Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mxidlirredi Structured version   Visualization version   GIF version

Theorem mxidlirredi 33464
Description: In an integral domain, the generator of a maximal ideal is irreducible. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypotheses
Ref Expression
mxidlirredi.b 𝐵 = (Base‘𝑅)
mxidlirredi.k 𝐾 = (RSpan‘𝑅)
mxidlirredi.0 0 = (0g𝑅)
mxidlirredi.m 𝑀 = (𝐾‘{𝑋})
mxidlirredi.r (𝜑𝑅 ∈ IDomn)
mxidlirredi.x (𝜑𝑋𝐵)
mxidlirredi.y (𝜑𝑋0 )
mxidlirredi.1 (𝜑𝑀 ∈ (MaxIdeal‘𝑅))
Assertion
Ref Expression
mxidlirredi (𝜑𝑋 ∈ (Irred‘𝑅))

Proof of Theorem mxidlirredi
Dummy variables 𝑓 𝑔 𝑞 𝑥 𝑦 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mxidlirredi.x . . 3 (𝜑𝑋𝐵)
2 mxidlirredi.r . . . . . 6 (𝜑𝑅 ∈ IDomn)
32idomringd 20750 . . . . 5 (𝜑𝑅 ∈ Ring)
4 mxidlirredi.1 . . . . 5 (𝜑𝑀 ∈ (MaxIdeal‘𝑅))
5 mxidlirredi.b . . . . . 6 𝐵 = (Base‘𝑅)
65mxidlnr 33457 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀𝐵)
73, 4, 6syl2anc 583 . . . 4 (𝜑𝑀𝐵)
8 eqid 2740 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
9 mxidlirredi.k . . . . . 6 𝐾 = (RSpan‘𝑅)
10 mxidlirredi.m . . . . . 6 𝑀 = (𝐾‘{𝑋})
118, 9, 10, 5, 1, 2unitpidl1 33417 . . . . 5 (𝜑 → (𝑀 = 𝐵𝑋 ∈ (Unit‘𝑅)))
1211necon3abid 2983 . . . 4 (𝜑 → (𝑀𝐵 ↔ ¬ 𝑋 ∈ (Unit‘𝑅)))
137, 12mpbid 232 . . 3 (𝜑 → ¬ 𝑋 ∈ (Unit‘𝑅))
141, 13eldifd 3987 . 2 (𝜑𝑋 ∈ (𝐵 ∖ (Unit‘𝑅)))
153ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → 𝑅 ∈ Ring)
164ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → 𝑀 ∈ (MaxIdeal‘𝑅))
17 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅)))
1817eldifad 3988 . . . . . . . . . 10 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → 𝑔𝐵)
1918snssd 4834 . . . . . . . . 9 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → {𝑔} ⊆ 𝐵)
20 eqid 2740 . . . . . . . . . 10 (LIdeal‘𝑅) = (LIdeal‘𝑅)
219, 5, 20rspcl 21268 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ {𝑔} ⊆ 𝐵) → (𝐾‘{𝑔}) ∈ (LIdeal‘𝑅))
2215, 19, 21syl2anc 583 . . . . . . . 8 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → (𝐾‘{𝑔}) ∈ (LIdeal‘𝑅))
233ad4antr 731 . . . . . . . . . . . . 13 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) → 𝑅 ∈ Ring)
2423ad2antrr 725 . . . . . . . . . . . 12 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → 𝑅 ∈ Ring)
25 simp-5r 785 . . . . . . . . . . . . 13 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅)))
2625eldifad 3988 . . . . . . . . . . . 12 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → 𝑔𝐵)
27 eqid 2740 . . . . . . . . . . . . . 14 (.r𝑅) = (.r𝑅)
28 simplr 768 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → 𝑞𝐵)
29 simp-6r 787 . . . . . . . . . . . . . . 15 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → 𝑓 ∈ (𝐵 ∖ (Unit‘𝑅)))
