| Step | Hyp | Ref
| Expression |
| 1 | | plyrem.1 |
. . 3
⊢ 𝐺 = (Xp
∘f − (ℂ × {𝐴})) |
| 2 | | ssid 3986 |
. . . . 5
⊢ ℂ
⊆ ℂ |
| 3 | | ax-1cn 11192 |
. . . . 5
⊢ 1 ∈
ℂ |
| 4 | | plyid 26171 |
. . . . 5
⊢ ((ℂ
⊆ ℂ ∧ 1 ∈ ℂ) → Xp ∈
(Poly‘ℂ)) |
| 5 | 2, 3, 4 | mp2an 692 |
. . . 4
⊢
Xp ∈ (Poly‘ℂ) |
| 6 | | plyconst 26168 |
. . . . 5
⊢ ((ℂ
⊆ ℂ ∧ 𝐴
∈ ℂ) → (ℂ × {𝐴}) ∈
(Poly‘ℂ)) |
| 7 | 2, 6 | mpan 690 |
. . . 4
⊢ (𝐴 ∈ ℂ → (ℂ
× {𝐴}) ∈
(Poly‘ℂ)) |
| 8 | | plysubcl 26184 |
. . . 4
⊢
((Xp ∈ (Poly‘ℂ) ∧ (ℂ
× {𝐴}) ∈
(Poly‘ℂ)) → (Xp ∘f −
(ℂ × {𝐴}))
∈ (Poly‘ℂ)) |
| 9 | 5, 7, 8 | sylancr 587 |
. . 3
⊢ (𝐴 ∈ ℂ →
(Xp ∘f − (ℂ × {𝐴})) ∈
(Poly‘ℂ)) |
| 10 | 1, 9 | eqeltrid 2839 |
. 2
⊢ (𝐴 ∈ ℂ → 𝐺 ∈
(Poly‘ℂ)) |
| 11 | | negcl 11487 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → -𝐴 ∈
ℂ) |
| 12 | | addcom 11426 |
. . . . . . . . 9
⊢ ((-𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (-𝐴 + 𝑧) = (𝑧 + -𝐴)) |
| 13 | 11, 12 | sylan 580 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (-𝐴 + 𝑧) = (𝑧 + -𝐴)) |
| 14 | | negsub 11536 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑧 + -𝐴) = (𝑧 − 𝐴)) |
| 15 | 14 | ancoms 458 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧 + -𝐴) = (𝑧 − 𝐴)) |
| 16 | 13, 15 | eqtrd 2771 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (-𝐴 + 𝑧) = (𝑧 − 𝐴)) |
| 17 | 16 | mpteq2dva 5219 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → (𝑧 ∈ ℂ ↦ (-𝐴 + 𝑧)) = (𝑧 ∈ ℂ ↦ (𝑧 − 𝐴))) |
| 18 | | cnex 11215 |
. . . . . . . 8
⊢ ℂ
∈ V |
| 19 | 18 | a1i 11 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → ℂ
∈ V) |
| 20 | | negex 11485 |
. . . . . . . 8
⊢ -𝐴 ∈ V |
| 21 | 20 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → -𝐴 ∈ V) |
| 22 | | simpr 484 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑧 ∈
ℂ) |
| 23 | | fconstmpt 5721 |
. . . . . . . 8
⊢ (ℂ
× {-𝐴}) = (𝑧 ∈ ℂ ↦ -𝐴) |
| 24 | 23 | a1i 11 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (ℂ
× {-𝐴}) = (𝑧 ∈ ℂ ↦ -𝐴)) |
| 25 | | df-idp 26151 |
. . . . . . . . 9
⊢
Xp = ( I ↾ ℂ) |
| 26 | | mptresid 6043 |
. . . . . . . . 9
⊢ ( I
↾ ℂ) = (𝑧
∈ ℂ ↦ 𝑧) |
