Step | Hyp | Ref
| Expression |
1 | | plyrem.1 |
. . 3
⊢ 𝐺 = (Xp
∘𝑓 − (ℂ × {𝐴})) |
2 | | ssid 3914 |
. . . . 5
⊢ ℂ
⊆ ℂ |
3 | | ax-1cn 10446 |
. . . . 5
⊢ 1 ∈
ℂ |
4 | | plyid 24487 |
. . . . 5
⊢ ((ℂ
⊆ ℂ ∧ 1 ∈ ℂ) → Xp ∈
(Poly‘ℂ)) |
5 | 2, 3, 4 | mp2an 688 |
. . . 4
⊢
Xp ∈ (Poly‘ℂ) |
6 | | plyconst 24484 |
. . . . 5
⊢ ((ℂ
⊆ ℂ ∧ 𝐴
∈ ℂ) → (ℂ × {𝐴}) ∈
(Poly‘ℂ)) |
7 | 2, 6 | mpan 686 |
. . . 4
⊢ (𝐴 ∈ ℂ → (ℂ
× {𝐴}) ∈
(Poly‘ℂ)) |
8 | | plysubcl 24500 |
. . . 4
⊢
((Xp ∈ (Poly‘ℂ) ∧ (ℂ
× {𝐴}) ∈
(Poly‘ℂ)) → (Xp ∘𝑓
− (ℂ × {𝐴})) ∈
(Poly‘ℂ)) |
9 | 5, 7, 8 | sylancr 587 |
. . 3
⊢ (𝐴 ∈ ℂ →
(Xp ∘𝑓 − (ℂ ×
{𝐴})) ∈
(Poly‘ℂ)) |
10 | 1, 9 | syl5eqel 2887 |
. 2
⊢ (𝐴 ∈ ℂ → 𝐺 ∈
(Poly‘ℂ)) |
11 | | negcl 10738 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → -𝐴 ∈
ℂ) |
12 | | addcom 10678 |
. . . . . . . . 9
⊢ ((-𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (-𝐴 + 𝑧) = (𝑧 + -𝐴)) |
13 | 11, 12 | sylan 580 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (-𝐴 + 𝑧) = (𝑧 + -𝐴)) |
14 | | negsub 10787 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑧 + -𝐴) = (𝑧 − 𝐴)) |
15 | 14 | ancoms 459 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧 + -𝐴) = (𝑧 − 𝐴)) |
16 | 13, 15 | eqtrd 2831 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (-𝐴 + 𝑧) = (𝑧 − 𝐴)) |
17 | 16 | mpteq2dva 5060 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → (𝑧 ∈ ℂ ↦ (-𝐴 + 𝑧)) = (𝑧 ∈ ℂ ↦ (𝑧 − 𝐴))) |
18 | | cnex 10469 |
. . . . . . . 8
⊢ ℂ
∈ V |
19 | 18 | a1i 11 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → ℂ
∈ V) |
20 | | negex 10736 |
. . . . . . . 8
⊢ -𝐴 ∈ V |
21 | 20 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → -𝐴 ∈ V) |
22 | | simpr 485 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑧 ∈
ℂ) |
23 | | fconstmpt 5505 |
. . . . . . . 8
⊢ (ℂ
× {-𝐴}) = (𝑧 ∈ ℂ ↦ -𝐴) |
24 | 23 | a1i 11 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (ℂ
× {-𝐴}) = (𝑧 ∈ ℂ ↦ -𝐴)) |
25 | | df-idp 24467 |
. . . . . . . . 9
⊢
Xp = ( I ↾ ℂ) |
26 | | mptresid 5803 |
. . . . . . . . 9
⊢ (𝑧 ∈ ℂ ↦ 𝑧) = ( I ↾
ℂ) |
27 | 25, 26 | eqtr4i 2822 |
