Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngunsnply Structured version   Visualization version   GIF version

Theorem rngunsnply 40115
Description: Adjoining one element to a ring results in a set of polynomial evaluations. (Contributed by Stefan O'Rear, 30-Nov-2014.)
Hypotheses
Ref Expression
rngunsnply.b (𝜑𝐵 ∈ (SubRing‘ℂfld))
rngunsnply.x (𝜑𝑋 ∈ ℂ)
rngunsnply.s (𝜑𝑆 = ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
Assertion
Ref Expression
rngunsnply (𝜑 → (𝑉𝑆 ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝𝑋)))
Distinct variable groups:   𝜑,𝑝   𝐵,𝑝   𝑋,𝑝   𝑉,𝑝
Allowed substitution hint:   𝑆(𝑝)

Proof of Theorem rngunsnply
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rngunsnply.s . . 3 (𝜑𝑆 = ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
21eleq2d 2875 . 2 (𝜑 → (𝑉𝑆𝑉 ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋}))))
3 cnring 20113 . . . . . . 7 fld ∈ Ring
43a1i 11 . . . . . 6 (𝜑 → ℂfld ∈ Ring)
5 cnfldbas 20095 . . . . . . 7 ℂ = (Base‘ℂfld)
65a1i 11 . . . . . 6 (𝜑 → ℂ = (Base‘ℂfld))
7 rngunsnply.b . . . . . . . 8 (𝜑𝐵 ∈ (SubRing‘ℂfld))
85subrgss 19529 . . . . . . . 8 (𝐵 ∈ (SubRing‘ℂfld) → 𝐵 ⊆ ℂ)
97, 8syl 17 . . . . . . 7 (𝜑𝐵 ⊆ ℂ)
10 rngunsnply.x . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
1110snssd 4702 . . . . . . 7 (𝜑 → {𝑋} ⊆ ℂ)
129, 11unssd 4113 . . . . . 6 (𝜑 → (𝐵 ∪ {𝑋}) ⊆ ℂ)
13 eqidd 2799 . . . . . 6 (𝜑 → (RingSpan‘ℂfld) = (RingSpan‘ℂfld))
14 eqidd 2799 . . . . . 6 (𝜑 → ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})) = ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
15 eqidd 2799 . . . . . . 7 (𝜑 → (ℂflds {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)}) = (ℂflds {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)}))
16 cnfld0 20115 . . . . . . . 8 0 = (0g‘ℂfld)
1716a1i 11 . . . . . . 7 (𝜑 → 0 = (0g‘ℂfld))
18 cnfldadd 20096 . . . . . . . 8 + = (+g‘ℂfld)
1918a1i 11 . . . . . . 7 (𝜑 → + = (+g‘ℂfld))
20 plyf 24795 . . . . . . . . . . . 12 (𝑝 ∈ (Poly‘𝐵) → 𝑝:ℂ⟶ℂ)
21 ffvelrn 6826 . . . . . . . . . . . 12 ((𝑝:ℂ⟶ℂ ∧ 𝑋 ∈ ℂ) → (𝑝𝑋) ∈ ℂ)
2220, 10, 21syl2anr 599 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Poly‘𝐵)) → (𝑝𝑋) ∈ ℂ)
23 eleq1 2877 . . . . . . . . . . 11 (𝑎 = (𝑝𝑋) → (𝑎 ∈ ℂ ↔ (𝑝𝑋) ∈ ℂ))
2422, 23syl5ibrcom 250 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Poly‘𝐵)) → (𝑎 = (𝑝𝑋) → 𝑎 ∈ ℂ))
2524rexlimdva 3243 . . . . . . . . 9 (𝜑 → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) → 𝑎 ∈ ℂ))
2625ss2abdv 3991 . . . . . . . 8 (𝜑 → {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ⊆ {𝑎𝑎 ∈ ℂ})
27 abid2 2932 . . . . . . . . 9 {𝑎𝑎 ∈ ℂ} = ℂ
2827, 5eqtri 2821 . . . . . . . 8 {𝑎𝑎 ∈ ℂ} = (Base‘ℂfld)
2926, 28sseqtrdi 3965 . . . . . . 7 (𝜑 → {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ⊆ (Base‘ℂfld))
30 abid2 2932 . . . . . . . . 9 {𝑎𝑎𝐵} = 𝐵
31 plyconst 24803 . . . . . . . . . . . . 13 ((𝐵 ⊆ ℂ ∧ 𝑎𝐵) → (ℂ × {𝑎}) ∈ (Poly‘𝐵))
329, 31sylan 583 . . . . . . . . . . . 12 ((𝜑𝑎𝐵) → (ℂ × {𝑎}) ∈ (Poly‘𝐵))
3310adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑎𝐵) → 𝑋 ∈ ℂ)
34 vex 3444 . . . . . . . . . . . . . . 15 𝑎 ∈ V
3534fvconst2 6943 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → ((ℂ × {𝑎})‘𝑋) = 𝑎)
