Step | Hyp | Ref
| Expression |
1 | | mxidlirredi.x |
. . 3
β’ (π β π β π΅) |
2 | | mxidlirredi.r |
. . . . . 6
β’ (π β π
β IDomn) |
3 | 2 | idomringd 32370 |
. . . . 5
β’ (π β π
β Ring) |
4 | | mxidlirredi.1 |
. . . . 5
β’ (π β π β (MaxIdealβπ
)) |
5 | | mxidlirredi.b |
. . . . . 6
β’ π΅ = (Baseβπ
) |
6 | 5 | mxidlnr 32575 |
. . . . 5
β’ ((π
β Ring β§ π β (MaxIdealβπ
)) β π β π΅) |
7 | 3, 4, 6 | syl2anc 584 |
. . . 4
β’ (π β π β π΅) |
8 | | eqid 2732 |
. . . . . 6
β’
(Unitβπ
) =
(Unitβπ
) |
9 | | mxidlirredi.k |
. . . . . 6
β’ πΎ = (RSpanβπ
) |
10 | | mxidlirredi.m |
. . . . . 6
β’ π = (πΎβ{π}) |
11 | 8, 9, 10, 5, 1, 2 | unitpidl1 32537 |
. . . . 5
β’ (π β (π = π΅ β π β (Unitβπ
))) |
12 | 11 | necon3abid 2977 |
. . . 4
β’ (π β (π β π΅ β Β¬ π β (Unitβπ
))) |
13 | 7, 12 | mpbid 231 |
. . 3
β’ (π β Β¬ π β (Unitβπ
)) |
14 | 1, 13 | eldifd 3959 |
. 2
β’ (π β π β (π΅ β (Unitβπ
))) |
15 | 3 | ad3antrrr 728 |
. . . . . . . 8
β’ ((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β π
β Ring) |
16 | 4 | ad3antrrr 728 |
. . . . . . . 8
β’ ((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β π β (MaxIdealβπ
)) |
17 | | simplr 767 |
. . . . . . . . . . 11
β’ ((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β π β (π΅ β (Unitβπ
))) |
18 | 17 | eldifad 3960 |
. . . . . . . . . 10
β’ ((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β π β π΅) |
19 | 18 | snssd 4812 |
. . . . . . . . 9
β’ ((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β {π} β π΅) |
20 | | eqid 2732 |
. . . . . . . . . 10
β’
(LIdealβπ
) =
(LIdealβπ
) |
21 | 9, 5, 20 | rspcl 20846 |
. . . . . . . . 9
β’ ((π
β Ring β§ {π} β π΅) β (πΎβ{π}) β (LIdealβπ
)) |
22 | 15, 19, 21 | syl2anc 584 |
. . . . . . . 8
β’ ((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β (πΎβ{π}) β (LIdealβπ
)) |
23 | 3 | ad4antr 730 |
. . . . . . . . . . . . 13
β’
(((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π₯ β π) β π
β Ring) |
24 | 23 | ad2antrr 724 |
. . . . . . . . . . . 12
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π₯ β π) β§ π β π΅) β§ π₯ = (π(.rβπ
)π)) β π
β Ring) |
25 | | simp-5r 784 |
. . . . . . . . . . . . 13
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π₯ β π) β§ π β π΅) β§ π₯ = (π(.rβπ
)π)) β π β (π΅ β (Unitβπ
))) |
26 | 25 | eldifad 3960 |
. . . . . . . . . . . 12
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π₯ β π) β§ π β π΅) β§ π₯ = (π(.rβπ
)π)) β π β π΅) |
27 | | eqid 2732 |
. . . . . . . . . . . . . 14
β’
(.rβπ
) = (.rβπ
) |
28 | | simplr 767 |
. . . . . . . . . . . . . 14
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π₯ β π) β§ π β π΅) β§ π₯ = (π(.rβπ
)π)) β π β π΅) |
29 | | simp-6r 786 |
. . . . . . . . . . . . . . 15
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π₯ β π) β§ π β π΅) β§ π₯ = (π(.rβπ