| 27 | 25, 26 | eqtri 2759 |
. . . . . . . 8
⊢
Xp = (𝑧 ∈ ℂ ↦ 𝑧) |
| 28 | 27 | a1i 11 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ →
Xp = (𝑧
∈ ℂ ↦ 𝑧)) |
| 29 | 19, 21, 22, 24, 28 | offval2 7696 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → ((ℂ
× {-𝐴})
∘f + Xp) = (𝑧 ∈ ℂ ↦ (-𝐴 + 𝑧))) |
| 30 | | simpl 482 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝐴 ∈
ℂ) |
| 31 | | fconstmpt 5721 |
. . . . . . . 8
⊢ (ℂ
× {𝐴}) = (𝑧 ∈ ℂ ↦ 𝐴) |
| 32 | 31 | a1i 11 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (ℂ
× {𝐴}) = (𝑧 ∈ ℂ ↦ 𝐴)) |
| 33 | 19, 22, 30, 28, 32 | offval2 7696 |
. . . . . 6
⊢ (𝐴 ∈ ℂ →
(Xp ∘f − (ℂ × {𝐴})) = (𝑧 ∈ ℂ ↦ (𝑧 − 𝐴))) |
| 34 | 17, 29, 33 | 3eqtr4d 2781 |
. . . . 5
⊢ (𝐴 ∈ ℂ → ((ℂ
× {-𝐴})
∘f + Xp) = (Xp
∘f − (ℂ × {𝐴}))) |
| 35 | 34, 1 | eqtr4di 2789 |
. . . 4
⊢ (𝐴 ∈ ℂ → ((ℂ
× {-𝐴})
∘f + Xp) = 𝐺) |
| 36 | 35 | fveq2d 6885 |
. . 3
⊢ (𝐴 ∈ ℂ →
(deg‘((ℂ × {-𝐴}) ∘f +
Xp)) = (deg‘𝐺)) |
| 37 | | plyconst 26168 |
. . . . 5
⊢ ((ℂ
⊆ ℂ ∧ -𝐴
∈ ℂ) → (ℂ × {-𝐴}) ∈
(Poly‘ℂ)) |
| 38 | 2, 11, 37 | sylancr 587 |
. . . 4
⊢ (𝐴 ∈ ℂ → (ℂ
× {-𝐴}) ∈
(Poly‘ℂ)) |
| 39 | 5 | a1i 11 |
. . . 4
⊢ (𝐴 ∈ ℂ →
Xp ∈ (Poly‘ℂ)) |
| 40 | | 0dgr 26207 |
. . . . . 6
⊢ (-𝐴 ∈ ℂ →
(deg‘(ℂ × {-𝐴})) = 0) |
| 41 | 11, 40 | syl 17 |
. . . . 5
⊢ (𝐴 ∈ ℂ →
(deg‘(ℂ × {-𝐴})) = 0) |
| 42 | | 0lt1 11764 |
. . . . 5
⊢ 0 <
1 |
| 43 | 41, 42 | eqbrtrdi 5163 |
. . . 4
⊢ (𝐴 ∈ ℂ →
(deg‘(ℂ × {-𝐴})) < 1) |
| 44 | | eqid 2736 |
. . . . 5
⊢
(deg‘(ℂ × {-𝐴})) = (deg‘(ℂ × {-𝐴})) |
| 45 | | dgrid 26227 |
. . . . . 6
⊢
(deg‘Xp) = 1 |
| 46 | 45 | eqcomi 2745 |
. . . . 5
⊢ 1 =
(deg‘Xp) |
| 47 | 44, 46 | dgradd2 26231 |
. . . 4
⊢
(((ℂ × {-𝐴}) ∈ (Poly‘ℂ) ∧
Xp ∈ (Poly‘ℂ) ∧ (deg‘(ℂ
× {-𝐴})) < 1)
→ (deg‘((ℂ × {-𝐴}) ∘f +
Xp)) = 1) |
| 48 | 38, 39, 43, 47 | syl3anc 1373 |
. . 3
⊢ (𝐴 ∈ ℂ →
(deg‘((ℂ × {-𝐴}) ∘f +
Xp)) = 1) |
| 49 | 36, 48 | eqtr3d 2773 |
. 2
⊢ (𝐴 ∈ ℂ →
(deg‘𝐺) =
1) |
| 50 | 1, 33 | eqtrid 2783 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ → 𝐺 = (𝑧 ∈ ℂ ↦ (𝑧 − 𝐴))) |
| 51 | 50 | fveq1d 6883 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → (𝐺‘𝑧) = ((𝑧 ∈ ℂ ↦ (𝑧 − 𝐴))‘𝑧)) |