3029eldifad 3988 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → 𝑓𝐵)
315, 27, 24, 28, 30ringcld 20286 . . . . . . . . . . . . 13 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → (𝑞(.r𝑅)𝑓) ∈ 𝐵)
32 oveq1 7455 . . . . . . . . . . . . . . 15 (𝑦 = (𝑞(.r𝑅)𝑓) → (𝑦(.r𝑅)𝑔) = ((𝑞(.r𝑅)𝑓)(.r𝑅)𝑔))
3332eqeq2d 2751 . . . . . . . . . . . . . 14 (𝑦 = (𝑞(.r𝑅)𝑓) → (𝑥 = (𝑦(.r𝑅)𝑔) ↔ 𝑥 = ((𝑞(.r𝑅)𝑓)(.r𝑅)𝑔)))
3433adantl 481 . . . . . . . . . . . . 13 ((((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) ∧ 𝑦 = (𝑞(.r𝑅)𝑓)) → (𝑥 = (𝑦(.r𝑅)𝑔) ↔ 𝑥 = ((𝑞(.r𝑅)𝑓)(.r𝑅)𝑔)))
35 simp-4r 783 . . . . . . . . . . . . . . 15 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → (𝑓(.r𝑅)𝑔) = 𝑋)
3635oveq2d 7464 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → (𝑞(.r𝑅)(𝑓(.r𝑅)𝑔)) = (𝑞(.r𝑅)𝑋))
375, 27, 24, 28, 30, 26ringassd 20284 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → ((𝑞(.r𝑅)𝑓)(.r𝑅)𝑔) = (𝑞(.r𝑅)(𝑓(.r𝑅)𝑔)))
38 simpr 484 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → 𝑥 = (𝑞(.r𝑅)𝑋))
3936, 37, 383eqtr4rd 2791 . . . . . . . . . . . . 13 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → 𝑥 = ((𝑞(.r𝑅)𝑓)(.r𝑅)𝑔))
4031, 34, 39rspcedvd 3637 . . . . . . . . . . . 12 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → ∃𝑦𝐵 𝑥 = (𝑦(.r𝑅)𝑔))
415, 27, 9elrspsn 21273 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑔𝐵) → (𝑥 ∈ (𝐾‘{𝑔}) ↔ ∃𝑦𝐵 𝑥 = (𝑦(.r𝑅)𝑔)))
4241biimpar 477 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑔𝐵) ∧ ∃𝑦𝐵 𝑥 = (𝑦(.r𝑅)𝑔)) → 𝑥 ∈ (𝐾‘{𝑔}))
4324, 26, 40, 42syl21anc 837 . . . . . . . . . . 11 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) ∧ 𝑞𝐵) ∧ 𝑥 = (𝑞(.r𝑅)𝑋)) → 𝑥 ∈ (𝐾‘{𝑔}))
441ad4antr 731 . . . . . . . . . . . 12 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) → 𝑋𝐵)
45 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) → 𝑥𝑀)
4645, 10eleqtrdi 2854 . . . . . . . . . . . 12 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) → 𝑥 ∈ (𝐾‘{𝑋}))
475, 27, 9elrspsn 21273 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥 ∈ (𝐾‘{𝑋}) ↔ ∃𝑞𝐵 𝑥 = (𝑞(.r𝑅)𝑋)))
4847biimpa 476 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑥 ∈ (𝐾‘{𝑋})) → ∃𝑞𝐵 𝑥 = (𝑞(.r𝑅)𝑋))
4923, 44, 46, 48syl21anc 837 . . . . . . . . . . 11 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) → ∃𝑞𝐵 𝑥 = (𝑞(.r𝑅)𝑋))
5043, 49r19.29a 3168 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑥𝑀) → 𝑥 ∈ (𝐾‘{𝑔}))
5150ex 412 . . . . . . . . 9 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → (𝑥𝑀𝑥 ∈ (𝐾‘{𝑔})))
5251ssrdv 4014 . . . . . . . 8 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → 𝑀 ⊆ (𝐾‘{𝑔}))
539, 5rspssid 21269 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ {𝑔} ⊆ 𝐵) → {𝑔} ⊆ (𝐾‘{𝑔}))
54 vex 3492 . . . . . . . . . . . 12 𝑔 ∈ V
5554snss 4810 . . . . . . . . . . 11 (𝑔 ∈ (𝐾‘{𝑔}) ↔ {𝑔} ⊆ (𝐾‘{𝑔}))