3633, 35syl 17 . . . . . . . . . . . . 13 ((𝜑𝑎𝐵) → ((ℂ × {𝑎})‘𝑋) = 𝑎)
3736eqcomd 2804 . . . . . . . . . . . 12 ((𝜑𝑎𝐵) → 𝑎 = ((ℂ × {𝑎})‘𝑋))
38 fveq1 6644 . . . . . . . . . . . . 13 (𝑝 = (ℂ × {𝑎}) → (𝑝𝑋) = ((ℂ × {𝑎})‘𝑋))
3938rspceeqv 3586 . . . . . . . . . . . 12 (((ℂ × {𝑎}) ∈ (Poly‘𝐵) ∧ 𝑎 = ((ℂ × {𝑎})‘𝑋)) → ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋))
4032, 37, 39syl2anc 587 . . . . . . . . . . 11 ((𝜑𝑎𝐵) → ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋))
4140ex 416 . . . . . . . . . 10 (𝜑 → (𝑎𝐵 → ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)))
4241ss2abdv 3991 . . . . . . . . 9 (𝜑 → {𝑎𝑎𝐵} ⊆ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
4330, 42eqsstrrid 3964 . . . . . . . 8 (𝜑𝐵 ⊆ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
44 subrgsubg 19534 . . . . . . . . . 10 (𝐵 ∈ (SubRing‘ℂfld) → 𝐵 ∈ (SubGrp‘ℂfld))
457, 44syl 17 . . . . . . . . 9 (𝜑𝐵 ∈ (SubGrp‘ℂfld))
4616subg0cl 18279 . . . . . . . . 9 (𝐵 ∈ (SubGrp‘ℂfld) → 0 ∈ 𝐵)
4745, 46syl 17 . . . . . . . 8 (𝜑 → 0 ∈ 𝐵)
4843, 47sseldd 3916 . . . . . . 7 (𝜑 → 0 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
49 biid 264 . . . . . . . . 9 (𝜑𝜑)
50 vex 3444 . . . . . . . . . 10 𝑏 ∈ V
51 eqeq1 2802 . . . . . . . . . . . 12 (𝑎 = 𝑏 → (𝑎 = (𝑝𝑋) ↔ 𝑏 = (𝑝𝑋)))
5251rexbidv 3256 . . . . . . . . . . 11 (𝑎 = 𝑏 → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑏 = (𝑝𝑋)))
53 fveq1 6644 . . . . . . . . . . . . 13 (𝑝 = 𝑒 → (𝑝𝑋) = (𝑒𝑋))
5453eqeq2d 2809 . . . . . . . . . . . 12 (𝑝 = 𝑒 → (𝑏 = (𝑝𝑋) ↔ 𝑏 = (𝑒𝑋)))
5554cbvrexvw 3397 . . . . . . . . . . 11 (∃𝑝 ∈ (Poly‘𝐵)𝑏 = (𝑝𝑋) ↔ ∃𝑒 ∈ (Poly‘𝐵)𝑏 = (𝑒𝑋))
5652, 55syl6bb 290 . . . . . . . . . 10 (𝑎 = 𝑏 → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) ↔ ∃𝑒 ∈ (Poly‘𝐵)𝑏 = (𝑒𝑋)))
5750, 56elab 3615 . . . . . . . . 9 (𝑏 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ↔ ∃𝑒 ∈ (Poly‘𝐵)𝑏 = (𝑒𝑋))
58 vex 3444 . . . . . . . . . 10 𝑐 ∈ V
59 eqeq1 2802 . . . . . . . . . . . 12 (𝑎 = 𝑐 → (𝑎 = (𝑝𝑋) ↔ 𝑐 = (𝑝𝑋)))
6059rexbidv 3256 . . . . . . . . . . 11 (𝑎 = 𝑐 → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑐 = (𝑝𝑋)))
61 fveq1 6644 . . . . . . . . . . . . 13 (𝑝 = 𝑑 → (𝑝𝑋) = (𝑑𝑋))
6261eqeq2d 2809 . . . . . . . . . . . 12 (𝑝 = 𝑑 → (𝑐 = (𝑝𝑋) ↔ 𝑐 = (𝑑𝑋)))
6362cbvrexvw 3397 . . . . . . . . . . 11 (∃𝑝 ∈ (Poly‘𝐵)𝑐 = (𝑝𝑋) ↔ ∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋))
6460, 63syl6bb 290 . . . . . . . . . 10 (𝑎 = 𝑐 → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) ↔ ∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋)))
6558, 64elab 3615 . . . . . . . . 9 (𝑐 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ↔ ∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋))
66 simplr 768 . . . . . . . . . . . . . . . 16 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → 𝑒 ∈ (Poly‘𝐵))
67 simpr 488 . . . . . . . . . . . . . . . 16 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → 𝑑 ∈ (Poly‘𝐵))
6818subrgacl 19539 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐵𝑏𝐵) → (𝑎 + 𝑏) ∈ 𝐵)
69683expb 1117 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ (SubRing‘ℂfld) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 + 𝑏) ∈ 𝐵)
