Step | Hyp | Ref
| Expression |
1 | | plyrem.1 |
. . 3
⊢ 𝐺 = (Xp
∘f − (ℂ × {𝐴})) |
2 | | ssid 3939 |
. . . . 5
⊢ ℂ
⊆ ℂ |
3 | | ax-1cn 10860 |
. . . . 5
⊢ 1 ∈
ℂ |
4 | | plyid 25275 |
. . . . 5
⊢ ((ℂ
⊆ ℂ ∧ 1 ∈ ℂ) → Xp ∈
(Poly‘ℂ)) |
5 | 2, 3, 4 | mp2an 688 |
. . . 4
⊢
Xp ∈ (Poly‘ℂ) |
6 | | plyconst 25272 |
. . . . 5
⊢ ((ℂ
⊆ ℂ ∧ 𝐴
∈ ℂ) → (ℂ × {𝐴}) ∈
(Poly‘ℂ)) |
7 | 2, 6 | mpan 686 |
. . . 4
⊢ (𝐴 ∈ ℂ → (ℂ
× {𝐴}) ∈
(Poly‘ℂ)) |
8 | | plysubcl 25288 |
. . . 4
⊢
((Xp ∈ (Poly‘ℂ) ∧ (ℂ
× {𝐴}) ∈
(Poly‘ℂ)) → (Xp ∘f −
(ℂ × {𝐴}))
∈ (Poly‘ℂ)) |
9 | 5, 7, 8 | sylancr 586 |
. . 3
⊢ (𝐴 ∈ ℂ →
(Xp ∘f − (ℂ × {𝐴})) ∈
(Poly‘ℂ)) |
10 | 1, 9 | eqeltrid 2843 |
. 2
⊢ (𝐴 ∈ ℂ → 𝐺 ∈
(Poly‘ℂ)) |
11 | | negcl 11151 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → -𝐴 ∈
ℂ) |
12 | | addcom 11091 |
. . . . . . . . 9
⊢ ((-𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (-𝐴 + 𝑧) = (𝑧 + -𝐴)) |
13 | 11, 12 | sylan 579 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (-𝐴 + 𝑧) = (𝑧 + -𝐴)) |
14 | | negsub 11199 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑧 + -𝐴) = (𝑧 − 𝐴)) |
15 | 14 | ancoms 458 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧 + -𝐴) = (𝑧 − 𝐴)) |
16 | 13, 15 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (-𝐴 + 𝑧) = (𝑧 − 𝐴)) |
17 | 16 | mpteq2dva 5170 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → (𝑧 ∈ ℂ ↦ (-𝐴 + 𝑧)) = (𝑧 ∈ ℂ ↦ (𝑧 − 𝐴))) |
18 | | cnex 10883 |
. . . . . . . 8
⊢ ℂ
∈ V |
19 | 18 | a1i 11 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → ℂ
∈ V) |
20 | | negex 11149 |
. . . . . . . 8
⊢ -𝐴 ∈ V |
21 | 20 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → -𝐴 ∈ V) |
22 | | simpr 484 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑧 ∈
ℂ) |
23 | | fconstmpt 5640 |
. . . . . . . 8
⊢ (ℂ
× {-𝐴}) = (𝑧 ∈ ℂ ↦ -𝐴) |
24 | 23 | a1i 11 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (ℂ
× {-𝐴}) = (𝑧 ∈ ℂ ↦ -𝐴)) |
25 | | df-idp 25255 |
. . . . . . . . 9
⊢
Xp = ( I ↾ ℂ) |
26 | | mptresid 5947 |
. . . . . . . . 9
⊢ ( I
↾ ℂ) = (𝑧
∈ ℂ ↦ 𝑧) |
