Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mxidlirredi Structured version   Visualization version   GIF version

Theorem mxidlirredi 33442
Description: In an integral domain, the generator of a maximal ideal is irreducible. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypotheses
Ref Expression
mxidlirredi.b 𝐵 = (Base‘𝑅)
mxidlirredi.k 𝐾 = (RSpan‘𝑅)
mxidlirredi.0 0 = (0g𝑅)
mxidlirredi.m 𝑀 = (𝐾‘{𝑋})
mxidlirredi.r (𝜑𝑅 ∈ IDomn)
mxidlirredi.x (𝜑𝑋𝐵)
mxidlirredi.y (𝜑𝑋0 )
mxidlirredi.1 (𝜑𝑀 ∈ (MaxIdeal‘𝑅))
Assertion
Ref Expression
mxidlirredi (𝜑𝑋 ∈ (Irred‘𝑅))

Proof of Theorem mxidlirredi
Dummy variables 𝑓 𝑔 𝑞 𝑥 𝑦 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mxidlirredi.x . . 3 (𝜑𝑋𝐵)
2 mxidlirredi.r . . . . . 6 (𝜑𝑅 ∈ IDomn)
32idomringd 20637 . . . . 5 (𝜑𝑅 ∈ Ring)
4 mxidlirredi.1 . . . . 5 (𝜑𝑀 ∈ (MaxIdeal‘𝑅))
5 mxidlirredi.b . . . . . 6 𝐵 = (Base‘𝑅)
65mxidlnr 33435 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀𝐵)
73, 4, 6syl2anc 584 . . . 4 (𝜑𝑀𝐵)
8 eqid 2729 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
9 mxidlirredi.k . . . . . 6 𝐾 = (RSpan‘𝑅)
10 mxidlirredi.m . . . . . 6 𝑀 = (𝐾‘{𝑋})
118, 9, 10, 5, 1, 2unitpidl1 33395 . . . . 5 (𝜑 → (𝑀 = 𝐵𝑋 ∈ (Unit‘𝑅)))
1211necon3abid 2961 . . . 4 (𝜑 → (𝑀𝐵 ↔ ¬ 𝑋 ∈ (Unit‘𝑅)))
137, 12mpbid 232 . . 3 (𝜑 → ¬ 𝑋 ∈ (Unit‘𝑅))
141, 13eldifd 3925 . 2 (𝜑𝑋 ∈ (𝐵 ∖ (Unit‘𝑅)))
153ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → 𝑅 ∈ Ring)
164ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → 𝑀 ∈ (MaxIdeal‘𝑅))
17 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅)))
1817eldifad 3926 . . . . . . . . . 10 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → 𝑔𝐵)
1918snssd 4773 . . . . . . . . 9 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → {𝑔} ⊆ 𝐵)
20 eqid 2729 . . . . . . . . . 10 (LIdeal‘𝑅) = (LIdeal‘𝑅)
219, 5, 20rspcl 21145 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ {𝑔} ⊆ 𝐵) → (𝐾‘{𝑔}) ∈ (LIdeal‘𝑅))
2215, 19, 21syl2anc 584 . . . . . . . 8 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → (𝐾‘{𝑔}) ∈ (LIdeal‘𝑅))
233ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) → 𝑅 ∈ Ring)
2423ad2antrr 726 . . . . . . . . . . . 12 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → 𝑅 ∈ Ring)
25 simp-5r 785 . . . . . . . . . . . . 13 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅)))
2625eldifad 3926 . . . . . . . . . . . 12 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → 𝑔𝐵)
27 eqid 2729 . . . . . . . . . . . . . 14 (.r𝑅) = (.r𝑅)
28 simplr 768 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → 𝑞𝐵)
29 simp-6r 787 . . . . . . . . . . . . . . 15 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → 𝑓 ∈ (𝐵 ∖ (Unit‘𝑅)))
3029eldifad 3926 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → 𝑓𝐵)
315, 27, 24, 28, 30ringcld 20169 . . . . . . . . . . . . 13 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → (𝑞(.r𝑅)𝑓) ∈ 𝐵)
32 oveq1 7394 . . . . . . . . . . . . . . 15 (𝑦 = (𝑞(.r𝑅)𝑓) → (𝑦(.r𝑅)𝑔) = ((𝑞(.r𝑅)𝑓)(.r𝑅)𝑔))
3332eqeq2d 2740 . . . . . . . . . . . . . 14 (𝑦 = (𝑞(.r𝑅)𝑓) → (𝑥 = (𝑦(.r𝑅)𝑔) ↔ 𝑥 = ((𝑞(.r𝑅)𝑓)(.r𝑅)𝑔)))
3433adantl 481 . . . . . . . . . . . . 13 ((((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) ∧ 𝑦 = (𝑞(.r𝑅)𝑓)) → (𝑥 = (𝑦(.r𝑅)𝑔) ↔ 𝑥 = ((𝑞(.r𝑅)𝑓)(.r𝑅)𝑔)))
35 simp-4r 783 . . . . . . . . . . . . . . 15 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → (𝑓(.r𝑅)𝑔) = 𝑋)