707, 69sylan 583 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 + 𝑏) ∈ 𝐵)
7170adantlr 714 . . . . . . . . . . . . . . . . 17 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 + 𝑏) ∈ 𝐵)
7271adantlr 714 . . . . . . . . . . . . . . . 16 ((((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 + 𝑏) ∈ 𝐵)
7366, 67, 72plyadd 24814 . . . . . . . . . . . . . . 15 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → (𝑒f + 𝑑) ∈ (Poly‘𝐵))
74 plyf 24795 . . . . . . . . . . . . . . . . . . 19 (𝑒 ∈ (Poly‘𝐵) → 𝑒:ℂ⟶ℂ)
7574ffnd 6488 . . . . . . . . . . . . . . . . . 18 (𝑒 ∈ (Poly‘𝐵) → 𝑒 Fn ℂ)
7675ad2antlr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → 𝑒 Fn ℂ)
77 plyf 24795 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ (Poly‘𝐵) → 𝑑:ℂ⟶ℂ)
7877ffnd 6488 . . . . . . . . . . . . . . . . . 18 (𝑑 ∈ (Poly‘𝐵) → 𝑑 Fn ℂ)
7978adantl 485 . . . . . . . . . . . . . . . . 17 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → 𝑑 Fn ℂ)
80 cnex 10607 . . . . . . . . . . . . . . . . . 18 ℂ ∈ V
8180a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → ℂ ∈ V)
8210ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → 𝑋 ∈ ℂ)
83 fnfvof 7403 . . . . . . . . . . . . . . . . 17 (((𝑒 Fn ℂ ∧ 𝑑 Fn ℂ) ∧ (ℂ ∈ V ∧ 𝑋 ∈ ℂ)) → ((𝑒f + 𝑑)‘𝑋) = ((𝑒𝑋) + (𝑑𝑋)))
8476, 79, 81, 82, 83syl22anc 837 . . . . . . . . . . . . . . . 16 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → ((𝑒f + 𝑑)‘𝑋) = ((𝑒𝑋) + (𝑑𝑋)))
8584eqcomd 2804 . . . . . . . . . . . . . . 15 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → ((𝑒𝑋) + (𝑑𝑋)) = ((𝑒f + 𝑑)‘𝑋))
86 fveq1 6644 . . . . . . . . . . . . . . . 16 (𝑝 = (𝑒f + 𝑑) → (𝑝𝑋) = ((𝑒f + 𝑑)‘𝑋))
8786rspceeqv 3586 . . . . . . . . . . . . . . 15 (((𝑒f + 𝑑) ∈ (Poly‘𝐵) ∧ ((𝑒𝑋) + (𝑑𝑋)) = ((𝑒f + 𝑑)‘𝑋)) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) + (𝑑𝑋)) = (𝑝𝑋))
8873, 85, 87syl2anc 587 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) + (𝑑𝑋)) = (𝑝𝑋))
89 oveq2 7143 . . . . . . . . . . . . . . . 16 (𝑐 = (𝑑𝑋) → ((𝑒𝑋) + 𝑐) = ((𝑒𝑋) + (𝑑𝑋)))
9089eqeq1d 2800 . . . . . . . . . . . . . . 15 (𝑐 = (𝑑𝑋) → (((𝑒𝑋) + 𝑐) = (𝑝𝑋) ↔ ((𝑒𝑋) + (𝑑𝑋)) = (𝑝𝑋)))
9190rexbidv 3256 . . . . . . . . . . . . . 14 (𝑐 = (𝑑𝑋) → (∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) + 𝑐) = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) + (𝑑𝑋)) = (𝑝𝑋)))
9288, 91syl5ibrcom 250 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → (𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) + 𝑐) = (𝑝𝑋)))
9392rexlimdva 3243 . . . . . . . . . . . 12 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) + 𝑐) = (𝑝𝑋)))
94 oveq1 7142 . . . . . . . . . . . . . . 15 (𝑏 = (𝑒𝑋) → (𝑏 + 𝑐) = ((𝑒𝑋) + 𝑐))
9594eqeq1d 2800 . . . . . . . . . . . . . 14 (𝑏 = (𝑒𝑋) → ((𝑏 + 𝑐) = (𝑝𝑋) ↔ ((𝑒𝑋) + 𝑐) = (𝑝𝑋)))
9695rexbidv 3256 . . . . . . . . . . . . 13 (𝑏 = (𝑒𝑋) → (∃𝑝 ∈ (Poly‘𝐵)(𝑏 + 𝑐) = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) + 𝑐) = (𝑝𝑋)))
9796imbi2d 344 . . . . . . . . . . . 12 (𝑏 = (𝑒𝑋) → ((∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 + 𝑐) = (𝑝𝑋)) ↔ (∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) + 𝑐) = (𝑝𝑋))))