| 52 | 51 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝐺‘𝑧) = ((𝑧 ∈ ℂ ↦ (𝑧 − 𝐴))‘𝑧)) |
| 53 | | ovex 7443 |
. . . . . . . . . 10
⊢ (𝑧 − 𝐴) ∈ V |
| 54 | | eqid 2736 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℂ ↦ (𝑧 − 𝐴)) = (𝑧 ∈ ℂ ↦ (𝑧 − 𝐴)) |
| 55 | 54 | fvmpt2 7002 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℂ ∧ (𝑧 − 𝐴) ∈ V) → ((𝑧 ∈ ℂ ↦ (𝑧 − 𝐴))‘𝑧) = (𝑧 − 𝐴)) |
| 56 | 22, 53, 55 | sylancl 586 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ (𝑧 − 𝐴))‘𝑧) = (𝑧 − 𝐴)) |
| 57 | 52, 56 | eqtrd 2771 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝐺‘𝑧) = (𝑧 − 𝐴)) |
| 58 | 57 | eqeq1d 2738 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝐺‘𝑧) = 0 ↔ (𝑧 − 𝐴) = 0)) |
| 59 | | subeq0 11514 |
. . . . . . . 8
⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑧 − 𝐴) = 0 ↔ 𝑧 = 𝐴)) |
| 60 | 59 | ancoms 458 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑧 − 𝐴) = 0 ↔ 𝑧 = 𝐴)) |
| 61 | 58, 60 | bitrd 279 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝐺‘𝑧) = 0 ↔ 𝑧 = 𝐴)) |
| 62 | 61 | pm5.32da 579 |
. . . . 5
⊢ (𝐴 ∈ ℂ → ((𝑧 ∈ ℂ ∧ (𝐺‘𝑧) = 0) ↔ (𝑧 ∈ ℂ ∧ 𝑧 = 𝐴))) |
| 63 | | plyf 26160 |
. . . . . 6
⊢ (𝐺 ∈ (Poly‘ℂ)
→ 𝐺:ℂ⟶ℂ) |
| 64 | | ffn 6711 |
. . . . . 6
⊢ (𝐺:ℂ⟶ℂ →
𝐺 Fn
ℂ) |
| 65 | | fniniseg 7055 |
. . . . . 6
⊢ (𝐺 Fn ℂ → (𝑧 ∈ (◡𝐺 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐺‘𝑧) = 0))) |
| 66 | 10, 63, 64, 65 | 4syl 19 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (𝑧 ∈ (◡𝐺 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐺‘𝑧) = 0))) |
| 67 | | eleq1a 2830 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → (𝑧 = 𝐴 → 𝑧 ∈ ℂ)) |
| 68 | 67 | pm4.71rd 562 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (𝑧 = 𝐴 ↔ (𝑧 ∈ ℂ ∧ 𝑧 = 𝐴))) |
| 69 | 62, 66, 68 | 3bitr4d 311 |
. . . 4
⊢ (𝐴 ∈ ℂ → (𝑧 ∈ (◡𝐺 “ {0}) ↔ 𝑧 = 𝐴)) |
| 70 | | velsn 4622 |
. . . 4
⊢ (𝑧 ∈ {𝐴} ↔ 𝑧 = 𝐴) |
| 71 | 69, 70 | bitr4di 289 |
. . 3
⊢ (𝐴 ∈ ℂ → (𝑧 ∈ (◡𝐺 “ {0}) ↔ 𝑧 ∈ {𝐴})) |
| 72 | 71 | eqrdv 2734 |
. 2
⊢ (𝐴 ∈ ℂ → (◡𝐺 “ {0}) = {𝐴}) |
| 73 | 10, 49, 72 | 3jca 1128 |
1
⊢ (𝐴 ∈ ℂ → (𝐺 ∈ (Poly‘ℂ)
∧ (deg‘𝐺) = 1
∧ (◡𝐺 “ {0}) = {𝐴})) |