MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyremlem Structured version   Visualization version   GIF version

Theorem plyremlem 26364
Description: Closure of a linear factor. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
plyrem.1 𝐺 = (Xpf − (ℂ × {𝐴}))
Assertion
Ref Expression
plyremlem (𝐴 ∈ ℂ → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (𝐺 “ {0}) = {𝐴}))

Proof of Theorem plyremlem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 plyrem.1 . . 3 𝐺 = (Xpf − (ℂ × {𝐴}))
2 ssid 4031 . . . . 5 ℂ ⊆ ℂ
3 ax-1cn 11242 . . . . 5 1 ∈ ℂ
4 plyid 26268 . . . . 5 ((ℂ ⊆ ℂ ∧ 1 ∈ ℂ) → Xp ∈ (Poly‘ℂ))
52, 3, 4mp2an 691 . . . 4 Xp ∈ (Poly‘ℂ)
6 plyconst 26265 . . . . 5 ((ℂ ⊆ ℂ ∧ 𝐴 ∈ ℂ) → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
72, 6mpan 689 . . . 4 (𝐴 ∈ ℂ → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
8 plysubcl 26281 . . . 4 ((Xp ∈ (Poly‘ℂ) ∧ (ℂ × {𝐴}) ∈ (Poly‘ℂ)) → (Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℂ))
95, 7, 8sylancr 586 . . 3 (𝐴 ∈ ℂ → (Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℂ))
101, 9eqeltrid 2848 . 2 (𝐴 ∈ ℂ → 𝐺 ∈ (Poly‘ℂ))
11 negcl 11536 . . . . . . . . 9 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
12 addcom 11476 . . . . . . . . 9 ((-𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (-𝐴 + 𝑧) = (𝑧 + -𝐴))
1311, 12sylan 579 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (-𝐴 + 𝑧) = (𝑧 + -𝐴))
14 negsub 11584 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑧 + -𝐴) = (𝑧𝐴))
1514ancoms 458 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧 + -𝐴) = (𝑧𝐴))
1613, 15eqtrd 2780 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (-𝐴 + 𝑧) = (𝑧𝐴))
1716mpteq2dva 5266 . . . . . 6 (𝐴 ∈ ℂ → (𝑧 ∈ ℂ ↦ (-𝐴 + 𝑧)) = (𝑧 ∈ ℂ ↦ (𝑧𝐴)))
18 cnex 11265 . . . . . . . 8 ℂ ∈ V
1918a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → ℂ ∈ V)
20 negex 11534 . . . . . . . 8 -𝐴 ∈ V
2120a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → -𝐴 ∈ V)
22 simpr 484 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
23 fconstmpt 5762 . . . . . . . 8 (ℂ × {-𝐴}) = (𝑧 ∈ ℂ ↦ -𝐴)
2423a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → (ℂ × {-𝐴}) = (𝑧 ∈ ℂ ↦ -𝐴))
25 df-idp 26248 . . . . . . . . 9 Xp = ( I ↾ ℂ)
26 mptresid 6080 . . . . . . . . 9 ( I ↾ ℂ) = (𝑧 ∈ ℂ ↦ 𝑧)
2725, 26eqtri 2768 . . . . . . . 8 Xp = (𝑧 ∈ ℂ ↦ 𝑧)
2827a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → Xp = (𝑧 ∈ ℂ ↦ 𝑧))
2919, 21, 22, 24, 28offval2 7734 . . . . . 6 (𝐴 ∈ ℂ → ((ℂ × {-𝐴}) ∘f + Xp) = (𝑧 ∈ ℂ ↦ (-𝐴 + 𝑧)))
30 simpl 482 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝐴 ∈ ℂ)
31 fconstmpt 5762 . . . . . . . 8 (ℂ × {𝐴}) = (𝑧 ∈ ℂ ↦ 𝐴)
3231a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → (ℂ × {𝐴}) = (𝑧 ∈ ℂ ↦ 𝐴))
3319, 22, 30, 28, 32offval2 7734 . . . . . 6 (𝐴 ∈ ℂ → (Xpf − (ℂ × {𝐴})) = (𝑧 ∈ ℂ ↦ (𝑧𝐴)))
3417, 29, 333eqtr4d 2790 . . . . 5 (𝐴 ∈ ℂ → ((ℂ × {-𝐴}) ∘f + Xp) = (Xpf − (ℂ × {𝐴})))
3534, 1eqtr4di 2798 . . . 4 (𝐴 ∈ ℂ → ((ℂ × {-𝐴}) ∘f + Xp) = 𝐺)
3635fveq2d 6924 . . 3 (𝐴 ∈ ℂ → (deg‘((ℂ × {-𝐴}) ∘f + Xp)) = (deg‘𝐺))
37 plyconst 26265 . . . . 5 ((ℂ ⊆ ℂ ∧ -𝐴 ∈ ℂ) → (ℂ × {-𝐴}) ∈ (Poly‘ℂ))