9893, 97syl5ibrcom 250 . . . . . . . . . . 11 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (𝑏 = (𝑒𝑋) → (∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 + 𝑐) = (𝑝𝑋))))
9998rexlimdva 3243 . . . . . . . . . 10 (𝜑 → (∃𝑒 ∈ (Poly‘𝐵)𝑏 = (𝑒𝑋) → (∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 + 𝑐) = (𝑝𝑋))))
100993imp 1108 . . . . . . . . 9 ((𝜑 ∧ ∃𝑒 ∈ (Poly‘𝐵)𝑏 = (𝑒𝑋) ∧ ∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋)) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 + 𝑐) = (𝑝𝑋))
10149, 57, 65, 100syl3anb 1158 . . . . . . . 8 ((𝜑𝑏 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ∧ 𝑐 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)}) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 + 𝑐) = (𝑝𝑋))
102 ovex 7168 . . . . . . . . 9 (𝑏 + 𝑐) ∈ V
103 eqeq1 2802 . . . . . . . . . 10 (𝑎 = (𝑏 + 𝑐) → (𝑎 = (𝑝𝑋) ↔ (𝑏 + 𝑐) = (𝑝𝑋)))
104103rexbidv 3256 . . . . . . . . 9 (𝑎 = (𝑏 + 𝑐) → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)(𝑏 + 𝑐) = (𝑝𝑋)))
105102, 104elab 3615 . . . . . . . 8 ((𝑏 + 𝑐) ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ↔ ∃𝑝 ∈ (Poly‘𝐵)(𝑏 + 𝑐) = (𝑝𝑋))
106101, 105sylibr 237 . . . . . . 7 ((𝜑𝑏 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ∧ 𝑐 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)}) → (𝑏 + 𝑐) ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
107 ax-1cn 10584 . . . . . . . . . . . . . . . . . 18 1 ∈ ℂ
108 cnfldneg 20117 . . . . . . . . . . . . . . . . . 18 (1 ∈ ℂ → ((invg‘ℂfld)‘1) = -1)
109107, 108mp1i 13 . . . . . . . . . . . . . . . . 17 (𝜑 → ((invg‘ℂfld)‘1) = -1)
110 cnfld1 20116 . . . . . . . . . . . . . . . . . . . 20 1 = (1r‘ℂfld)
111110subrg1cl 19536 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ (SubRing‘ℂfld) → 1 ∈ 𝐵)
1127, 111syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ 𝐵)
113 eqid 2798 . . . . . . . . . . . . . . . . . . 19 (invg‘ℂfld) = (invg‘ℂfld)
114113subginvcl 18280 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ (SubGrp‘ℂfld) ∧ 1 ∈ 𝐵) → ((invg‘ℂfld)‘1) ∈ 𝐵)
11545, 112, 114syl2anc 587 . . . . . . . . . . . . . . . . 17 (𝜑 → ((invg‘ℂfld)‘1) ∈ 𝐵)
116109, 115eqeltrrd 2891 . . . . . . . . . . . . . . . 16 (𝜑 → -1 ∈ 𝐵)
117 plyconst 24803 . . . . . . . . . . . . . . . 16 ((𝐵 ⊆ ℂ ∧ -1 ∈ 𝐵) → (ℂ × {-1}) ∈ (Poly‘𝐵))
1189, 116, 117syl2anc 587 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ × {-1}) ∈ (Poly‘𝐵))
119118adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (ℂ × {-1}) ∈ (Poly‘𝐵))
120 simpr 488 . . . . . . . . . . . . . 14 ((𝜑𝑒 ∈ (Poly‘𝐵)) → 𝑒 ∈ (Poly‘𝐵))
121 cnfldmul 20097 . . . . . . . . . . . . . . . . . 18 · = (.r‘ℂfld)
122121subrgmcl 19540 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐵𝑏𝐵) → (𝑎 · 𝑏) ∈ 𝐵)
1231223expb 1117 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ (SubRing‘ℂfld) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 · 𝑏) ∈ 𝐵)
1247, 123sylan 583 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 · 𝑏) ∈ 𝐵)
125124adantlr 714 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 · 𝑏) ∈ 𝐵)
126119, 120, 71, 125plymul 24815 . . . . . . . . . . . . 13 ((𝜑𝑒 ∈ (Poly‘𝐵)) → ((ℂ × {-1}) ∘f · 𝑒) ∈ (Poly‘𝐵))
127 ffvelrn 6826 . . . . . . . . . . . . . . . 16 ((𝑒:ℂ⟶ℂ ∧ 𝑋 ∈ ℂ) → (𝑒𝑋) ∈ ℂ)
