MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyremlem Structured version   Visualization version   GIF version

Theorem plyremlem 26361
Description: Closure of a linear factor. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
plyrem.1 𝐺 = (Xpf − (ℂ × {𝐴}))
Assertion
Ref Expression
plyremlem (𝐴 ∈ ℂ → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (𝐺 “ {0}) = {𝐴}))

Proof of Theorem plyremlem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 plyrem.1 . . 3 𝐺 = (Xpf − (ℂ × {𝐴}))
2 ssid 4018 . . . . 5 ℂ ⊆ ℂ
3 ax-1cn 11211 . . . . 5 1 ∈ ℂ
4 plyid 26263 . . . . 5 ((ℂ ⊆ ℂ ∧ 1 ∈ ℂ) → Xp ∈ (Poly‘ℂ))
52, 3, 4mp2an 692 . . . 4 Xp ∈ (Poly‘ℂ)
6 plyconst 26260 . . . . 5 ((ℂ ⊆ ℂ ∧ 𝐴 ∈ ℂ) → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
72, 6mpan 690 . . . 4 (𝐴 ∈ ℂ → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
8 plysubcl 26276 . . . 4 ((Xp ∈ (Poly‘ℂ) ∧ (ℂ × {𝐴}) ∈ (Poly‘ℂ)) → (Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℂ))
95, 7, 8sylancr 587 . . 3 (𝐴 ∈ ℂ → (Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℂ))
101, 9eqeltrid 2843 . 2 (𝐴 ∈ ℂ → 𝐺 ∈ (Poly‘ℂ))
11 negcl 11506 . . . . . . . . 9 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
12 addcom 11445 . . . . . . . . 9 ((-𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (-𝐴 + 𝑧) = (𝑧 + -𝐴))
1311, 12sylan 580 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (-𝐴 + 𝑧) = (𝑧 + -𝐴))
14 negsub 11555 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑧 + -𝐴) = (𝑧𝐴))
1514ancoms 458 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧 + -𝐴) = (𝑧𝐴))
1613, 15eqtrd 2775 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (-𝐴 + 𝑧) = (𝑧𝐴))
1716mpteq2dva 5248 . . . . . 6 (𝐴 ∈ ℂ → (𝑧 ∈ ℂ ↦ (-𝐴 + 𝑧)) = (𝑧 ∈ ℂ ↦ (𝑧𝐴)))
18 cnex 11234 . . . . . . . 8 ℂ ∈ V
1918a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → ℂ ∈ V)
20 negex 11504 . . . . . . . 8 -𝐴 ∈ V
2120a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → -𝐴 ∈ V)
22 simpr 484 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
23 fconstmpt 5751 . . . . . . . 8 (ℂ × {-𝐴}) = (𝑧 ∈ ℂ ↦ -𝐴)
2423a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → (ℂ × {-𝐴}) = (𝑧 ∈ ℂ ↦ -𝐴))
25 df-idp 26243 . . . . . . . . 9 Xp = ( I ↾ ℂ)
26 mptresid 6071 . . . . . . . . 9 ( I ↾ ℂ) = (𝑧 ∈ ℂ ↦ 𝑧)
2725, 26eqtri 2763 . . . . . . . 8 Xp = (𝑧 ∈ ℂ ↦ 𝑧)
2827a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → Xp = (𝑧 ∈ ℂ ↦ 𝑧))
2919, 21, 22, 24, 28offval2 7717 . . . . . 6 (𝐴 ∈ ℂ → ((ℂ × {-𝐴}) ∘f + Xp) = (𝑧 ∈ ℂ ↦ (-𝐴 + 𝑧)))
30 simpl 482 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝐴 ∈ ℂ)
31 fconstmpt 5751 . . . . . . . 8 (ℂ × {𝐴}) = (𝑧 ∈ ℂ ↦ 𝐴)
3231a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → (ℂ × {𝐴}) = (𝑧 ∈ ℂ ↦ 𝐴))
3319, 22, 30, 28, 32offval2 7717 . . . . . 6 (𝐴 ∈ ℂ → (Xpf − (ℂ × {𝐴})) = (𝑧 ∈ ℂ ↦ (𝑧𝐴)))
3417, 29, 333eqtr4d 2785 . . . . 5 (𝐴 ∈ ℂ → ((ℂ × {-𝐴}) ∘f + Xp) = (Xpf − (ℂ × {𝐴})))
3534, 1eqtr4di 2793 . . . 4 (𝐴 ∈ ℂ → ((ℂ × {-𝐴}) ∘f + Xp) = 𝐺)
3635fveq2d 6911 . . 3 (𝐴 ∈ ℂ → (deg‘((ℂ × {-𝐴}) ∘f + Xp)) = (deg‘𝐺))
37 plyconst 26260 . . . . 5 ((ℂ ⊆ ℂ ∧ -𝐴 ∈ ℂ) → (ℂ × {-𝐴}) ∈ (Poly‘ℂ))
382, 11, 37sylancr 587 . . . 4 (𝐴 ∈ ℂ → (ℂ × {-𝐴}) ∈ (Poly‘ℂ))
395a1i 11 . . . 4 (𝐴 ∈ ℂ → Xp ∈ (Poly‘ℂ))