27 | 25, 26 | eqtri 2766 |
. . . . . . . 8
⊢
Xp = (𝑧 ∈ ℂ ↦ 𝑧) |
28 | 27 | a1i 11 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ →
Xp = (𝑧
∈ ℂ ↦ 𝑧)) |
29 | 19, 21, 22, 24, 28 | offval2 7531 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → ((ℂ
× {-𝐴})
∘f + Xp) = (𝑧 ∈ ℂ ↦ (-𝐴 + 𝑧))) |
30 | | simpl 482 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝐴 ∈
ℂ) |
31 | | fconstmpt 5640 |
. . . . . . . 8
⊢ (ℂ
× {𝐴}) = (𝑧 ∈ ℂ ↦ 𝐴) |
32 | 31 | a1i 11 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (ℂ
× {𝐴}) = (𝑧 ∈ ℂ ↦ 𝐴)) |
33 | 19, 22, 30, 28, 32 | offval2 7531 |
. . . . . 6
⊢ (𝐴 ∈ ℂ →
(Xp ∘f − (ℂ × {𝐴})) = (𝑧 ∈ ℂ ↦ (𝑧 − 𝐴))) |
34 | 17, 29, 33 | 3eqtr4d 2788 |
. . . . 5
⊢ (𝐴 ∈ ℂ → ((ℂ
× {-𝐴})
∘f + Xp) = (Xp
∘f − (ℂ × {𝐴}))) |
35 | 34, 1 | eqtr4di 2797 |
. . . 4
⊢ (𝐴 ∈ ℂ → ((ℂ
× {-𝐴})
∘f + Xp) = 𝐺) |
36 | 35 | fveq2d 6760 |
. . 3
⊢ (𝐴 ∈ ℂ →
(deg‘((ℂ × {-𝐴}) ∘f +
Xp)) = (deg‘𝐺)) |
37 | | plyconst 25272 |
. . . . 5
⊢ ((ℂ
⊆ ℂ ∧ -𝐴
∈ ℂ) → (ℂ × {-𝐴}) ∈
(Poly‘ℂ)) |
38 | 2, 11, 37 | sylancr 586 |
. . . 4
⊢ (𝐴 ∈ ℂ → (ℂ
× {-𝐴}) ∈
(Poly‘ℂ)) |
39 | 5 | a1i 11 |
. . . 4
⊢ (𝐴 ∈ ℂ →
Xp ∈ (Poly‘ℂ)) |
40 | | 0dgr 25311 |
. . . . . 6
⊢ (-𝐴 ∈ ℂ →
(deg‘(ℂ × {-𝐴})) = 0) |
41 | 11, 40 | syl 17 |
. . . . 5
⊢ (𝐴 ∈ ℂ →
(deg‘(ℂ × {-𝐴})) = 0) |
42 | | 0lt1 11427 |
. . . . 5
⊢ 0 <
1 |
43 | 41, 42 | eqbrtrdi 5109 |
. . . 4
⊢ (𝐴 ∈ ℂ →
(deg‘(ℂ × {-𝐴})) < 1) |
44 | | eqid 2738 |
. . . . 5
⊢
(deg‘(ℂ × {-𝐴})) = (deg‘(ℂ × {-𝐴})) |
45 | | dgrid 25330 |
. . . . . 6
⊢
(deg‘Xp) = 1 |
46 | 45 | eqcomi 2747 |
. . . . 5
⊢ 1 =
(deg‘Xp) |
47 | 44, 46 | dgradd2 25334 |
. . . 4
⊢
(((ℂ × {-𝐴}) ∈ (Poly‘ℂ) ∧
Xp ∈ (Poly‘ℂ) ∧ (deg‘(ℂ
× {-𝐴})) < 1)
→ (deg‘((ℂ × {-𝐴}) ∘f +
Xp)) = 1) |
48 | 38, 39, 43, 47 | syl3anc 1369 |
. . 3
⊢ (𝐴 ∈ ℂ →
(deg‘((ℂ × {-𝐴}) ∘f +
Xp)) = 1) |
49 | 36, 48 | eqtr3d 2780 |
. 2
⊢ (𝐴 ∈ ℂ →
(deg‘𝐺) =
1) |
50 | 1, 33 | syl5eq 2791 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ → 𝐺 = (𝑧 ∈ ℂ ↦ (𝑧 − 𝐴))) |
51 | 50 | fveq1d 6758 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → (𝐺‘𝑧) = ((𝑧 ∈ ℂ ↦ (𝑧 − 𝐴))‘𝑧)) |