12874, 10, 127syl2anr 599 . . . . . . . . . . . . . . 15 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (𝑒𝑋) ∈ ℂ)
129 cnfldneg 20117 . . . . . . . . . . . . . . 15 ((𝑒𝑋) ∈ ℂ → ((invg‘ℂfld)‘(𝑒𝑋)) = -(𝑒𝑋))
130128, 129syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑒 ∈ (Poly‘𝐵)) → ((invg‘ℂfld)‘(𝑒𝑋)) = -(𝑒𝑋))
131 negex 10873 . . . . . . . . . . . . . . . . 17 -1 ∈ V
132 fnconstg 6541 . . . . . . . . . . . . . . . . 17 (-1 ∈ V → (ℂ × {-1}) Fn ℂ)
133131, 132mp1i 13 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (ℂ × {-1}) Fn ℂ)
13475adantl 485 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ (Poly‘𝐵)) → 𝑒 Fn ℂ)
13580a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ (Poly‘𝐵)) → ℂ ∈ V)
13610adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ (Poly‘𝐵)) → 𝑋 ∈ ℂ)
137 fnfvof 7403 . . . . . . . . . . . . . . . 16 ((((ℂ × {-1}) Fn ℂ ∧ 𝑒 Fn ℂ) ∧ (ℂ ∈ V ∧ 𝑋 ∈ ℂ)) → (((ℂ × {-1}) ∘f · 𝑒)‘𝑋) = (((ℂ × {-1})‘𝑋) · (𝑒𝑋)))
138133, 134, 135, 136, 137syl22anc 837 . . . . . . . . . . . . . . 15 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (((ℂ × {-1}) ∘f · 𝑒)‘𝑋) = (((ℂ × {-1})‘𝑋) · (𝑒𝑋)))
139131fvconst2 6943 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ ℂ → ((ℂ × {-1})‘𝑋) = -1)
140136, 139syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ (Poly‘𝐵)) → ((ℂ × {-1})‘𝑋) = -1)
141140oveq1d 7150 . . . . . . . . . . . . . . 15 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (((ℂ × {-1})‘𝑋) · (𝑒𝑋)) = (-1 · (𝑒𝑋)))
142128mulm1d 11081 . . . . . . . . . . . . . . 15 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (-1 · (𝑒𝑋)) = -(𝑒𝑋))
143138, 141, 1423eqtrd 2837 . . . . . . . . . . . . . 14 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (((ℂ × {-1}) ∘f · 𝑒)‘𝑋) = -(𝑒𝑋))
144130, 143eqtr4d 2836 . . . . . . . . . . . . 13 ((𝜑𝑒 ∈ (Poly‘𝐵)) → ((invg‘ℂfld)‘(𝑒𝑋)) = (((ℂ × {-1}) ∘f · 𝑒)‘𝑋))
145 fveq1 6644 . . . . . . . . . . . . . 14 (𝑝 = ((ℂ × {-1}) ∘f · 𝑒) → (𝑝𝑋) = (((ℂ × {-1}) ∘f · 𝑒)‘𝑋))
146145rspceeqv 3586 . . . . . . . . . . . . 13 ((((ℂ × {-1}) ∘f · 𝑒) ∈ (Poly‘𝐵) ∧ ((invg‘ℂfld)‘(𝑒𝑋)) = (((ℂ × {-1}) ∘f · 𝑒)‘𝑋)) → ∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘(𝑒𝑋)) = (𝑝𝑋))
147126, 144, 146syl2anc 587 . . . . . . . . . . . 12 ((𝜑𝑒 ∈ (Poly‘𝐵)) → ∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘(𝑒𝑋)) = (𝑝𝑋))
148 fveqeq2 6654 . . . . . . . . . . . . 13 (𝑏 = (𝑒𝑋) → (((invg‘ℂfld)‘𝑏) = (𝑝𝑋) ↔ ((invg‘ℂfld)‘(𝑒𝑋)) = (𝑝𝑋)))
149148rexbidv 3256 . . . . . . . . . . . 12 (𝑏 = (𝑒𝑋) → (∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘𝑏) = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘(𝑒𝑋)) = (𝑝𝑋)))
150147, 149syl5ibrcom 250 . . . . . . . . . . 11 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (𝑏 = (𝑒𝑋) → ∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘𝑏) = (𝑝𝑋)))
151150rexlimdva 3243 . . . . . . . . . 10 (𝜑 → (∃𝑒 ∈ (Poly‘𝐵)𝑏 = (𝑒𝑋) → ∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘𝑏) = (𝑝𝑋)))
152151imp 410 . . . . . . . . 9 ((𝜑 ∧ ∃𝑒 ∈ (Poly‘𝐵)𝑏 = (𝑒𝑋)) → ∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘𝑏) = (𝑝𝑋))