)π)) β π β (π΅ β (Unitβπ
))) |
30 | 29 | eldifad 3960 |
. . . . . . . . . . . . . 14
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π₯ β π) β§ π β π΅) β§ π₯ = (π(.rβπ
)π)) β π β π΅) |
31 | 5, 27, 24, 28, 30 | ringcld 20079 |
. . . . . . . . . . . . 13
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π₯ β π) β§ π β π΅) β§ π₯ = (π(.rβπ
)π)) β (π(.rβπ
)π) β π΅) |
32 | | oveq1 7415 |
. . . . . . . . . . . . . . 15
β’ (π¦ = (π(.rβπ
)π) β (π¦(.rβπ
)π) = ((π(.rβπ
)π)(.rβπ
)π)) |
33 | 32 | eqeq2d 2743 |
. . . . . . . . . . . . . 14
β’ (π¦ = (π(.rβπ
)π) β (π₯ = (π¦(.rβπ
)π) β π₯ = ((π(.rβπ
)π)(.rβπ
)π))) |
34 | 33 | adantl 482 |
. . . . . . . . . . . . 13
β’
((((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π₯ β π) β§ π β π΅) β§ π₯ = (π(.rβπ
)π)) β§ π¦ = (π(.rβπ
)π)) β (π₯ = (π¦(.rβπ
)π) β π₯ = ((π(.rβπ
)π)(.rβπ
)π))) |
35 | | simp-4r 782 |
. . . . . . . . . . . . . . 15
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π₯ β π) β§ π β π΅) β§ π₯ = (π(.rβπ
)π)) β (π(.rβπ
)π) = π) |
36 | 35 | oveq2d 7424 |
. . . . . . . . . . . . . 14
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π₯ β π) β§ π β π΅) β§ π₯ = (π(.rβπ
)π)) β (π(.rβπ
)(π(.rβπ
)π)) = (π(.rβπ
)π)) |
37 | 5, 27, 24, 28, 30, 26 | ringassd 20078 |
. . . . . . . . . . . . . 14
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π₯ β π) β§ π β π΅) β§ π₯ = (π(.rβπ
)π)) β ((π(.rβπ
)π)(.rβπ
)π) = (π(.rβπ
)(π(.rβπ
)π))) |
38 | | simpr 485 |
. . . . . . . . . . . . . 14
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π₯ β π) β§ π β π΅) β§ π₯ = (π(.rβπ
)π)) β π₯ = (π(.rβπ
)π)) |
39 | 36, 37, 38 | 3eqtr4rd 2783 |
. . . . . . . . . . . . 13
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π₯ β π) β§ π β π΅) β§ π₯ = (π(.rβπ
)π)) β π₯ = ((π(.rβπ
)π)(.rβπ
)π)) |
40 | 31, 34, 39 | rspcedvd 3614 |
. . . . . . . . . . . 12
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π₯ β π) β§ π β π΅) β§ π₯ = (π(.rβπ
)π)) β βπ¦ β π΅ π₯ = (π¦(.rβπ
)π)) |
41 | 5, 27, 9 | rspsnel 32479 |
. . . . . . . . . . . . 13
β’ ((π
β Ring β§ π β π΅) β (π₯ β (πΎβ{π}) β βπ¦ β π΅ π₯ = (π¦(.rβπ
)π))) |
42 | 41 | biimpar 478 |
. . . . . . . . . . . 12
β’ (((π
β Ring β§ π β π΅) β§ βπ¦ β π΅ π₯ = (π¦(.rβπ
)π)) β π₯ β (πΎβ{π})) |
43 | 24, 26, 40, 42 | syl21anc 836 |
. . . . . . . . . . 11
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π₯ β π) β§ π β π΅) β§ π₯ = (π(.rβπ
)π)) β π₯ β (πΎβ{π})) |
44 | 1 | ad4antr 730 |
. . . . . . . . . . . 12
β’
(((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π₯ β π) β π β π΅) |
45 | | simpr 485 |
. . . . . . . . . . . . 13
β’
(((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π₯ β π) β π₯ β π) |
46 | 45, 10 | eleqtrdi 2843 |
. . . . . . . . . . . 12
β’
(((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π₯ β π) β π₯ β (πΎβ{π})) |