3635oveq2d 7403 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → (𝑞(.r𝑅)(𝑓(.r𝑅)𝑔)) = (𝑞(.r𝑅)𝑋))
375, 27, 24, 28, 30, 26ringassd 20166 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → ((𝑞(.r𝑅)𝑓)(.r𝑅)𝑔) = (𝑞(.r𝑅)(𝑓(.r𝑅)𝑔)))
38 simpr 484 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → 𝑥 = (𝑞(.r𝑅)𝑋))
3936, 37, 383eqtr4rd 2775 . . . . . . . . . . . . 13 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → 𝑥 = ((𝑞(.r𝑅)𝑓)(.r𝑅)𝑔))
4031, 34, 39rspcedvd 3590 . . . . . . . . . . . 12 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → ∃𝑦𝐵 𝑥 = (𝑦(.r𝑅)𝑔))
415, 27, 9elrspsn 21150 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑔𝐵) → (𝑥 ∈ (𝐾‘{𝑔}) ↔ ∃𝑦𝐵 𝑥 = (𝑦(.r𝑅)𝑔)))
4241biimpar 477 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑔𝐵) ∧ ∃𝑦𝐵 𝑥 = (𝑦(.r𝑅)𝑔)) → 𝑥 ∈ (𝐾‘{𝑔}))
4324, 26, 40, 42syl21anc 837 . . . . . . . . . . 11 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → 𝑥 ∈ (𝐾‘{𝑔}))
441ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) → 𝑋𝐵)
45 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) → 𝑥𝑀)
4645, 10eleqtrdi 2838 . . . . . . . . . . . 12 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) → 𝑥 ∈ (𝐾‘{𝑋}))
475, 27, 9elrspsn 21150 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥 ∈ (𝐾‘{𝑋}) ↔ ∃𝑞𝐵 𝑥 = (𝑞(.r𝑅)𝑋)))
4847biimpa 476 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑥 ∈ (𝐾‘{𝑋})) → ∃𝑞𝐵 𝑥 = (𝑞(.r𝑅)𝑋))
4923, 44, 46, 48syl21anc 837 . . . . . . . . . . 11 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) → ∃𝑞𝐵 𝑥 = (𝑞(.r𝑅)𝑋))
5043, 49r19.29a 3141 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) → 𝑥 ∈ (𝐾‘{𝑔}))
5150ex 412 . . . . . . . . 9 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → (𝑥𝑀𝑥 ∈ (𝐾‘{𝑔})))
5251ssrdv 3952 . . . . . . . 8 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → 𝑀 ⊆ (𝐾‘{𝑔}))
539, 5rspssid 21146 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ {𝑔} ⊆ 𝐵) → {𝑔} ⊆ (𝐾‘{𝑔}))
54 vex 3451 . . . . . . . . . . . 12 𝑔 ∈ V
5554snss 4749 . . . . . . . . . . 11 (𝑔 ∈ (𝐾‘{𝑔}) ↔ {𝑔} ⊆ (𝐾‘{𝑔}))
5653, 55sylibr 234 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ {𝑔} ⊆ 𝐵) → 𝑔 ∈ (𝐾‘{𝑔}))
5715, 19, 56syl2anc 584 . . . . . . . . 9 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → 𝑔 ∈ (𝐾‘{𝑔}))
58 df-idom 20605 . . . . . . . . . . . . . . 15 IDomn = (CRing ∩ Domn)
592, 58eleqtrdi 2838 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ (CRing ∩ Domn))
6059elin1d 4167 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ CRing)
6160ad6antr 736 . . . . . . . . . . . 12 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑅 ∈ CRing)
62 simplr 768 . . . . . . . . . . . 12 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑟𝐵)
63 simp-6r 787 . . . . . . . . . . . . 13 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑓 ∈ (𝐵 ∖ (Unit‘𝑅)))
6463eldifad 3926 . . . . . . . . . . . 12 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑓𝐵)
65 mxidlirredi.0 . . . . . . . . . . . . . 14 0 = (0g𝑅)
6615adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) → 𝑅 ∈ Ring)
6766ad2antrr 726 . . . . . . . . . . . . . . 15 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑅 ∈ Ring)
685, 27, 67, 62, 64ringcld 20169 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → (𝑟(.r𝑅)𝑓) ∈ 𝐵)
69 eqid 2729 . . . . . . . . . . . . . . . . 17 (1r𝑅) = (1r𝑅)
705, 69ringidcl 20174 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