382, 11, 37sylancr 586 . . . 4 (𝐴 ∈ ℂ → (ℂ × {-𝐴}) ∈ (Poly‘ℂ))
395a1i 11 . . . 4 (𝐴 ∈ ℂ → Xp ∈ (Poly‘ℂ))
40 0dgr 26304 . . . . . 6 (-𝐴 ∈ ℂ → (deg‘(ℂ × {-𝐴})) = 0)
4111, 40syl 17 . . . . 5 (𝐴 ∈ ℂ → (deg‘(ℂ × {-𝐴})) = 0)
42 0lt1 11812 . . . . 5 0 < 1
4341, 42eqbrtrdi 5205 . . . 4 (𝐴 ∈ ℂ → (deg‘(ℂ × {-𝐴})) < 1)
44 eqid 2740 . . . . 5 (deg‘(ℂ × {-𝐴})) = (deg‘(ℂ × {-𝐴}))
45 dgrid 26324 . . . . . 6 (deg‘Xp) = 1
4645eqcomi 2749 . . . . 5 1 = (deg‘Xp)
4744, 46dgradd2 26328 . . . 4 (((ℂ × {-𝐴}) ∈ (Poly‘ℂ) ∧ Xp ∈ (Poly‘ℂ) ∧ (deg‘(ℂ × {-𝐴})) < 1) → (deg‘((ℂ × {-𝐴}) ∘f + Xp)) = 1)
4838, 39, 43, 47syl3anc 1371 . . 3 (𝐴 ∈ ℂ → (deg‘((ℂ × {-𝐴}) ∘f + Xp)) = 1)
4936, 48eqtr3d 2782 . 2 (𝐴 ∈ ℂ → (deg‘𝐺) = 1)
501, 33eqtrid 2792 . . . . . . . . . . 11 (𝐴 ∈ ℂ → 𝐺 = (𝑧 ∈ ℂ ↦ (𝑧𝐴)))
5150fveq1d 6922 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐺𝑧) = ((𝑧 ∈ ℂ ↦ (𝑧𝐴))‘𝑧))
5251adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝐺𝑧) = ((𝑧 ∈ ℂ ↦ (𝑧𝐴))‘𝑧))
53 ovex 7481 . . . . . . . . . 10 (𝑧𝐴) ∈ V
54 eqid 2740 . . . . . . . . . . 11 (𝑧 ∈ ℂ ↦ (𝑧𝐴)) = (𝑧 ∈ ℂ ↦ (𝑧𝐴))
5554fvmpt2 7040 . . . . . . . . . 10 ((𝑧 ∈ ℂ ∧ (𝑧𝐴) ∈ V) → ((𝑧 ∈ ℂ ↦ (𝑧𝐴))‘𝑧) = (𝑧𝐴))
5622, 53, 55sylancl 585 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ (𝑧𝐴))‘𝑧) = (𝑧𝐴))
5752, 56eqtrd 2780 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝐺𝑧) = (𝑧𝐴))
5857eqeq1d 2742 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝐺𝑧) = 0 ↔ (𝑧𝐴) = 0))
59 subeq0 11562 . . . . . . . 8 ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑧𝐴) = 0 ↔ 𝑧 = 𝐴))
6059ancoms 458 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑧𝐴) = 0 ↔ 𝑧 = 𝐴))
6158, 60bitrd 279 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝐺𝑧) = 0 ↔ 𝑧 = 𝐴))
6261pm5.32da 578 . . . . 5 (𝐴 ∈ ℂ → ((𝑧 ∈ ℂ ∧ (𝐺𝑧) = 0) ↔ (𝑧 ∈ ℂ ∧ 𝑧 = 𝐴)))
63 plyf 26257 . . . . . 6 (𝐺 ∈ (Poly‘ℂ) → 𝐺:ℂ⟶ℂ)
64 ffn 6747 . . . . . 6 (𝐺:ℂ⟶ℂ → 𝐺 Fn ℂ)
65 fniniseg 7093 . . . . . 6 (𝐺 Fn ℂ → (𝑧 ∈ (𝐺 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐺𝑧) = 0)))
6610, 63, 64, 654syl 19 . . . . 5 (𝐴 ∈ ℂ → (𝑧 ∈ (𝐺 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐺𝑧) = 0)))
67 eleq1a 2839 . . . . . 6 (𝐴 ∈ ℂ → (𝑧 = 𝐴𝑧 ∈ ℂ))
6867pm4.71rd 562 . . . . 5 (𝐴 ∈ ℂ → (𝑧 = 𝐴 ↔ (𝑧 ∈ ℂ ∧ 𝑧 = 𝐴)))
6962, 66, 683bitr4d 311 . . . 4 (𝐴 ∈ ℂ → (𝑧 ∈ (𝐺 “ {0}) ↔ 𝑧 = 𝐴))
70 velsn 4664 . . . 4 (𝑧 ∈ {𝐴} ↔ 𝑧 = 𝐴)
7169, 70bitr4di 289 . . 3 (𝐴 ∈ ℂ → (𝑧 ∈ (𝐺 “ {0}) ↔ 𝑧 ∈ {𝐴}))
7271eqrdv 2738 . 2 (𝐴 ∈ ℂ → (𝐺 “ {0}) = {𝐴})
7310, 49, 723jca 1128 1 (𝐴 ∈ ℂ → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (𝐺 “ {0}) = {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976  {csn 4648   class class class wbr 5166  cmpt 5249   I cid 5592   × cxp 5698  ccnv 5699  cres 5702  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cmin 11520  -cneg 11521  Polycply 26243  Xpcidp 26244  degcdgr 26246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-0p 25724  df-ply 26247  df-idp 26248  df-coe 26249  df-dgr 26250
This theorem is referenced by:  plyrem  26365  facth  26366  fta1lem  26367  vieta1lem1  26370  vieta1lem2  26371  taylply2  26427  taylply2OLD  26428  ftalem7  27140
  Copyright terms: Public domain W3C validator