47 | 5, 27, 9 | rspsnel 32479 |
. . . . . . . . . . . . 13
β’ ((π
β Ring β§ π β π΅) β (π₯ β (πΎβ{π}) β βπ β π΅ π₯ = (π(.rβπ
)π))) |
48 | 47 | biimpa 477 |
. . . . . . . . . . . 12
β’ (((π
β Ring β§ π β π΅) β§ π₯ β (πΎβ{π})) β βπ β π΅ π₯ = (π(.rβπ
)π)) |
49 | 23, 44, 46, 48 | syl21anc 836 |
. . . . . . . . . . 11
β’
(((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π₯ β π) β βπ β π΅ π₯ = (π(.rβπ
)π)) |
50 | 43, 49 | r19.29a 3162 |
. . . . . . . . . 10
β’
(((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π₯ β π) β π₯ β (πΎβ{π})) |
51 | 50 | ex 413 |
. . . . . . . . 9
β’ ((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β (π₯ β π β π₯ β (πΎβ{π}))) |
52 | 51 | ssrdv 3988 |
. . . . . . . 8
β’ ((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β π β (πΎβ{π})) |
53 | 9, 5 | rspssid 20847 |
. . . . . . . . . . 11
β’ ((π
β Ring β§ {π} β π΅) β {π} β (πΎβ{π})) |
54 | | vex 3478 |
. . . . . . . . . . . 12
β’ π β V |
55 | 54 | snss 4789 |
. . . . . . . . . . 11
β’ (π β (πΎβ{π}) β {π} β (πΎβ{π})) |
56 | 53, 55 | sylibr 233 |
. . . . . . . . . 10
β’ ((π
β Ring β§ {π} β π΅) β π β (πΎβ{π})) |
57 | 15, 19, 56 | syl2anc 584 |
. . . . . . . . 9
β’ ((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β π β (πΎβ{π})) |
58 | | df-idom 20900 |
. . . . . . . . . . . . . . 15
β’ IDomn =
(CRing β© Domn) |
59 | 2, 58 | eleqtrdi 2843 |
. . . . . . . . . . . . . 14
β’ (π β π
β (CRing β© Domn)) |
60 | 59 | elin1d 4198 |
. . . . . . . . . . . . 13
β’ (π β π
β CRing) |
61 | 60 | ad6antr 734 |
. . . . . . . . . . . 12
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β§ π β π΅) β§ π = (π(.rβπ
)π)) β π
β CRing) |
62 | | simplr 767 |
. . . . . . . . . . . 12
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β§ π β π΅) β§ π = (π(.rβπ
)π)) β π β π΅) |
63 | | simp-6r 786 |
. . . . . . . . . . . . 13
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β§ π β π΅) β§ π = (π(.rβπ
)π)) β π β (π΅ β (Unitβπ
))) |
64 | 63 | eldifad 3960 |
. . . . . . . . . . . 12
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β§ π β π΅) β§ π = (π(.rβπ
)π)) β π β π΅) |
65 | | mxidlirredi.0 |
. . . . . . . . . . . . . 14
β’ 0 =
(0gβπ
) |
66 | 18 | ad3antrrr 728 |
. . . . . . . . . . . . . . 15
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β§ π β π΅) β§ π = (π(.rβπ
)π)) β π β π΅) |
67 | | simpr 485 |
. . . . . . . . . . . . . . . . . . 19
β’
((((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β§ π β π΅) β§ π = (π(.rβπ
)π)) β§ π = 0 ) β π = 0 ) |
68 | 67 | oveq2d 7424 |
. . . . . . . . . . . . . . . . . 18
β’
((((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β§ π β π΅) β§ π = (π(.rβπ
)π)) β§ π = 0 ) β (π(.rβπ
)π) = (π(.rβπ
) 0 )) |
69 | | simp-5r 784 |
. . . . . . . . . . . . . . . . . 18
β’