15357, 152sylan2b 596 . . . . . . . 8 ((𝜑𝑏 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)}) → ∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘𝑏) = (𝑝𝑋))
154 fvex 6658 . . . . . . . . 9 ((invg‘ℂfld)‘𝑏) ∈ V
155 eqeq1 2802 . . . . . . . . . 10 (𝑎 = ((invg‘ℂfld)‘𝑏) → (𝑎 = (𝑝𝑋) ↔ ((invg‘ℂfld)‘𝑏) = (𝑝𝑋)))
156155rexbidv 3256 . . . . . . . . 9 (𝑎 = ((invg‘ℂfld)‘𝑏) → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘𝑏) = (𝑝𝑋)))
157154, 156elab 3615 . . . . . . . 8 (((invg‘ℂfld)‘𝑏) ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ↔ ∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘𝑏) = (𝑝𝑋))
158153, 157sylibr 237 . . . . . . 7 ((𝜑𝑏 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)}) → ((invg‘ℂfld)‘𝑏) ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
159110a1i 11 . . . . . . 7 (𝜑 → 1 = (1r‘ℂfld))
160121a1i 11 . . . . . . 7 (𝜑 → · = (.r‘ℂfld))
16143, 112sseldd 3916 . . . . . . 7 (𝜑 → 1 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
162125adantlr 714 . . . . . . . . . . . . . . . 16 ((((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 · 𝑏) ∈ 𝐵)
16366, 67, 72, 162plymul 24815 . . . . . . . . . . . . . . 15 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → (𝑒f · 𝑑) ∈ (Poly‘𝐵))
164 fnfvof 7403 . . . . . . . . . . . . . . . . 17 (((𝑒 Fn ℂ ∧ 𝑑 Fn ℂ) ∧ (ℂ ∈ V ∧ 𝑋 ∈ ℂ)) → ((𝑒f · 𝑑)‘𝑋) = ((𝑒𝑋) · (𝑑𝑋)))
16576, 79, 81, 82, 164syl22anc 837 . . . . . . . . . . . . . . . 16 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → ((𝑒f · 𝑑)‘𝑋) = ((𝑒𝑋) · (𝑑𝑋)))
166165eqcomd 2804 . . . . . . . . . . . . . . 15 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → ((𝑒𝑋) · (𝑑𝑋)) = ((𝑒f · 𝑑)‘𝑋))
167 fveq1 6644 . . . . . . . . . . . . . . . 16 (𝑝 = (𝑒f · 𝑑) → (𝑝𝑋) = ((𝑒f · 𝑑)‘𝑋))
168167rspceeqv 3586 . . . . . . . . . . . . . . 15 (((𝑒f · 𝑑) ∈ (Poly‘𝐵) ∧ ((𝑒𝑋) · (𝑑𝑋)) = ((𝑒f · 𝑑)‘𝑋)) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) · (𝑑𝑋)) = (𝑝𝑋))
169163, 166, 168syl2anc 587 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) · (𝑑𝑋)) = (𝑝𝑋))
170 oveq2 7143 . . . . . . . . . . . . . . . 16 (𝑐 = (𝑑𝑋) → ((𝑒𝑋) · 𝑐) = ((𝑒𝑋) · (𝑑𝑋)))
171170eqeq1d 2800 . . . . . . . . . . . . . . 15 (𝑐 = (𝑑𝑋) → (((𝑒𝑋) · 𝑐) = (𝑝𝑋) ↔ ((𝑒𝑋) · (𝑑𝑋)) = (𝑝𝑋)))
172171rexbidv 3256 . . . . . . . . . . . . . 14 (𝑐 = (𝑑𝑋) → (∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) · 𝑐) = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) · (𝑑𝑋)) = (𝑝𝑋)))
173169, 172syl5ibrcom 250 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → (𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) · 𝑐) = (𝑝𝑋)))
174173rexlimdva 3243 . . . . . . . . . . . 12 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) · 𝑐) = (𝑝𝑋)))
175 oveq1 7142 . . . . . . . . . . . . . . 15 (𝑏 = (𝑒𝑋) → (𝑏 · 𝑐) = ((𝑒𝑋) · 𝑐))
176175eqeq1d 2800 . . . . . . . . . . . . . 14 (𝑏 = (𝑒𝑋) → ((𝑏 · 𝑐) = (𝑝𝑋) ↔ ((𝑒𝑋) · 𝑐) = (𝑝𝑋)))
177176rexbidv 3256 . . . . . . . . . . . . 13 (𝑏 = (𝑒𝑋) → (∃𝑝 ∈ (Poly‘𝐵)(𝑏 · 𝑐) = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) · 𝑐) = (𝑝𝑋)))
178177imbi2d 344 . . . . . . . . . . . 12 (𝑏 = (𝑒𝑋) → ((∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 · 𝑐) = (𝑝𝑋)) ↔ (∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) · 𝑐) = (𝑝𝑋))))
