Step | Hyp | Ref
| Expression |
1 | | plyrem.1 |
. . 3
β’ πΊ = (Xp
βf β (β Γ {π΄})) |
2 | | ssid 4003 |
. . . . 5
β’ β
β β |
3 | | ax-1cn 11164 |
. . . . 5
β’ 1 β
β |
4 | | plyid 25714 |
. . . . 5
β’ ((β
β β β§ 1 β β) β Xp β
(Polyββ)) |
5 | 2, 3, 4 | mp2an 690 |
. . . 4
β’
Xp β (Polyββ) |
6 | | plyconst 25711 |
. . . . 5
β’ ((β
β β β§ π΄
β β) β (β Γ {π΄}) β
(Polyββ)) |
7 | 2, 6 | mpan 688 |
. . . 4
β’ (π΄ β β β (β
Γ {π΄}) β
(Polyββ)) |
8 | | plysubcl 25727 |
. . . 4
β’
((Xp β (Polyββ) β§ (β
Γ {π΄}) β
(Polyββ)) β (Xp βf β
(β Γ {π΄}))
β (Polyββ)) |
9 | 5, 7, 8 | sylancr 587 |
. . 3
β’ (π΄ β β β
(Xp βf β (β Γ {π΄})) β
(Polyββ)) |
10 | 1, 9 | eqeltrid 2837 |
. 2
β’ (π΄ β β β πΊ β
(Polyββ)) |
11 | | negcl 11456 |
. . . . . . . . 9
β’ (π΄ β β β -π΄ β
β) |
12 | | addcom 11396 |
. . . . . . . . 9
β’ ((-π΄ β β β§ π§ β β) β (-π΄ + π§) = (π§ + -π΄)) |
13 | 11, 12 | sylan 580 |
. . . . . . . 8
β’ ((π΄ β β β§ π§ β β) β (-π΄ + π§) = (π§ + -π΄)) |
14 | | negsub 11504 |
. . . . . . . . 9
β’ ((π§ β β β§ π΄ β β) β (π§ + -π΄) = (π§ β π΄)) |
15 | 14 | ancoms 459 |
. . . . . . . 8
β’ ((π΄ β β β§ π§ β β) β (π§ + -π΄) = (π§ β π΄)) |
16 | 13, 15 | eqtrd 2772 |
. . . . . . 7
β’ ((π΄ β β β§ π§ β β) β (-π΄ + π§) = (π§ β π΄)) |
17 | 16 | mpteq2dva 5247 |
. . . . . 6
β’ (π΄ β β β (π§ β β β¦ (-π΄ + π§)) = (π§ β β β¦ (π§ β π΄))) |
18 | | cnex 11187 |
. . . . . . . 8
β’ β
β V |
19 | 18 | a1i 11 |
. . . . . . 7
β’ (π΄ β β β β
β V) |
20 | | negex 11454 |
. . . . . . . 8
β’ -π΄ β V |
21 | 20 | a1i 11 |
. . . . . . 7
β’ ((π΄ β β β§ π§ β β) β -π΄ β V) |
22 | | simpr 485 |
. . . . . . 7
β’ ((π΄ β β β§ π§ β β) β π§ β
β) |
23 | | fconstmpt 5736 |
. . . . . . . 8
β’ (β
Γ {-π΄}) = (π§ β β β¦ -π΄) |
24 | 23 | a1i 11 |
. . . . . . 7
β’ (π΄ β β β (β
Γ {-π΄}) = (π§ β β β¦ -π΄)) |
25 | | df-idp 25694 |
. . . . . . . . 9
β’
Xp = ( I βΎ β) |
26 | | mptresid 6048 |
. . . . . . . . 9
β’ ( I
βΎ β) = (π§
β β β¦ π§) |
27 | 25, 26 | eqtri 2760 |
. . . . . . . 8