((((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β§ π β π΅) β§ π = (π(.rβπ
)π)) β§ π = 0 ) β (π(.rβπ
)π) = π) |
70 | 15 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
β’
(((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β π
β Ring) |
71 | 70 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . 19
β’
((((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β§ π β π΅) β§ π = (π(.rβπ
)π)) β§ π = 0 ) β π
β Ring) |
72 | 64 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
β’
((((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β§ π β π΅) β§ π = (π(.rβπ
)π)) β§ π = 0 ) β π β π΅) |
73 | 5, 27, 65 | ringrz 20107 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π
β Ring β§ π β π΅) β (π(.rβπ
) 0 ) = 0 ) |
74 | 71, 72, 73 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
β’
((((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β§ π β π΅) β§ π = (π(.rβπ
)π)) β§ π = 0 ) β (π(.rβπ
) 0 ) = 0 ) |
75 | 68, 69, 74 | 3eqtr3d 2780 |
. . . . . . . . . . . . . . . . 17
β’
((((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β§ π β π΅) β§ π = (π(.rβπ
)π)) β§ π = 0 ) β π = 0 ) |
76 | | mxidlirredi.y |
. . . . . . . . . . . . . . . . . . 19
β’ (π β π β 0 ) |
77 | 76 | neneqd 2945 |
. . . . . . . . . . . . . . . . . 18
β’ (π β Β¬ π = 0 ) |
78 | 77 | ad7antr 736 |
. . . . . . . . . . . . . . . . 17
β’
((((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β§ π β π΅) β§ π = (π(.rβπ
)π)) β§ π = 0 ) β Β¬ π = 0 ) |
79 | 75, 78 | pm2.65da 815 |
. . . . . . . . . . . . . . . 16
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β§ π β π΅) β§ π = (π(.rβπ
)π)) β Β¬ π = 0 ) |
80 | 79 | neqned 2947 |
. . . . . . . . . . . . . . 15
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β§ π β π΅) β§ π = (π(.rβπ
)π)) β π β 0 ) |
81 | | eldifsn 4790 |
. . . . . . . . . . . . . . 15
β’ (π β (π΅ β { 0 }) β (π β π΅ β§ π β 0 )) |
82 | 66, 80, 81 | sylanbrc 583 |
. . . . . . . . . . . . . 14
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β§ π β π΅) β§ π = (π(.rβπ
)π)) β π β (π΅ β { 0 })) |
83 | 70 | ad2antrr 724 |
. . . . . . . . . . . . . . 15
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β§ π β π΅) β§ π = (π(.rβπ
)π)) β π
β Ring) |
84 | 5, 27, 83, 62, 64 | ringcld 20079 |
. . . . . . . . . . . . . 14
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β§ π β π΅) β§ π = (π(.rβπ
)π)) β (π(.rβπ
)π) β π΅) |
85 | | eqid 2732 |
. . . . . . . . . . . . . . . . 17
β’
(1rβπ
) = (1rβπ
) |
86 | 5, 85 | ringidcl 20082 |
. . . . . . . . . . . . . . . 16
β’ (π
β Ring β
(1rβπ
)
β π΅) |
87 | 3, 86 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (π β (1rβπ
) β π΅) |
88 | 87 | ad6antr 734 |
. . . . . . . . . . . . . 14
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β§ π β π΅) β§ π = (π(.rβπ
)π)) β (1rβπ
) β π΅) |
89 | 2 | ad6antr 734 |
