ 𝐵)
7271ad6antr 736 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → (1r𝑅) ∈ 𝐵)
7318ad3antrrr 730 . . . . . . . . . . . . . . 15 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑔𝐵)
74 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) ∧ 𝑔 = 0 ) → 𝑔 = 0 )
7574oveq2d 7365 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) ∧ 𝑔 = 0 ) → (𝑓(.r𝑅)𝑔) = (𝑓(.r𝑅) 0 ))
76 simp-5r 785 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) ∧ 𝑔 = 0 ) → (𝑓(.r𝑅)𝑔) = 𝑋)
7766ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) ∧ 𝑔 = 0 ) → 𝑅 ∈ Ring)
7864adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) ∧ 𝑔 = 0 ) → 𝑓𝐵)
795, 27, 65ringrz 20179 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Ring ∧ 𝑓𝐵) → (𝑓(.r𝑅) 0 ) = 0 )
8077, 78, 79syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) ∧ 𝑔 = 0 ) → (𝑓(.r𝑅) 0 ) = 0 )
8175, 76, 803eqtr3d 2772 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) ∧ 𝑔 = 0 ) → 𝑋 = 0 )
82 mxidlirredi.y . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋0 )
8382neneqd 2930 . . . . . . . . . . . . . . . . . 18 (𝜑 → ¬ 𝑋 = 0 )
8483ad7antr 738 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) ∧ 𝑔 = 0 ) → ¬ 𝑋 = 0 )
8581, 84pm2.65da 816 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → ¬ 𝑔 = 0 )
8685neqned 2932 . . . . . . . . . . . . . . 15 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑔0 )
87 eldifsn 4737 . . . . . . . . . . . . . . 15 (𝑔 ∈ (𝐵 ∖ { 0 }) ↔ (𝑔𝐵𝑔0 ))
8873, 86, 87sylanbrc 583 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑔 ∈ (𝐵 ∖ { 0 }))
892ad6antr 736 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑅 ∈ IDomn)
905, 27, 69, 67, 73ringlidmd 20157 . . . . . . . . . . . . . . 15 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → ((1r𝑅)(.r𝑅)𝑔) = 𝑔)
91 simpr 484 . . . . . . . . . . . . . . 15 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑔 = (𝑟(.r𝑅)𝑋))
925, 27, 67, 62, 64, 73ringassd 20142 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → ((𝑟(.r𝑅)𝑓)(.r𝑅)𝑔) = (𝑟(.r𝑅)(𝑓(.r𝑅)𝑔)))
93 simp-4r 783 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → (𝑓(.r𝑅)𝑔) = 𝑋)
9493oveq2d 7365 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → (𝑟(.r𝑅)(𝑓(.r𝑅)𝑔)) = (𝑟(.r𝑅)𝑋))
9592, 94eqtr2d 2765 . . . . . . . . . . . . . . 15 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → (𝑟(.r𝑅)𝑋) = ((𝑟(.r𝑅)𝑓)(.r𝑅)𝑔))
9690, 91, 953eqtrrd 2769 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → ((𝑟(.r𝑅)𝑓)(.r𝑅)𝑔) = ((1r𝑅)(.r𝑅)𝑔))
975, 65, 27, 68, 72, 88, 89, 96idomrcan 33219 . . . . . . . . . . . . 13 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → (𝑟(.r𝑅)𝑓) = (1r𝑅))
988, 691unit 20259 . . . . . . . . . . . . . . 15 (𝑅 ∈ Ring → (1r𝑅) ∈ (Unit‘𝑅))
993, 98syl 17 . . . . . . . . . . . . . 14 (𝜑 → (1r𝑅) ∈ (Unit‘𝑅))
10099ad6antr 736 . . . . . . . . . . . . 13 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → (1r𝑅) ∈ (Unit‘𝑅))
10197, 100eqeltrd 2828 . . . . . . . . . . . 12 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → (𝑟(.r𝑅)𝑓) ∈ (Unit‘𝑅))
1028, 27, 5unitmulclb 20266 . . . . . . . . . . . . 13 ((𝑅 ∈ CRing ∧ 𝑟𝐵𝑓𝐵) → ((𝑟(.r𝑅)𝑓) ∈ (Unit‘𝑅) ↔ (𝑟 ∈ (Unit‘𝑅) ∧ 𝑓 ∈ (Unit‘𝑅))))
103102simplbda 499 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ 𝑟𝐵𝑓𝐵) ∧ (𝑟(.r𝑅)𝑓) ∈ (Unit‘𝑅)) → 𝑓 ∈ (Unit‘𝑅))
10461, 62, 64, 101, 103syl31anc 1375 . . . . . . . . . . 11 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑓 ∈ (Unit‘𝑅))