. . . . . . . 8
⊢
Xp = (𝑧 ∈ ℂ ↦ 𝑧) |
28 | 27 | a1i 11 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ →
Xp = (𝑧
∈ ℂ ↦ 𝑧)) |
29 | 19, 21, 22, 24, 28 | offval2 7289 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → ((ℂ
× {-𝐴})
∘𝑓 + Xp) = (𝑧 ∈ ℂ ↦ (-𝐴 + 𝑧))) |
30 | | simpl 483 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝐴 ∈
ℂ) |
31 | | fconstmpt 5505 |
. . . . . . . 8
⊢ (ℂ
× {𝐴}) = (𝑧 ∈ ℂ ↦ 𝐴) |
32 | 31 | a1i 11 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (ℂ
× {𝐴}) = (𝑧 ∈ ℂ ↦ 𝐴)) |
33 | 19, 22, 30, 28, 32 | offval2 7289 |
. . . . . 6
⊢ (𝐴 ∈ ℂ →
(Xp ∘𝑓 − (ℂ ×
{𝐴})) = (𝑧 ∈ ℂ ↦ (𝑧 − 𝐴))) |
34 | 17, 29, 33 | 3eqtr4d 2841 |
. . . . 5
⊢ (𝐴 ∈ ℂ → ((ℂ
× {-𝐴})
∘𝑓 + Xp) = (Xp
∘𝑓 − (ℂ × {𝐴}))) |
35 | 34, 1 | syl6eqr 2849 |
. . . 4
⊢ (𝐴 ∈ ℂ → ((ℂ
× {-𝐴})
∘𝑓 + Xp) = 𝐺) |
36 | 35 | fveq2d 6547 |
. . 3
⊢ (𝐴 ∈ ℂ →
(deg‘((ℂ × {-𝐴}) ∘𝑓 +
Xp)) = (deg‘𝐺)) |
37 | | plyconst 24484 |
. . . . 5
⊢ ((ℂ
⊆ ℂ ∧ -𝐴
∈ ℂ) → (ℂ × {-𝐴}) ∈
(Poly‘ℂ)) |
38 | 2, 11, 37 | sylancr 587 |
. . . 4
⊢ (𝐴 ∈ ℂ → (ℂ
× {-𝐴}) ∈
(Poly‘ℂ)) |
39 | 5 | a1i 11 |
. . . 4
⊢ (𝐴 ∈ ℂ →
Xp ∈ (Poly‘ℂ)) |
40 | | 0dgr 24523 |
. . . . . 6
⊢ (-𝐴 ∈ ℂ →
(deg‘(ℂ × {-𝐴})) = 0) |
41 | 11, 40 | syl 17 |
. . . . 5
⊢ (𝐴 ∈ ℂ →
(deg‘(ℂ × {-𝐴})) = 0) |
42 | | 0lt1 11015 |
. . . . 5
⊢ 0 <
1 |
43 | 41, 42 | syl6eqbr 5005 |
. . . 4
⊢ (𝐴 ∈ ℂ →
(deg‘(ℂ × {-𝐴})) < 1) |
44 | | eqid 2795 |
. . . . 5
⊢
(deg‘(ℂ × {-𝐴})) = (deg‘(ℂ × {-𝐴})) |
45 | | dgrid 24542 |
. . . . . 6
⊢
(deg‘Xp) = 1 |
46 | 45 | eqcomi 2804 |
. . . . 5
⊢ 1 =
(deg‘Xp) |
47 | 44, 46 | dgradd2 24546 |
. . . 4
⊢
(((ℂ × {-𝐴}) ∈ (Poly‘ℂ) ∧
Xp ∈ (Poly‘ℂ) ∧ (deg‘(ℂ
× {-𝐴})) < 1)
→ (deg‘((ℂ × {-𝐴}) ∘𝑓 +
Xp)) = 1) |
48 | 38, 39, 43, 47 | syl3anc 1364 |
. . 3
⊢ (𝐴 ∈ ℂ →
(deg‘((ℂ × {-𝐴}) ∘𝑓 +
Xp)) = 1) |
49 | 36, 48 | eqtr3d 2833 |
. 2
⊢ (𝐴 ∈ ℂ →
(deg‘𝐺) =
1) |
50 | 1, 33 | syl5eq 2843 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ → 𝐺 = (𝑧 ∈ ℂ ↦ (𝑧 − 𝐴))) |
51 | 50 | fveq1d 6545 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → (𝐺‘𝑧) = ((𝑧 ∈ ℂ ↦ (𝑧 − 𝐴))‘𝑧)) |