. . . . . . . . . . . . . 14
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β§ π β π΅) β§ π = (π(.rβπ
)π)) β π
β IDomn) |
90 | 5, 27, 85, 83, 66 | ringlidmd 20088 |
. . . . . . . . . . . . . . 15
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β§ π β π΅) β§ π = (π(.rβπ
)π)) β ((1rβπ
)(.rβπ
)π) = π) |
91 | | simpr 485 |
. . . . . . . . . . . . . . 15
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β§ π β π΅) β§ π = (π(.rβπ
)π)) β π = (π(.rβπ
)π)) |
92 | 5, 27, 83, 62, 64, 66 | ringassd 20078 |
. . . . . . . . . . . . . . . 16
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β§ π β π΅) β§ π = (π(.rβπ
)π)) β ((π(.rβπ
)π)(.rβπ
)π) = (π(.rβπ
)(π(.rβπ
)π))) |
93 | | simp-4r 782 |
. . . . . . . . . . . . . . . . 17
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β§ π β π΅) β§ π = (π(.rβπ
)π)) β (π(.rβπ
)π) = π) |
94 | 93 | oveq2d 7424 |
. . . . . . . . . . . . . . . 16
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β§ π β π΅) β§ π = (π(.rβπ
)π)) β (π(.rβπ
)(π(.rβπ
)π)) = (π(.rβπ
)π)) |
95 | 92, 94 | eqtr2d 2773 |
. . . . . . . . . . . . . . 15
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β§ π β π΅) β§ π = (π(.rβπ
)π)) β (π(.rβπ
)π) = ((π(.rβπ
)π)(.rβπ
)π)) |
96 | 90, 91, 95 | 3eqtrrd 2777 |
. . . . . . . . . . . . . 14
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β§ π β π΅) β§ π = (π(.rβπ
)π)) β ((π(.rβπ
)π)(.rβπ
)π) = ((1rβπ
)(.rβπ
)π)) |
97 | 5, 65, 27, 82, 84, 88, 89, 96 | idomrcan 32372 |
. . . . . . . . . . . . 13
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β§ π β π΅) β§ π = (π(.rβπ
)π)) β (π(.rβπ
)π) = (1rβπ
)) |
98 | 8, 85 | 1unit 20187 |
. . . . . . . . . . . . . . 15
β’ (π
β Ring β
(1rβπ
)
β (Unitβπ
)) |
99 | 3, 98 | syl 17 |
. . . . . . . . . . . . . 14
β’ (π β (1rβπ
) β (Unitβπ
)) |
100 | 99 | ad6antr 734 |
. . . . . . . . . . . . 13
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β§ π β π΅) β§ π = (π(.rβπ
)π)) β (1rβπ
) β (Unitβπ
)) |
101 | 97, 100 | eqeltrd 2833 |
. . . . . . . . . . . 12
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β§ π β π΅) β§ π = (π(.rβπ
)π)) β (π(.rβπ
)π) β (Unitβπ
)) |
102 | 8, 27, 5 | unitmulclb 20194 |
. . . . . . . . . . . . 13
β’ ((π
β CRing β§ π β π΅ β§ π β π΅) β ((π(.rβπ
)π) β (Unitβπ
) β (π β (Unitβπ
) β§ π β (Unitβπ
)))) |
103 | 102 | simplbda 500 |
. . . . . . . . . . . 12
β’ (((π
β CRing β§ π β π΅ β§ π β π΅) β§ (π(.rβπ
)π) β (Unitβπ
)) β π β (Unitβπ
)) |
104 | 61, 62, 64, 101, 103 | syl31anc 1373 |
. . . . . . . . . . 11
β’
(((((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β§ π β π΅) β§ π = (π(.rβπ
)π)) β π β (Unitβπ
)) |
105 | 1 | ad4antr 730 |
. . . . . . . . . . . 12
β’
(((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β π β π΅) |
106 | | simpr 485 |
. . . . . . . . . . . . 13
β’