40 0dgr 26299 . . . . . 6 (-𝐴 ∈ ℂ → (deg‘(ℂ × {-𝐴})) = 0)
4111, 40syl 17 . . . . 5 (𝐴 ∈ ℂ → (deg‘(ℂ × {-𝐴})) = 0)
42 0lt1 11783 . . . . 5 0 < 1
4341, 42eqbrtrdi 5187 . . . 4 (𝐴 ∈ ℂ → (deg‘(ℂ × {-𝐴})) < 1)
44 eqid 2735 . . . . 5 (deg‘(ℂ × {-𝐴})) = (deg‘(ℂ × {-𝐴}))
45 dgrid 26319 . . . . . 6 (deg‘Xp) = 1
4645eqcomi 2744 . . . . 5 1 = (deg‘Xp)
4744, 46dgradd2 26323 . . . 4 (((ℂ × {-𝐴}) ∈ (Poly‘ℂ) ∧ Xp ∈ (Poly‘ℂ) ∧ (deg‘(ℂ × {-𝐴})) < 1) → (deg‘((ℂ × {-𝐴}) ∘f + Xp)) = 1)
4838, 39, 43, 47syl3anc 1370 . . 3 (𝐴 ∈ ℂ → (deg‘((ℂ × {-𝐴}) ∘f + Xp)) = 1)
4936, 48eqtr3d 2777 . 2 (𝐴 ∈ ℂ → (deg‘𝐺) = 1)
501, 33eqtrid 2787 . . . . . . . . . . 11 (𝐴 ∈ ℂ → 𝐺 = (𝑧 ∈ ℂ ↦ (𝑧𝐴)))
5150fveq1d 6909 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐺𝑧) = ((𝑧 ∈ ℂ ↦ (𝑧𝐴))‘𝑧))
5251adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝐺𝑧) = ((𝑧 ∈ ℂ ↦ (𝑧𝐴))‘𝑧))
53 ovex 7464 . . . . . . . . . 10 (𝑧𝐴) ∈ V
54 eqid 2735 . . . . . . . . . . 11 (𝑧 ∈ ℂ ↦ (𝑧𝐴)) = (𝑧 ∈ ℂ ↦ (𝑧𝐴))
5554fvmpt2 7027 . . . . . . . . . 10 ((𝑧 ∈ ℂ ∧ (𝑧𝐴) ∈ V) → ((𝑧 ∈ ℂ ↦ (𝑧𝐴))‘𝑧) = (𝑧𝐴))
5622, 53, 55sylancl 586 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ (𝑧𝐴))‘𝑧) = (𝑧𝐴))
5752, 56eqtrd 2775 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝐺𝑧) = (𝑧𝐴))
5857eqeq1d 2737 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝐺𝑧) = 0 ↔ (𝑧𝐴) = 0))
59 subeq0 11533 . . . . . . . 8 ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑧𝐴) = 0 ↔ 𝑧 = 𝐴))
6059ancoms 458 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑧𝐴) = 0 ↔ 𝑧 = 𝐴))
6158, 60bitrd 279 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝐺𝑧) = 0 ↔ 𝑧 = 𝐴))
6261pm5.32da 579 . . . . 5 (𝐴 ∈ ℂ → ((𝑧 ∈ ℂ ∧ (𝐺𝑧) = 0) ↔ (𝑧 ∈ ℂ ∧ 𝑧 = 𝐴)))
63 plyf 26252 . . . . . 6 (𝐺 ∈ (Poly‘ℂ) → 𝐺:ℂ⟶ℂ)
64 ffn 6737 . . . . . 6 (𝐺:ℂ⟶ℂ → 𝐺 Fn ℂ)
65 fniniseg 7080 . . . . . 6 (𝐺 Fn ℂ → (𝑧 ∈ (𝐺 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐺𝑧) = 0)))
6610, 63, 64, 654syl 19 . . . . 5 (𝐴 ∈ ℂ → (𝑧 ∈ (𝐺 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐺𝑧) = 0)))
67 eleq1a 2834 . . . . . 6 (𝐴 ∈ ℂ → (𝑧 = 𝐴𝑧 ∈ ℂ))
6867pm4.71rd 562 . . . . 5 (𝐴 ∈ ℂ → (𝑧 = 𝐴 ↔ (𝑧 ∈ ℂ ∧ 𝑧 = 𝐴)))
6962, 66, 683bitr4d 311 . . . 4 (𝐴 ∈ ℂ → (𝑧 ∈ (𝐺 “ {0}) ↔ 𝑧 = 𝐴))
70 velsn 4647 . . . 4 (𝑧 ∈ {𝐴} ↔ 𝑧 = 𝐴)
7169, 70bitr4di 289 . . 3 (𝐴 ∈ ℂ → (𝑧 ∈ (𝐺 “ {0}) ↔ 𝑧 ∈ {𝐴}))
7271eqrdv 2733 . 2 (𝐴 ∈ ℂ → (𝐺 “ {0}) = {𝐴})
7310, 49, 723jca 1127 1 (𝐴 ∈ ℂ → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (𝐺 “ {0}) = {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  Vcvv 3478  wss 3963  {csn 4631   class class class wbr 5148  cmpt 5231   I cid 5582   × cxp 5687  ccnv 5688  cres 5691  cima 5692   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  f cof 7695  cc 11151  0cc0 11153  1c1 11154   + caddc 11156   < clt 11293  cmin 11490  -cneg 11491  Polycply 26238  Xpcidp 26239  degcdgr 26241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-rlim 15522  df-sum 15720  df-0p 25719  df-ply 26242  df-idp 26243  df-coe 26244  df-dgr 26245
This theorem is referenced by:  plyrem  26362  facth  26363  fta1lem  26364  vieta1lem1  26367  vieta1lem2  26368  taylply2  26424  taylply2OLD  26425  ftalem7  27137
  Copyright terms: Public domain W3C validator