1051ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) → 𝑋𝐵)
106 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) → 𝑔𝑀)
107106, 10eleqtrdi 2838 . . . . . . . . . . . 12 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) → 𝑔 ∈ (𝐾‘{𝑋}))
1085, 27, 9elrspsn 21147 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑔 ∈ (𝐾‘{𝑋}) ↔ ∃𝑟𝐵 𝑔 = (𝑟(.r𝑅)𝑋)))
109108biimpa 476 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑔 ∈ (𝐾‘{𝑋})) → ∃𝑟𝐵 𝑔 = (𝑟(.r𝑅)𝑋))
11066, 105, 107, 109syl21anc 837 . . . . . . . . . . 11 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) → ∃𝑟𝐵 𝑔 = (𝑟(.r𝑅)𝑋))
111104, 110r19.29a 3137 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) → 𝑓 ∈ (Unit‘𝑅))
112 simp-4r 783 . . . . . . . . . . 11 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) → 𝑓 ∈ (𝐵 ∖ (Unit‘𝑅)))
113112eldifbd 3916 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) → ¬ 𝑓 ∈ (Unit‘𝑅))
114111, 113pm2.65da 816 . . . . . . . . 9 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → ¬ 𝑔𝑀)
11557, 114eldifd 3914 . . . . . . . 8 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → 𝑔 ∈ ((𝐾‘{𝑔}) ∖ 𝑀))
1165, 15, 16, 22, 52, 115mxidlmaxv 33406 . . . . . . 7 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → (𝐾‘{𝑔}) = 𝐵)
117 eqid 2729 . . . . . . . 8 (𝐾‘{𝑔}) = (𝐾‘{𝑔})
1182ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → 𝑅 ∈ IDomn)
1198, 9, 117, 5, 18, 118unitpidl1 33362 . . . . . . 7 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → ((𝐾‘{𝑔}) = 𝐵𝑔 ∈ (Unit‘𝑅)))
120116, 119mpbid 232 . . . . . 6 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → 𝑔 ∈ (Unit‘𝑅))
12117eldifbd 3916 . . . . . 6 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → ¬ 𝑔 ∈ (Unit‘𝑅))
122120, 121pm2.65da 816 . . . . 5 (((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) → ¬ (𝑓(.r𝑅)𝑔) = 𝑋)
123122anasss 466 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐵 ∖ (Unit‘𝑅)) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅)))) → ¬ (𝑓(.r𝑅)𝑔) = 𝑋)
124123neqned 2932 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝐵 ∖ (Unit‘𝑅)) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅)))) → (𝑓(.r𝑅)𝑔) ≠ 𝑋)
125124ralrimivva 3172 . 2 (𝜑 → ∀𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))∀𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))(𝑓(.r𝑅)𝑔) ≠ 𝑋)
126 eqid 2729 . . 3 (Irred‘𝑅) = (Irred‘𝑅)
127 eqid 2729 . . 3 (𝐵 ∖ (Unit‘𝑅)) = (𝐵 ∖ (Unit‘𝑅))
1285, 8, 126, 127, 27isirred 20304 . 2 (𝑋 ∈ (Irred‘𝑅) ↔ (𝑋 ∈ (𝐵 ∖ (Unit‘𝑅)) ∧ ∀𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))∀𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))(𝑓(.r𝑅)𝑔) ≠ 𝑋))
12914, 125, 128sylanbrc 583 1 (𝜑𝑋 ∈ (Irred‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3900  cin 3902  wss 3903  {csn 4577  cfv 6482  (class class class)co 7349  Basecbs 17120  .rcmulr 17162  0gc0g 17343  1rcur 20066  Ringcrg 20118  CRingccrg 20119  Unitcui 20240  Irredcir 20241  Domncdomn 20577  IDomncidom 20578  LIdealclidl 21113  RSpancrsp 21114  MaxIdealcmxidl 33397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-irred 20244  df-invr 20273  df-nzr 20398  df-subrg 20455  df-domn 20580  df-idom 20581  df-lmod 20765  df-lss 20835  df-lsp 20875  df-sra 21077  df-rgmod 21078  df-lidl 21115  df-rsp 21116  df-mxidl 33398
This theorem is referenced by:  mxidlirred  33410
  Copyright terms: Public domain W3C validator