β’
Xp = (π§ β β β¦ π§) |
28 | 27 | a1i 11 |
. . . . . . 7
β’ (π΄ β β β
Xp = (π§
β β β¦ π§)) |
29 | 19, 21, 22, 24, 28 | offval2 7686 |
. . . . . 6
β’ (π΄ β β β ((β
Γ {-π΄})
βf + Xp) = (π§ β β β¦ (-π΄ + π§))) |
30 | | simpl 483 |
. . . . . . 7
β’ ((π΄ β β β§ π§ β β) β π΄ β
β) |
31 | | fconstmpt 5736 |
. . . . . . . 8
β’ (β
Γ {π΄}) = (π§ β β β¦ π΄) |
32 | 31 | a1i 11 |
. . . . . . 7
β’ (π΄ β β β (β
Γ {π΄}) = (π§ β β β¦ π΄)) |
33 | 19, 22, 30, 28, 32 | offval2 7686 |
. . . . . 6
β’ (π΄ β β β
(Xp βf β (β Γ {π΄})) = (π§ β β β¦ (π§ β π΄))) |
34 | 17, 29, 33 | 3eqtr4d 2782 |
. . . . 5
β’ (π΄ β β β ((β
Γ {-π΄})
βf + Xp) = (Xp
βf β (β Γ {π΄}))) |
35 | 34, 1 | eqtr4di 2790 |
. . . 4
β’ (π΄ β β β ((β
Γ {-π΄})
βf + Xp) = πΊ) |
36 | 35 | fveq2d 6892 |
. . 3
β’ (π΄ β β β
(degβ((β Γ {-π΄}) βf +
Xp)) = (degβπΊ)) |
37 | | plyconst 25711 |
. . . . 5
β’ ((β
β β β§ -π΄
β β) β (β Γ {-π΄}) β
(Polyββ)) |
38 | 2, 11, 37 | sylancr 587 |
. . . 4
β’ (π΄ β β β (β
Γ {-π΄}) β
(Polyββ)) |
39 | 5 | a1i 11 |
. . . 4
β’ (π΄ β β β
Xp β (Polyββ)) |
40 | | 0dgr 25750 |
. . . . . 6
β’ (-π΄ β β β
(degβ(β Γ {-π΄})) = 0) |
41 | 11, 40 | syl 17 |
. . . . 5
β’ (π΄ β β β
(degβ(β Γ {-π΄})) = 0) |
42 | | 0lt1 11732 |
. . . . 5
β’ 0 <
1 |
43 | 41, 42 | eqbrtrdi 5186 |
. . . 4
β’ (π΄ β β β
(degβ(β Γ {-π΄})) < 1) |
44 | | eqid 2732 |
. . . . 5
β’
(degβ(β Γ {-π΄})) = (degβ(β Γ {-π΄})) |
45 | | dgrid 25769 |
. . . . . 6
β’
(degβXp) = 1 |
46 | 45 | eqcomi 2741 |
. . . . 5
β’ 1 =
(degβXp) |
47 | 44, 46 | dgradd2 25773 |
. . . 4
β’
(((β Γ {-π΄}) β (Polyββ) β§
Xp β (Polyββ) β§ (degβ(β
Γ {-π΄})) < 1)
β (degβ((β Γ {-π΄}) βf +
Xp)) = 1) |
48 | 38, 39, 43, 47 | syl3anc 1371 |
. . 3
β’ (π΄ β β β
(degβ((β Γ {-π΄}) βf +
Xp)) = 1) |
49 | 36, 48 | eqtr3d 2774 |
. 2
β’ (π΄ β β β
(degβπΊ) =
1) |
50 | 1, 33 | eqtrid 2784 |
. . . . . . . . . . 11
β’ (π΄ β β β πΊ = (π§ β β β¦ (π§ β π΄))) |
51 | 50 | fveq1d 6890 |
. . . . . . . . . 10
β’ (π΄ β β β (πΊβπ§) = ((π§ β β β¦ (π§ β π΄))βπ§)) |