179174, 178syl5ibrcom 250 . . . . . . . . . . 11 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (𝑏 = (𝑒𝑋) → (∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 · 𝑐) = (𝑝𝑋))))
180179rexlimdva 3243 . . . . . . . . . 10 (𝜑 → (∃𝑒 ∈ (Poly‘𝐵)𝑏 = (𝑒𝑋) → (∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 · 𝑐) = (𝑝𝑋))))
1811803imp 1108 . . . . . . . . 9 ((𝜑 ∧ ∃𝑒 ∈ (Poly‘𝐵)𝑏 = (𝑒𝑋) ∧ ∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋)) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 · 𝑐) = (𝑝𝑋))
18249, 57, 65, 181syl3anb 1158 . . . . . . . 8 ((𝜑𝑏 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ∧ 𝑐 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)}) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 · 𝑐) = (𝑝𝑋))
183 ovex 7168 . . . . . . . . 9 (𝑏 · 𝑐) ∈ V
184 eqeq1 2802 . . . . . . . . . 10 (𝑎 = (𝑏 · 𝑐) → (𝑎 = (𝑝𝑋) ↔ (𝑏 · 𝑐) = (𝑝𝑋)))
185184rexbidv 3256 . . . . . . . . 9 (𝑎 = (𝑏 · 𝑐) → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)(𝑏 · 𝑐) = (𝑝𝑋)))
186183, 185elab 3615 . . . . . . . 8 ((𝑏 · 𝑐) ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ↔ ∃𝑝 ∈ (Poly‘𝐵)(𝑏 · 𝑐) = (𝑝𝑋))
187182, 186sylibr 237 . . . . . . 7 ((𝜑𝑏 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ∧ 𝑐 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)}) → (𝑏 · 𝑐) ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
18815, 17, 19, 29, 48, 106, 158, 159, 160, 161, 187, 4issubrngd2 19954 . . . . . 6 (𝜑 → {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ∈ (SubRing‘ℂfld))
189 plyid 24806 . . . . . . . . . . 11 ((𝐵 ⊆ ℂ ∧ 1 ∈ 𝐵) → Xp ∈ (Poly‘𝐵))
1909, 112, 189syl2anc 587 . . . . . . . . . 10 (𝜑Xp ∈ (Poly‘𝐵))
191 df-idp 24786 . . . . . . . . . . . 12 Xp = ( I ↾ ℂ)
192191fveq1i 6646 . . . . . . . . . . 11 (Xp𝑋) = (( I ↾ ℂ)‘𝑋)
193 fvresi 6912 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (( I ↾ ℂ)‘𝑋) = 𝑋)
19410, 193syl 17 . . . . . . . . . . 11 (𝜑 → (( I ↾ ℂ)‘𝑋) = 𝑋)
195192, 194syl5req 2846 . . . . . . . . . 10 (𝜑𝑋 = (Xp𝑋))
196 fveq1 6644 . . . . . . . . . . 11 (𝑝 = Xp → (𝑝𝑋) = (Xp𝑋))
197196rspceeqv 3586 . . . . . . . . . 10 ((Xp ∈ (Poly‘𝐵) ∧ 𝑋 = (Xp𝑋)) → ∃𝑝 ∈ (Poly‘𝐵)𝑋 = (𝑝𝑋))
198190, 195, 197syl2anc 587 . . . . . . . . 9 (𝜑 → ∃𝑝 ∈ (Poly‘𝐵)𝑋 = (𝑝𝑋))
199 eqeq1 2802 . . . . . . . . . 10 (𝑎 = 𝑋 → (𝑎 = (𝑝𝑋) ↔ 𝑋 = (𝑝𝑋)))
200199rexbidv 3256 . . . . . . . . 9 (𝑎 = 𝑋 → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑋 = (𝑝𝑋)))
20110, 198, 200elabd 3617 . . . . . . . 8 (𝜑𝑋 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
202201snssd 4702 . . . . . . 7 (𝜑 → {𝑋} ⊆ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
20343, 202unssd 4113 . . . . . 6 (𝜑 → (𝐵 ∪ {𝑋}) ⊆ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
2044, 6, 12, 13, 14, 188, 203rgspnmin 40113 . . . . 5 (𝜑 → ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})) ⊆ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
205204sseld 3914 . . . 4 (𝜑 → (𝑉 ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})) → 𝑉 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)}))
206 fvex 6658 . . . . . . 7 (𝑝𝑋) ∈ V
207 eleq1 2877 . . . . . . 7 (𝑉 = (𝑝𝑋) → (𝑉 ∈ V ↔ (𝑝𝑋) ∈ V))
208206, 207mpbiri 261 . . . . . 6 (𝑉 = (𝑝𝑋) → 𝑉 ∈ V)