52 | 51 | adantr 481 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝐺‘𝑧) = ((𝑧 ∈ ℂ ↦ (𝑧 − 𝐴))‘𝑧)) |
53 | | ovex 7053 |
. . . . . . . . . 10
⊢ (𝑧 − 𝐴) ∈ V |
54 | | eqid 2795 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℂ ↦ (𝑧 − 𝐴)) = (𝑧 ∈ ℂ ↦ (𝑧 − 𝐴)) |
55 | 54 | fvmpt2 6650 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℂ ∧ (𝑧 − 𝐴) ∈ V) → ((𝑧 ∈ ℂ ↦ (𝑧 − 𝐴))‘𝑧) = (𝑧 − 𝐴)) |
56 | 22, 53, 55 | sylancl 586 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ (𝑧 − 𝐴))‘𝑧) = (𝑧 − 𝐴)) |
57 | 52, 56 | eqtrd 2831 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝐺‘𝑧) = (𝑧 − 𝐴)) |
58 | 57 | eqeq1d 2797 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝐺‘𝑧) = 0 ↔ (𝑧 − 𝐴) = 0)) |
59 | | subeq0 10765 |
. . . . . . . 8
⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑧 − 𝐴) = 0 ↔ 𝑧 = 𝐴)) |
60 | 59 | ancoms 459 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑧 − 𝐴) = 0 ↔ 𝑧 = 𝐴)) |
61 | 58, 60 | bitrd 280 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝐺‘𝑧) = 0 ↔ 𝑧 = 𝐴)) |
62 | 61 | pm5.32da 579 |
. . . . 5
⊢ (𝐴 ∈ ℂ → ((𝑧 ∈ ℂ ∧ (𝐺‘𝑧) = 0) ↔ (𝑧 ∈ ℂ ∧ 𝑧 = 𝐴))) |
63 | | plyf 24476 |
. . . . . 6
⊢ (𝐺 ∈ (Poly‘ℂ)
→ 𝐺:ℂ⟶ℂ) |
64 | | ffn 6387 |
. . . . . 6
⊢ (𝐺:ℂ⟶ℂ →
𝐺 Fn
ℂ) |
65 | | fniniseg 6700 |
. . . . . 6
⊢ (𝐺 Fn ℂ → (𝑧 ∈ (◡𝐺 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐺‘𝑧) = 0))) |
66 | 10, 63, 64, 65 | 4syl 19 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (𝑧 ∈ (◡𝐺 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐺‘𝑧) = 0))) |
67 | | eleq1a 2878 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → (𝑧 = 𝐴 → 𝑧 ∈ ℂ)) |
68 | 67 | pm4.71rd 563 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (𝑧 = 𝐴 ↔ (𝑧 ∈ ℂ ∧ 𝑧 = 𝐴))) |
69 | 62, 66, 68 | 3bitr4d 312 |
. . . 4
⊢ (𝐴 ∈ ℂ → (𝑧 ∈ (◡𝐺 “ {0}) ↔ 𝑧 = 𝐴)) |
70 | | velsn 4492 |
. . . 4
⊢ (𝑧 ∈ {𝐴} ↔ 𝑧 = 𝐴) |
71 | 69, 70 | syl6bbr 290 |
. . 3
⊢ (𝐴 ∈ ℂ → (𝑧 ∈ (◡𝐺 “ {0}) ↔ 𝑧 ∈ {𝐴})) |
72 | 71 | eqrdv 2793 |
. 2
⊢ (𝐴 ∈ ℂ → (◡𝐺 “ {0}) = {𝐴}) |
73 | 10, 49, 72 | 3jca 1121 |
1
⊢ (𝐴 ∈ ℂ → (𝐺 ∈ (Poly‘ℂ)
∧ (deg‘𝐺) = 1
∧ (◡𝐺 “ {0}) = {𝐴})) |