713, 70syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (1r𝑅) ∈ 𝐵)
7271ad6antr 736 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → (1r𝑅) ∈ 𝐵)
7318ad3antrrr 730 . . . . . . . . . . . . . . 15 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑔𝐵)
74 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) ∧ 𝑔 = 0 ) → 𝑔 = 0 )
7574oveq2d 7403 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) ∧ 𝑔 = 0 ) → (𝑓(.r𝑅)𝑔) = (𝑓(.r𝑅) 0 ))
76 simp-5r 785 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) ∧ 𝑔 = 0 ) → (𝑓(.r𝑅)𝑔) = 𝑋)
7766ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) ∧ 𝑔 = 0 ) → 𝑅 ∈ Ring)
7864adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) ∧ 𝑔 = 0 ) → 𝑓𝐵)
795, 27, 65ringrz 20203 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Ring ∧ 𝑓𝐵) → (𝑓(.r𝑅) 0 ) = 0 )
8077, 78, 79syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) ∧ 𝑔 = 0 ) → (𝑓(.r𝑅) 0 ) = 0 )
8175, 76, 803eqtr3d 2772 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) ∧ 𝑔 = 0 ) → 𝑋 = 0 )
82 mxidlirredi.y . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋0 )
8382neneqd 2930 . . . . . . . . . . . . . . . . . 18 (𝜑 → ¬ 𝑋 = 0 )
8483ad7antr 738 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) ∧ 𝑔 = 0 ) → ¬ 𝑋 = 0 )
8581, 84pm2.65da 816 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → ¬ 𝑔 = 0 )
8685neqned 2932 . . . . . . . . . . . . . . 15 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑔0 )
87 eldifsn 4750 . . . . . . . . . . . . . . 15 (𝑔 ∈ (𝐵 ∖ { 0 }) ↔ (𝑔𝐵𝑔0 ))
8873, 86, 87sylanbrc 583 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑔 ∈ (𝐵 ∖ { 0 }))
892ad6antr 736 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑅 ∈ IDomn)
905, 27, 69, 67, 73ringlidmd 20181 . . . . . . . . . . . . . . 15 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → ((1r𝑅)(.r𝑅)𝑔) = 𝑔)
91 simpr 484 . . . . . . . . . . . . . . 15 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑔 = (𝑟(.r𝑅)𝑋))
925, 27, 67, 62, 64, 73ringassd 20166 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → ((𝑟(.r𝑅)𝑓)(.r𝑅)𝑔) = (𝑟(.r𝑅)(𝑓(.r𝑅)𝑔)))
93 simp-4r 783 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → (𝑓(.r𝑅)𝑔) = 𝑋)
9493oveq2d 7403 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → (𝑟(.r𝑅)(𝑓(.r𝑅)𝑔)) = (𝑟(.r𝑅)𝑋))
9592, 94eqtr2d 2765 . . . . . . . . . . . . . . 15 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → (𝑟(.r𝑅)𝑋) = ((𝑟(.r𝑅)𝑓)(.r𝑅)𝑔))
9690, 91, 953eqtrrd 2769 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → ((𝑟(.r𝑅)𝑓)(.r𝑅)𝑔) = ((1r𝑅)(.r𝑅)𝑔))
975, 65, 27, 68, 72, 88, 89, 96idomrcan 33229 . . . . . . . . . . . . 13 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → (𝑟(.r𝑅)𝑓) = (1r𝑅))
988, 691unit 20283 . . . . . . . . . . . . . . 15 (𝑅 ∈ Ring → (1r𝑅) ∈ (Unit‘𝑅))
993, 98syl 17 . . . . . . . . . . . . . 14 (𝜑 → (1r𝑅) ∈ (Unit‘𝑅))
10099ad6antr 736 . . . . . . . . . . . . 13 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → (1r𝑅) ∈ (Unit‘𝑅))
10197, 100eqeltrd 2828 . . . . . . . . . . . 12 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → (𝑟(.r𝑅)𝑓) ∈ (Unit‘𝑅))
1028, 27, 5unitmulclb 20290 . . . . . . . . . . . . 13 ((𝑅 ∈ CRing ∧ 𝑟𝐵𝑓𝐵) → ((𝑟(.r𝑅)𝑓) ∈ (Unit‘𝑅) ↔ (𝑟 ∈ (Unit‘𝑅) ∧ 𝑓 ∈ (Unit‘𝑅))))
103102simplbda 499 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ 𝑟𝐵𝑓𝐵) ∧ (𝑟(.r𝑅)𝑓) ∈ (Unit‘𝑅)) → 𝑓 ∈ (Unit‘𝑅))
10461, 62, 64, 101, 103syl31anc 1375 . . . . . . . . . . 11 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑓 ∈ (Unit‘𝑅))
1051ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) → 𝑋𝐵)
106 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) → 𝑔𝑀)
107106, 10eleqtrdi 2838 . . . . . . . . . . . 12 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) → 𝑔 ∈ (𝐾‘{𝑋}))
1085, 27, 9elrspsn 21150 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑔 ∈ (𝐾‘{𝑋}) ↔ ∃𝑟𝐵 𝑔 = (𝑟(.r𝑅)𝑋)))
109108biimpa 476 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑔 ∈ (𝐾‘{𝑋})) → ∃𝑟𝐵 𝑔 = (𝑟(.r𝑅)𝑋))
11066, 105, 107, 109syl21anc 837 . . . . . . . . . . 11 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) → ∃𝑟𝐵 𝑔 = (𝑟(.r𝑅)𝑋))
111104, 110r19.29a 3141 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) → 𝑓 ∈ (Unit‘𝑅))
112 simp-4r 783 . . . . . . . . . . 11 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) → 𝑓 ∈ (𝐵 ∖ (Unit‘𝑅)))
113112eldifbd 3927 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) → ¬ 𝑓 ∈ (Unit‘𝑅))
114111, 113pm2.65da 816 . . . . . . . . 9 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → ¬ 𝑔𝑀)
11557, 114eldifd 3925 . . . . . . . 8 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → 𝑔 ∈ ((𝐾‘{𝑔}) ∖ 𝑀))
1165, 15, 16, 22, 52, 115mxidlmaxv 33439 . . . . . . 7 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → (𝐾‘{𝑔}) = 𝐵)
117 eqid 2729 . . . . . . . 8 (𝐾‘{𝑔}) = (𝐾‘{𝑔})
1182ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → 𝑅 ∈ IDomn)
1198, 9, 117, 5, 18, 118unitpidl1 33395 . . . . . . 7 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → ((𝐾‘{𝑔}) = 𝐵𝑔 ∈ (Unit‘𝑅)))
120116, 119mpbid 232 . . . . . 6 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → 𝑔 ∈ (Unit‘𝑅))
12117eldifbd 3927 . . . . . 6 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → ¬ 𝑔 ∈ (Unit‘𝑅))
122120, 121pm2.65da 816 . . . . 5 (((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) → ¬ (𝑓(.r𝑅)𝑔) = 𝑋)
123122anasss 466 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐵 ∖ (Unit‘𝑅)) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅)))) → ¬ (𝑓(.r𝑅)𝑔) = 𝑋)
124123neqned 2932 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝐵 ∖ (Unit‘𝑅)) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅)))) → (𝑓(.r𝑅)𝑔) ≠ 𝑋)
125124ralrimivva 3180 . 2 (𝜑 → ∀𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))∀𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))(𝑓(.r𝑅)𝑔) ≠ 𝑋)
126 eqid 2729 . . 3 (Irred‘𝑅) = (Irred‘𝑅)
127 eqid 2729 . . 3 (𝐵 ∖ (Unit‘𝑅)) = (𝐵 ∖ (Unit‘𝑅))
1285, 8, 126, 127, 27isirred 20328 . 2 (𝑋 ∈ (Irred‘𝑅) ↔ (𝑋 ∈ (𝐵 ∖ (Unit‘𝑅)) ∧ ∀𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))∀𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))(𝑓(.r𝑅)𝑔) ≠ 𝑋))
12914, 125, 128sylanbrc 583 1 (𝜑𝑋 ∈ (Irred‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3911  cin 3913  wss 3914  {csn 4589  cfv 6511  (class class class)co 7387  Basecbs 17179  .rcmulr 17221  0gc0g 17402  1rcur 20090  Ringcrg 20142  CRingccrg 20143  Unitcui 20264  Irredcir 20265  Domncdomn 20601  IDomncidom 20602  LIdealclidl 21116  RSpancrsp 21117  MaxIdealcmxidl 33430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-irred 20268  df-invr 20297  df-nzr 20422  df-subrg 20479  df-domn 20604  df-idom 20605  df-lmod 20768  df-lss 20838  df-lsp 20878  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-rsp 21119  df-mxidl 33431
This theorem is referenced by:  mxidlirred  33443
  Copyright terms: Public domain W3C validator