52 | 51 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝐺‘𝑧) = ((𝑧 ∈ ℂ ↦ (𝑧 − 𝐴))‘𝑧)) |
53 | | ovex 7288 |
. . . . . . . . . 10
⊢ (𝑧 − 𝐴) ∈ V |
54 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℂ ↦ (𝑧 − 𝐴)) = (𝑧 ∈ ℂ ↦ (𝑧 − 𝐴)) |
55 | 54 | fvmpt2 6868 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℂ ∧ (𝑧 − 𝐴) ∈ V) → ((𝑧 ∈ ℂ ↦ (𝑧 − 𝐴))‘𝑧) = (𝑧 − 𝐴)) |
56 | 22, 53, 55 | sylancl 585 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ (𝑧 − 𝐴))‘𝑧) = (𝑧 − 𝐴)) |
57 | 52, 56 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝐺‘𝑧) = (𝑧 − 𝐴)) |
58 | 57 | eqeq1d 2740 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝐺‘𝑧) = 0 ↔ (𝑧 − 𝐴) = 0)) |
59 | | subeq0 11177 |
. . . . . . . 8
⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑧 − 𝐴) = 0 ↔ 𝑧 = 𝐴)) |
60 | 59 | ancoms 458 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑧 − 𝐴) = 0 ↔ 𝑧 = 𝐴)) |
61 | 58, 60 | bitrd 278 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝐺‘𝑧) = 0 ↔ 𝑧 = 𝐴)) |
62 | 61 | pm5.32da 578 |
. . . . 5
⊢ (𝐴 ∈ ℂ → ((𝑧 ∈ ℂ ∧ (𝐺‘𝑧) = 0) ↔ (𝑧 ∈ ℂ ∧ 𝑧 = 𝐴))) |
63 | | plyf 25264 |
. . . . . 6
⊢ (𝐺 ∈ (Poly‘ℂ)
→ 𝐺:ℂ⟶ℂ) |
64 | | ffn 6584 |
. . . . . 6
⊢ (𝐺:ℂ⟶ℂ →
𝐺 Fn
ℂ) |
65 | | fniniseg 6919 |
. . . . . 6
⊢ (𝐺 Fn ℂ → (𝑧 ∈ (◡𝐺 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐺‘𝑧) = 0))) |
66 | 10, 63, 64, 65 | 4syl 19 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (𝑧 ∈ (◡𝐺 “ {0}) ↔ (𝑧 ∈ ℂ ∧ (𝐺‘𝑧) = 0))) |
67 | | eleq1a 2834 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → (𝑧 = 𝐴 → 𝑧 ∈ ℂ)) |
68 | 67 | pm4.71rd 562 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (𝑧 = 𝐴 ↔ (𝑧 ∈ ℂ ∧ 𝑧 = 𝐴))) |
69 | 62, 66, 68 | 3bitr4d 310 |
. . . 4
⊢ (𝐴 ∈ ℂ → (𝑧 ∈ (◡𝐺 “ {0}) ↔ 𝑧 = 𝐴)) |
70 | | velsn 4574 |
. . . 4
⊢ (𝑧 ∈ {𝐴} ↔ 𝑧 = 𝐴) |
71 | 69, 70 | bitr4di 288 |
. . 3
⊢ (𝐴 ∈ ℂ → (𝑧 ∈ (◡𝐺 “ {0}) ↔ 𝑧 ∈ {𝐴})) |
72 | 71 | eqrdv 2736 |
. 2
⊢ (𝐴 ∈ ℂ → (◡𝐺 “ {0}) = {𝐴}) |
73 | 10, 49, 72 | 3jca 1126 |
1
⊢ (𝐴 ∈ ℂ → (𝐺 ∈ (Poly‘ℂ)
∧ (deg‘𝐺) = 1
∧ (◡𝐺 “ {0}) = {𝐴})) |