5653, 55sylibr 234 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ {𝑔} ⊆ 𝐵) → 𝑔 ∈ (𝐾‘{𝑔}))
5715, 19, 56syl2anc 583 . . . . . . . . 9 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → 𝑔 ∈ (𝐾‘{𝑔}))
58 df-idom 20718 . . . . . . . . . . . . . . 15 IDomn = (CRing ∩ Domn)
592, 58eleqtrdi 2854 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ (CRing ∩ Domn))
6059elin1d 4227 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ CRing)
6160ad6antr 735 . . . . . . . . . . . 12 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑅 ∈ CRing)
62 simplr 768 . . . . . . . . . . . 12 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑟𝐵)
63 simp-6r 787 . . . . . . . . . . . . 13 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑓 ∈ (𝐵 ∖ (Unit‘𝑅)))
6463eldifad 3988 . . . . . . . . . . . 12 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑓𝐵)
65 mxidlirredi.0 . . . . . . . . . . . . . 14 0 = (0g𝑅)
6615adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) → 𝑅 ∈ Ring)
6766ad2antrr 725 . . . . . . . . . . . . . . 15 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑅 ∈ Ring)
685, 27, 67, 62, 64ringcld 20286 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → (𝑟(.r𝑅)𝑓) ∈ 𝐵)
69 eqid 2740 . . . . . . . . . . . . . . . . 17 (1r𝑅) = (1r𝑅)
705, 69ringidcl 20289 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
713, 70syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (1r𝑅) ∈ 𝐵)
7271ad6antr 735 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → (1r𝑅) ∈ 𝐵)
7318ad3antrrr 729 . . . . . . . . . . . . . . 15 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑔𝐵)
74 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) ∧ 𝑔 = 0 ) → 𝑔 = 0 )
7574oveq2d 7464 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) ∧ 𝑔 = 0 ) → (𝑓(.r𝑅)𝑔) = (𝑓(.r𝑅) 0 ))
76 simp-5r 785 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) ∧ 𝑔 = 0 ) → (𝑓(.r𝑅)𝑔) = 𝑋)
7766ad3antrrr 729 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) ∧ 𝑔 = 0 ) → 𝑅 ∈ Ring)
7864adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) ∧ 𝑔 = 0 ) → 𝑓𝐵)
795, 27, 65ringrz 20317 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Ring ∧ 𝑓𝐵) → (𝑓(.r𝑅) 0 ) = 0 )
8077, 78, 79syl2anc 583 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) ∧ 𝑔 = 0 ) → (𝑓(.r𝑅) 0 ) = 0 )
8175, 76, 803eqtr3d 2788 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) ∧ 𝑔 = 0 ) → 𝑋 = 0 )
82 mxidlirredi.y . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋0 )
8382neneqd 2951 . . . . . . . . . . . . . . . . . 18 (𝜑 → ¬ 𝑋 = 0 )
8483ad7antr 737 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) ∧ 𝑔 = 0 ) → ¬ 𝑋 = 0 )
8581, 84pm2.65da 816 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → ¬ 𝑔 = 0 )