209208rexlimivw 3241 . . . . 5 (∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝𝑋) → 𝑉 ∈ V)
210 eqeq1 2802 . . . . . 6 (𝑎 = 𝑉 → (𝑎 = (𝑝𝑋) ↔ 𝑉 = (𝑝𝑋)))
211210rexbidv 3256 . . . . 5 (𝑎 = 𝑉 → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝𝑋)))
212209, 211elab3 3622 . . . 4 (𝑉 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝𝑋))
213205, 212syl6ib 254 . . 3 (𝜑 → (𝑉 ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})) → ∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝𝑋)))
2144, 6, 12, 13, 14rgspncl 40111 . . . . . . 7 (𝜑 → ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})) ∈ (SubRing‘ℂfld))
215214adantr 484 . . . . . 6 ((𝜑𝑝 ∈ (Poly‘𝐵)) → ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})) ∈ (SubRing‘ℂfld))
216 simpr 488 . . . . . 6 ((𝜑𝑝 ∈ (Poly‘𝐵)) → 𝑝 ∈ (Poly‘𝐵))
2174, 6, 12, 13, 14rgspnssid 40112 . . . . . . . . 9 (𝜑 → (𝐵 ∪ {𝑋}) ⊆ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
218217unssbd 4115 . . . . . . . 8 (𝜑 → {𝑋} ⊆ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
219 snidg 4559 . . . . . . . . 9 (𝑋 ∈ ℂ → 𝑋 ∈ {𝑋})
22010, 219syl 17 . . . . . . . 8 (𝜑𝑋 ∈ {𝑋})
221218, 220sseldd 3916 . . . . . . 7 (𝜑𝑋 ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
222221adantr 484 . . . . . 6 ((𝜑𝑝 ∈ (Poly‘𝐵)) → 𝑋 ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
223217unssad 4114 . . . . . . 7 (𝜑𝐵 ⊆ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
224223adantr 484 . . . . . 6 ((𝜑𝑝 ∈ (Poly‘𝐵)) → 𝐵 ⊆ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
225215, 216, 222, 224cnsrplycl 40109 . . . . 5 ((𝜑𝑝 ∈ (Poly‘𝐵)) → (𝑝𝑋) ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
226 eleq1 2877 . . . . 5 (𝑉 = (𝑝𝑋) → (𝑉 ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})) ↔ (𝑝𝑋) ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋}))))
227225, 226syl5ibrcom 250 . . . 4 ((𝜑𝑝 ∈ (Poly‘𝐵)) → (𝑉 = (𝑝𝑋) → 𝑉 ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋}))))
228227rexlimdva 3243 . . 3 (𝜑 → (∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝𝑋) → 𝑉 ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋}))))
229213, 228impbid 215 . 2 (𝜑 → (𝑉 ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})) ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝𝑋)))
2302, 229bitrd 282 1 (𝜑 → (𝑉𝑆 ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  {cab 2776  wrex 3107  Vcvv 3441  cun 3879  wss 3881  {csn 4525   I cid 5424   × cxp 5517  cres 5521   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  f cof 7387  cc 10524  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  -cneg 10860  Basecbs 16475  s cress 16476  +gcplusg 16557  .rcmulr 16558  0gc0g 16705  invgcminusg 18096  SubGrpcsubg 18265  1rcur 19244  Ringcrg 19290  SubRingcsubrg 19524  RingSpancrgspn 19525  fldccnfld 20091  Polycply 24781  Xpcidp 24782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-subg 18268  df-cmn 18900  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-subrg 19526  df-rgspn 19527  df-cnfld 20092  df-0p 24274  df-ply 24785  df-idp 24786  df-coe 24787  df-dgr 24788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator