Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngunsnply Structured version   Visualization version   GIF version

Theorem rngunsnply 41915
Description: Adjoining one element to a ring results in a set of polynomial evaluations. (Contributed by Stefan O'Rear, 30-Nov-2014.)
Hypotheses
Ref Expression
rngunsnply.b (πœ‘ β†’ 𝐡 ∈ (SubRingβ€˜β„‚fld))
rngunsnply.x (πœ‘ β†’ 𝑋 ∈ β„‚)
rngunsnply.s (πœ‘ β†’ 𝑆 = ((RingSpanβ€˜β„‚fld)β€˜(𝐡 βˆͺ {𝑋})))
Assertion
Ref Expression
rngunsnply (πœ‘ β†’ (𝑉 ∈ 𝑆 ↔ βˆƒπ‘ ∈ (Polyβ€˜π΅)𝑉 = (π‘β€˜π‘‹)))
Distinct variable groups:   πœ‘,𝑝   𝐡,𝑝   𝑋,𝑝   𝑉,𝑝
Allowed substitution hint:   𝑆(𝑝)

Proof of Theorem rngunsnply
Dummy variables π‘Ž 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rngunsnply.s . . 3 (πœ‘ β†’ 𝑆 = ((RingSpanβ€˜β„‚fld)β€˜(𝐡 βˆͺ {𝑋})))
21eleq2d 2820 . 2 (πœ‘ β†’ (𝑉 ∈ 𝑆 ↔ 𝑉 ∈ ((RingSpanβ€˜β„‚fld)β€˜(𝐡 βˆͺ {𝑋}))))
3 cnring 20967 . . . . . . 7 β„‚fld ∈ Ring
43a1i 11 . . . . . 6 (πœ‘ β†’ β„‚fld ∈ Ring)
5 cnfldbas 20948 . . . . . . 7 β„‚ = (Baseβ€˜β„‚fld)
65a1i 11 . . . . . 6 (πœ‘ β†’ β„‚ = (Baseβ€˜β„‚fld))
7 rngunsnply.b . . . . . . . 8 (πœ‘ β†’ 𝐡 ∈ (SubRingβ€˜β„‚fld))
85subrgss 20320 . . . . . . . 8 (𝐡 ∈ (SubRingβ€˜β„‚fld) β†’ 𝐡 βŠ† β„‚)
97, 8syl 17 . . . . . . 7 (πœ‘ β†’ 𝐡 βŠ† β„‚)
10 rngunsnply.x . . . . . . . 8 (πœ‘ β†’ 𝑋 ∈ β„‚)
1110snssd 4813 . . . . . . 7 (πœ‘ β†’ {𝑋} βŠ† β„‚)
129, 11unssd 4187 . . . . . 6 (πœ‘ β†’ (𝐡 βˆͺ {𝑋}) βŠ† β„‚)
13 eqidd 2734 . . . . . 6 (πœ‘ β†’ (RingSpanβ€˜β„‚fld) = (RingSpanβ€˜β„‚fld))
14 eqidd 2734 . . . . . 6 (πœ‘ β†’ ((RingSpanβ€˜β„‚fld)β€˜(𝐡 βˆͺ {𝑋})) = ((RingSpanβ€˜β„‚fld)β€˜(𝐡 βˆͺ {𝑋})))
15 eqidd 2734 . . . . . . 7 (πœ‘ β†’ (β„‚fld β†Ύs {π‘Ž ∣ βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹)}) = (β„‚fld β†Ύs {π‘Ž ∣ βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹)}))
16 cnfld0 20969 . . . . . . . 8 0 = (0gβ€˜β„‚fld)
1716a1i 11 . . . . . . 7 (πœ‘ β†’ 0 = (0gβ€˜β„‚fld))
18 cnfldadd 20949 . . . . . . . 8 + = (+gβ€˜β„‚fld)
1918a1i 11 . . . . . . 7 (πœ‘ β†’ + = (+gβ€˜β„‚fld))
20 plyf 25712 . . . . . . . . . . . 12 (𝑝 ∈ (Polyβ€˜π΅) β†’ 𝑝:β„‚βŸΆβ„‚)
21 ffvelcdm 7084 . . . . . . . . . . . 12 ((𝑝:β„‚βŸΆβ„‚ ∧ 𝑋 ∈ β„‚) β†’ (π‘β€˜π‘‹) ∈ β„‚)
2220, 10, 21syl2anr 598 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑝 ∈ (Polyβ€˜π΅)) β†’ (π‘β€˜π‘‹) ∈ β„‚)
23 eleq1 2822 . . . . . . . . . . 11 (π‘Ž = (π‘β€˜π‘‹) β†’ (π‘Ž ∈ β„‚ ↔ (π‘β€˜π‘‹) ∈ β„‚))
2422, 23syl5ibrcom 246 . . . . . . . . . 10 ((πœ‘ ∧ 𝑝 ∈ (Polyβ€˜π΅)) β†’ (π‘Ž = (π‘β€˜π‘‹) β†’ π‘Ž ∈ β„‚))
2524rexlimdva 3156 . . . . . . . . 9 (πœ‘ β†’ (βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹) β†’ π‘Ž ∈ β„‚))
2625ss2abdv 4061 . . . . . . . 8 (πœ‘ β†’ {π‘Ž ∣ βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹)} βŠ† {π‘Ž ∣ π‘Ž ∈ β„‚})
27 abid2 2872 . . . . . . . . 9 {π‘Ž ∣ π‘Ž ∈ β„‚} = β„‚
2827, 5eqtri 2761 . . . . . . . 8 {π‘Ž ∣ π‘Ž ∈ β„‚} = (Baseβ€˜β„‚fld)
2926, 28sseqtrdi 4033 . . . . . . 7 (πœ‘ β†’ {π‘Ž ∣ βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹)} βŠ† (Baseβ€˜β„‚fld))
30 abid2 2872 . . . . . . . . 9 {π‘Ž ∣ π‘Ž ∈ 𝐡} = 𝐡
31 plyconst 25720 . . . . . . . . . . . . 13 ((𝐡 βŠ† β„‚ ∧ π‘Ž ∈ 𝐡) β†’ (β„‚ Γ— {π‘Ž}) ∈ (Polyβ€˜π΅))
329, 31sylan 581 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘Ž ∈ 𝐡) β†’ (β„‚ Γ— {π‘Ž}) ∈ (Polyβ€˜π΅))
3310adantr 482 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘Ž ∈ 𝐡) β†’ 𝑋 ∈ β„‚)
34 vex 3479 . . . . . . . . . . . . . . 15 π‘Ž ∈ V
3534fvconst2 7205 . . . . . . . . . . . . . 14 (𝑋 ∈ β„‚ β†’ ((β„‚ Γ— {π‘Ž})β€˜π‘‹) = π‘Ž)
3633, 35syl 17 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘Ž ∈ 𝐡) β†’ ((β„‚ Γ— {π‘Ž})β€˜π‘‹) = π‘Ž)
3736eqcomd 2739 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘Ž ∈ 𝐡) β†’ π‘Ž = ((β„‚ Γ— {π‘Ž})β€˜π‘‹))
38 fveq1 6891 . . . . . . . . . . . . 13 (𝑝 = (β„‚ Γ— {π‘Ž}) β†’ (π‘β€˜π‘‹) = ((β„‚ Γ— {π‘Ž})β€˜π‘‹))
3938rspceeqv 3634 . . . . . . . . . . . 12 (((β„‚ Γ— {π‘Ž}) ∈ (Polyβ€˜π΅) ∧ π‘Ž = ((β„‚ Γ— {π‘Ž})β€˜π‘‹)) β†’ βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹))
4032, 37, 39syl2anc 585 . . . . . . . . . . 11 ((πœ‘ ∧ π‘Ž ∈ 𝐡) β†’ βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹))
4140ex 414 . . . . . . . . . 10 (πœ‘ β†’ (π‘Ž ∈ 𝐡 β†’ βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹)))
4241ss2abdv 4061 . . . . . . . . 9 (πœ‘ β†’ {π‘Ž ∣ π‘Ž ∈ 𝐡} βŠ† {π‘Ž ∣ βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹)})
4330, 42eqsstrrid 4032 . . . . . . . 8 (πœ‘ β†’ 𝐡 βŠ† {π‘Ž ∣ βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹)})
44 subrgsubg 20325 . . . . . . . . . 10 (𝐡 ∈ (SubRingβ€˜β„‚fld) β†’ 𝐡 ∈ (SubGrpβ€˜β„‚fld))
457, 44syl 17 . . . . . . . . 9 (πœ‘ β†’ 𝐡 ∈ (SubGrpβ€˜β„‚fld))
4616subg0cl 19014 . . . . . . . . 9 (𝐡 ∈ (SubGrpβ€˜β„‚fld) β†’ 0 ∈ 𝐡)
4745, 46syl 17 . . . . . . . 8 (πœ‘ β†’ 0 ∈ 𝐡)
4843, 47sseldd 3984 . . . . . . 7 (πœ‘ β†’ 0 ∈ {π‘Ž ∣ βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹)})
49 biid 261 . . . . . . . . 9 (πœ‘ ↔ πœ‘)
50 vex 3479 . . . . . . . . . 10 𝑏 ∈ V
51 eqeq1 2737 . . . . . . . . . . . 12 (π‘Ž = 𝑏 β†’ (π‘Ž = (π‘β€˜π‘‹) ↔ 𝑏 = (π‘β€˜π‘‹)))
5251rexbidv 3179 . . . . . . . . . . 11 (π‘Ž = 𝑏 β†’ (βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹) ↔ βˆƒπ‘ ∈ (Polyβ€˜π΅)𝑏 = (π‘β€˜π‘‹)))
53 fveq1 6891 . . . . . . . . . . . . 13 (𝑝 = 𝑒 β†’ (π‘β€˜π‘‹) = (π‘’β€˜π‘‹))
5453eqeq2d 2744 . . . . . . . . . . . 12 (𝑝 = 𝑒 β†’ (𝑏 = (π‘β€˜π‘‹) ↔ 𝑏 = (π‘’β€˜π‘‹)))
5554cbvrexvw 3236 . . . . . . . . . . 11 (βˆƒπ‘ ∈ (Polyβ€˜π΅)𝑏 = (π‘β€˜π‘‹) ↔ βˆƒπ‘’ ∈ (Polyβ€˜π΅)𝑏 = (π‘’β€˜π‘‹))
5652, 55bitrdi 287 . . . . . . . . . 10 (π‘Ž = 𝑏 β†’ (βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹) ↔ βˆƒπ‘’ ∈ (Polyβ€˜π΅)𝑏 = (π‘’β€˜π‘‹)))
5750, 56elab 3669 . . . . . . . . 9 (𝑏 ∈ {π‘Ž ∣ βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹)} ↔ βˆƒπ‘’ ∈ (Polyβ€˜π΅)𝑏 = (π‘’β€˜π‘‹))
58 vex 3479 . . . . . . . . . 10 𝑐 ∈ V
59 eqeq1 2737 . . . . . . . . . . . 12 (π‘Ž = 𝑐 β†’ (π‘Ž = (π‘β€˜π‘‹) ↔ 𝑐 = (π‘β€˜π‘‹)))
6059rexbidv 3179 . . . . . . . . . . 11 (π‘Ž = 𝑐 β†’ (βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹) ↔ βˆƒπ‘ ∈ (Polyβ€˜π΅)𝑐 = (π‘β€˜π‘‹)))
61 fveq1 6891 . . . . . . . . . . . . 13 (𝑝 = 𝑑 β†’ (π‘β€˜π‘‹) = (π‘‘β€˜π‘‹))
6261eqeq2d 2744 . . . . . . . . . . . 12 (𝑝 = 𝑑 β†’ (𝑐 = (π‘β€˜π‘‹) ↔ 𝑐 = (π‘‘β€˜π‘‹)))
6362cbvrexvw 3236 . . . . . . . . . . 11 (βˆƒπ‘ ∈ (Polyβ€˜π΅)𝑐 = (π‘β€˜π‘‹) ↔ βˆƒπ‘‘ ∈ (Polyβ€˜π΅)𝑐 = (π‘‘β€˜π‘‹))
6460, 63bitrdi 287 . . . . . . . . . 10 (π‘Ž = 𝑐 β†’ (βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹) ↔ βˆƒπ‘‘ ∈ (Polyβ€˜π΅)𝑐 = (π‘‘β€˜π‘‹)))