(((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β π β π) |
107 | 106, 10 | eleqtrdi 2843 |
. . . . . . . . . . . 12
β’
(((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β π β (πΎβ{π})) |
108 | 5, 27, 9 | rspsnel 32479 |
. . . . . . . . . . . . 13
β’ ((π
β Ring β§ π β π΅) β (π β (πΎβ{π}) β βπ β π΅ π = (π(.rβπ
)π))) |
109 | 108 | biimpa 477 |
. . . . . . . . . . . 12
β’ (((π
β Ring β§ π β π΅) β§ π β (πΎβ{π})) β βπ β π΅ π = (π(.rβπ
)π)) |
110 | 70, 105, 107, 109 | syl21anc 836 |
. . . . . . . . . . 11
β’
(((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β βπ β π΅ π = (π(.rβπ
)π)) |
111 | 104, 110 | r19.29a 3162 |
. . . . . . . . . 10
β’
(((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β π β (Unitβπ
)) |
112 | | simp-4r 782 |
. . . . . . . . . . 11
β’
(((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β π β (π΅ β (Unitβπ
))) |
113 | 112 | eldifbd 3961 |
. . . . . . . . . 10
β’
(((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β§ π β π) β Β¬ π β (Unitβπ
)) |
114 | 111, 113 | pm2.65da 815 |
. . . . . . . . 9
β’ ((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β Β¬ π β π) |
115 | 57, 114 | eldifd 3959 |
. . . . . . . 8
β’ ((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β π β ((πΎβ{π}) β π)) |
116 | 5, 15, 16, 22, 52, 115 | mxidlmaxv 32579 |
. . . . . . 7
β’ ((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β (πΎβ{π}) = π΅) |
117 | | eqid 2732 |
. . . . . . . 8
β’ (πΎβ{π}) = (πΎβ{π}) |
118 | 2 | ad3antrrr 728 |
. . . . . . . 8
β’ ((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β π
β IDomn) |
119 | 8, 9, 117, 5, 18, 118 | unitpidl1 32537 |
. . . . . . 7
β’ ((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β ((πΎβ{π}) = π΅ β π β (Unitβπ
))) |
120 | 116, 119 | mpbid 231 |
. . . . . 6
β’ ((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β π β (Unitβπ
)) |
121 | 17 | eldifbd 3961 |
. . . . . 6
β’ ((((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β§ (π(.rβπ
)π) = π) β Β¬ π β (Unitβπ
)) |
122 | 120, 121 | pm2.65da 815 |
. . . . 5
β’ (((π β§ π β (π΅ β (Unitβπ
))) β§ π β (π΅ β (Unitβπ
))) β Β¬ (π(.rβπ
)π) = π) |
123 | 122 | anasss 467 |
. . . 4
β’ ((π β§ (π β (π΅ β (Unitβπ
)) β§ π β (π΅ β (Unitβπ
)))) β Β¬ (π(.rβπ
)π) = π) |
124 | 123 | neqned 2947 |
. . 3
β’ ((π β§ (π β (π΅ β (Unitβπ
)) β§ π β (π΅ β (Unitβπ
)))) β (π(.rβπ
)π) β π) |
125 | 124 | ralrimivva 3200 |
. 2
β’ (π β βπ β (π΅ β (Unitβπ
))βπ β (π΅ β (Unitβπ
))(π(.rβπ
)π) β π) |
126 | | eqid 2732 |
. . 3
β’
(Irredβπ
) =
(Irredβπ
) |
127 | | eqid 2732 |
. . 3
β’ (π΅ β (Unitβπ
)) = (π΅ β (Unitβπ
)) |
128 | 5, 8, 126, 127, 27 | isirred 20232 |
. 2
β’ (π β (Irredβπ
) β (π β (π΅ β (Unitβπ
)) β§ βπ β (π΅ β (Unitβπ
))βπ β (π΅ β (Unitβπ
))(π(.rβπ
)π) β π)) |
129 | 14, 125, 128 | sylanbrc 583 |
1
β’ (π β π β (Irredβπ
)) |