8685neqned 2953 . . . . . . . . . . . . . . 15 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑔0 )
87 eldifsn 4811 . . . . . . . . . . . . . . 15 (𝑔 ∈ (𝐵 ∖ { 0 }) ↔ (𝑔𝐵𝑔0 ))
8873, 86, 87sylanbrc 582 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑔 ∈ (𝐵 ∖ { 0 }))
892ad6antr 735 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑅 ∈ IDomn)
905, 27, 69, 67, 73ringlidmd 20295 . . . . . . . . . . . . . . 15 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → ((1r𝑅)(.r𝑅)𝑔) = 𝑔)
91 simpr 484 . . . . . . . . . . . . . . 15 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑔 = (𝑟(.r𝑅)𝑋))
925, 27, 67, 62, 64, 73ringassd 20284 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → ((𝑟(.r𝑅)𝑓)(.r𝑅)𝑔) = (𝑟(.r𝑅)(𝑓(.r𝑅)𝑔)))
93 simp-4r 783 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → (𝑓(.r𝑅)𝑔) = 𝑋)
9493oveq2d 7464 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → (𝑟(.r𝑅)(𝑓(.r𝑅)𝑔)) = (𝑟(.r𝑅)𝑋))
9592, 94eqtr2d 2781 . . . . . . . . . . . . . . 15 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → (𝑟(.r𝑅)𝑋) = ((𝑟(.r𝑅)𝑓)(.r𝑅)𝑔))
9690, 91, 953eqtrrd 2785 . . . . . . . . . . . . . 14 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → ((𝑟(.r𝑅)𝑓)(.r𝑅)𝑔) = ((1r𝑅)(.r𝑅)𝑔))
975, 65, 27, 68, 72, 88, 89, 96idomrcan 33248 . . . . . . . . . . . . 13 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → (𝑟(.r𝑅)𝑓) = (1r𝑅))
988, 691unit 20400 . . . . . . . . . . . . . . 15 (𝑅 ∈ Ring → (1r𝑅) ∈ (Unit‘𝑅))
993, 98syl 17 . . . . . . . . . . . . . 14 (𝜑 → (1r𝑅) ∈ (Unit‘𝑅))
10099ad6antr 735 . . . . . . . . . . . . 13 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → (1r𝑅) ∈ (Unit‘𝑅))
10197, 100eqeltrd 2844 . . . . . . . . . . . 12 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → (𝑟(.r𝑅)𝑓) ∈ (Unit‘𝑅))
1028, 27, 5unitmulclb 20407 . . . . . . . . . . . . 13 ((𝑅 ∈ CRing ∧ 𝑟𝐵𝑓𝐵) → ((𝑟(.r𝑅)𝑓) ∈ (Unit‘𝑅) ↔ (𝑟 ∈ (Unit‘𝑅) ∧ 𝑓 ∈ (Unit‘𝑅))))
103102simplbda 499 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ 𝑟𝐵𝑓𝐵) ∧ (𝑟(.r𝑅)𝑓) ∈ (Unit‘𝑅)) → 𝑓 ∈ (Unit‘𝑅))
10461, 62, 64, 101, 103syl31anc 1373 . . . . . . . . . . 11 (((((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) ∧ 𝑟𝐵) ∧ 𝑔 = (𝑟(.r𝑅)𝑋)) → 𝑓 ∈ (Unit‘𝑅))
1051ad4antr 731 . . . . . . . . . . . 12 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) → 𝑋𝐵)
106 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) → 𝑔𝑀)
107106, 10eleqtrdi 2854 . . . . . . . . . . . 12 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) → 𝑔 ∈ (𝐾‘{𝑋}))
1085, 27, 9elrspsn 21273 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑔 ∈ (𝐾‘{𝑋}) ↔ ∃𝑟𝐵 𝑔 = (𝑟(.r𝑅)𝑋)))
109108biimpa 476 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑔 ∈ (𝐾‘{𝑋})) → ∃𝑟𝐵 𝑔 = (𝑟(.r𝑅)𝑋))
11066, 105, 107, 109syl21anc 837 . . . . . . . . . . 11 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) → ∃𝑟𝐵 𝑔 = (𝑟(.r𝑅)𝑋))
111104, 110r19.29a 3168 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) → 𝑓 ∈ (Unit‘𝑅))
112 simp-4r 783 . . . . . . . . . . 11 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) → 𝑓 ∈ (𝐵 ∖ (Unit‘𝑅)))
113112eldifbd 3989 . . . . . . . . . 10 (((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) ∧ 𝑔𝑀) → ¬ 𝑓 ∈ (Unit‘𝑅))
114111, 113pm2.65da 816 . . . . . . . . 9 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → ¬ 𝑔𝑀)
11557, 114eldifd 3987 . . . . . . . 8 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → 𝑔 ∈ ((𝐾‘{𝑔}) ∖ 𝑀))
1165, 15, 16, 22, 52, 115mxidlmaxv 33461 . . . . . . 7 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → (𝐾‘{𝑔}) = 𝐵)
117 eqid 2740 . . . . . . . 8 (𝐾‘{𝑔}) = (𝐾‘{𝑔})
1182ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → 𝑅 ∈ IDomn)
1198, 9, 117, 5, 18, 118unitpidl1 33417 . . . . . . 7 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → ((𝐾‘{𝑔}) = 𝐵𝑔 ∈ (Unit‘𝑅)))
120116, 119mpbid 232 . . . . . 6 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → 𝑔 ∈ (Unit‘𝑅))
12117eldifbd 3989 . . . . . 6 ((((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ (𝑓(.r𝑅)𝑔) = 𝑋) → ¬ 𝑔 ∈ (Unit‘𝑅))
122120, 121pm2.65da 816 . . . . 5 (((𝜑𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))) → ¬ (𝑓(.r𝑅)𝑔) = 𝑋)
123122anasss 466 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐵 ∖ (Unit‘𝑅)) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅)))) → ¬ (𝑓(.r𝑅)𝑔) = 𝑋)
124123neqned 2953 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝐵 ∖ (Unit‘𝑅)) ∧ 𝑔 ∈ (𝐵 ∖ (Unit‘𝑅)))) → (𝑓(.r𝑅)𝑔) ≠ 𝑋)
125124ralrimivva 3208 . 2 (𝜑 → ∀𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))∀𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))(𝑓(.r𝑅)𝑔) ≠ 𝑋)
126 eqid 2740 . . 3 (Irred‘𝑅) = (Irred‘𝑅)
127 eqid 2740 . . 3 (𝐵 ∖ (Unit‘𝑅)) = (𝐵 ∖ (Unit‘𝑅))
1285, 8, 126, 127, 27isirred 20445 . 2 (𝑋 ∈ (Irred‘𝑅) ↔ (𝑋 ∈ (𝐵 ∖ (Unit‘𝑅)) ∧ ∀𝑓 ∈ (𝐵 ∖ (Unit‘𝑅))∀𝑔 ∈ (𝐵 ∖ (Unit‘𝑅))(𝑓(.r𝑅)𝑔) ≠ 𝑋))
12914, 125, 128sylanbrc 582 1 (𝜑𝑋 ∈ (Irred‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  cdif 3973  cin 3975  wss 3976  {csn 4648  cfv 6573  (class class class)co 7448  Basecbs 17258  .rcmulr 17312  0gc0g 17499  1rcur 20208  Ringcrg 20260  CRingccrg 20261  Unitcui 20381  Irredcir 20382  Domncdomn 20714  IDomncidom 20715  LIdealclidl 21239  RSpancrsp 21240  MaxIdealcmxidl 33452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-irred 20385  df-invr 20414  df-nzr 20539  df-subrg 20597  df-domn 20717  df-idom 20718  df-lmod 20882  df-lss 20953  df-lsp 20993  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-rsp 21242  df-mxidl 33453
This theorem is referenced by:  mxidlirred  33465
  Copyright terms: Public domain W3C validator