52 | 51 | adantr 481 |
. . . . . . . . 9
β’ ((π΄ β β β§ π§ β β) β (πΊβπ§) = ((π§ β β β¦ (π§ β π΄))βπ§)) |
53 | | ovex 7438 |
. . . . . . . . . 10
β’ (π§ β π΄) β V |
54 | | eqid 2732 |
. . . . . . . . . . 11
β’ (π§ β β β¦ (π§ β π΄)) = (π§ β β β¦ (π§ β π΄)) |
55 | 54 | fvmpt2 7006 |
. . . . . . . . . 10
β’ ((π§ β β β§ (π§ β π΄) β V) β ((π§ β β β¦ (π§ β π΄))βπ§) = (π§ β π΄)) |
56 | 22, 53, 55 | sylancl 586 |
. . . . . . . . 9
β’ ((π΄ β β β§ π§ β β) β ((π§ β β β¦ (π§ β π΄))βπ§) = (π§ β π΄)) |
57 | 52, 56 | eqtrd 2772 |
. . . . . . . 8
β’ ((π΄ β β β§ π§ β β) β (πΊβπ§) = (π§ β π΄)) |
58 | 57 | eqeq1d 2734 |
. . . . . . 7
β’ ((π΄ β β β§ π§ β β) β ((πΊβπ§) = 0 β (π§ β π΄) = 0)) |
59 | | subeq0 11482 |
. . . . . . . 8
β’ ((π§ β β β§ π΄ β β) β ((π§ β π΄) = 0 β π§ = π΄)) |
60 | 59 | ancoms 459 |
. . . . . . 7
β’ ((π΄ β β β§ π§ β β) β ((π§ β π΄) = 0 β π§ = π΄)) |
61 | 58, 60 | bitrd 278 |
. . . . . 6
β’ ((π΄ β β β§ π§ β β) β ((πΊβπ§) = 0 β π§ = π΄)) |
62 | 61 | pm5.32da 579 |
. . . . 5
β’ (π΄ β β β ((π§ β β β§ (πΊβπ§) = 0) β (π§ β β β§ π§ = π΄))) |
63 | | plyf 25703 |
. . . . . 6
β’ (πΊ β (Polyββ)
β πΊ:ββΆβ) |
64 | | ffn 6714 |
. . . . . 6
β’ (πΊ:ββΆβ β
πΊ Fn
β) |
65 | | fniniseg 7058 |
. . . . . 6
β’ (πΊ Fn β β (π§ β (β‘πΊ β {0}) β (π§ β β β§ (πΊβπ§) = 0))) |
66 | 10, 63, 64, 65 | 4syl 19 |
. . . . 5
β’ (π΄ β β β (π§ β (β‘πΊ β {0}) β (π§ β β β§ (πΊβπ§) = 0))) |
67 | | eleq1a 2828 |
. . . . . 6
β’ (π΄ β β β (π§ = π΄ β π§ β β)) |
68 | 67 | pm4.71rd 563 |
. . . . 5
β’ (π΄ β β β (π§ = π΄ β (π§ β β β§ π§ = π΄))) |
69 | 62, 66, 68 | 3bitr4d 310 |
. . . 4
β’ (π΄ β β β (π§ β (β‘πΊ β {0}) β π§ = π΄)) |
70 | | velsn 4643 |
. . . 4
β’ (π§ β {π΄} β π§ = π΄) |
71 | 69, 70 | bitr4di 288 |
. . 3
β’ (π΄ β β β (π§ β (β‘πΊ β {0}) β π§ β {π΄})) |
72 | 71 | eqrdv 2730 |
. 2
β’ (π΄ β β β (β‘πΊ β {0}) = {π΄}) |
73 | 10, 49, 72 | 3jca 1128 |
1
β’ (π΄ β β β (πΊ β (Polyββ)
β§ (degβπΊ) = 1
β§ (β‘πΊ β {0}) = {π΄})) |