6558, 64elab 3669 . . . . . . . . 9 (𝑐 ∈ {π‘Ž ∣ βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹)} ↔ βˆƒπ‘‘ ∈ (Polyβ€˜π΅)𝑐 = (π‘‘β€˜π‘‹))
66 simplr 768 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) ∧ 𝑑 ∈ (Polyβ€˜π΅)) β†’ 𝑒 ∈ (Polyβ€˜π΅))
67 simpr 486 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) ∧ 𝑑 ∈ (Polyβ€˜π΅)) β†’ 𝑑 ∈ (Polyβ€˜π΅))
6818subrgacl 20330 . . . . . . . . . . . . . . . . . . . 20 ((𝐡 ∈ (SubRingβ€˜β„‚fld) ∧ π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡) β†’ (π‘Ž + 𝑏) ∈ 𝐡)
69683expb 1121 . . . . . . . . . . . . . . . . . . 19 ((𝐡 ∈ (SubRingβ€˜β„‚fld) ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (π‘Ž + 𝑏) ∈ 𝐡)
707, 69sylan 581 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (π‘Ž + 𝑏) ∈ 𝐡)
7170adantlr 714 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (π‘Ž + 𝑏) ∈ 𝐡)
7271adantlr 714 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) ∧ 𝑑 ∈ (Polyβ€˜π΅)) ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (π‘Ž + 𝑏) ∈ 𝐡)
7366, 67, 72plyadd 25731 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) ∧ 𝑑 ∈ (Polyβ€˜π΅)) β†’ (𝑒 ∘f + 𝑑) ∈ (Polyβ€˜π΅))
74 plyf 25712 . . . . . . . . . . . . . . . . . . 19 (𝑒 ∈ (Polyβ€˜π΅) β†’ 𝑒:β„‚βŸΆβ„‚)
7574ffnd 6719 . . . . . . . . . . . . . . . . . 18 (𝑒 ∈ (Polyβ€˜π΅) β†’ 𝑒 Fn β„‚)
7675ad2antlr 726 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) ∧ 𝑑 ∈ (Polyβ€˜π΅)) β†’ 𝑒 Fn β„‚)
77 plyf 25712 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ (Polyβ€˜π΅) β†’ 𝑑:β„‚βŸΆβ„‚)
7877ffnd 6719 . . . . . . . . . . . . . . . . . 18 (𝑑 ∈ (Polyβ€˜π΅) β†’ 𝑑 Fn β„‚)
7978adantl 483 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) ∧ 𝑑 ∈ (Polyβ€˜π΅)) β†’ 𝑑 Fn β„‚)
80 cnex 11191 . . . . . . . . . . . . . . . . . 18 β„‚ ∈ V
8180a1i 11 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) ∧ 𝑑 ∈ (Polyβ€˜π΅)) β†’ β„‚ ∈ V)
8210ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) ∧ 𝑑 ∈ (Polyβ€˜π΅)) β†’ 𝑋 ∈ β„‚)
83 fnfvof 7687 . . . . . . . . . . . . . . . . 17 (((𝑒 Fn β„‚ ∧ 𝑑 Fn β„‚) ∧ (β„‚ ∈ V ∧ 𝑋 ∈ β„‚)) β†’ ((𝑒 ∘f + 𝑑)β€˜π‘‹) = ((π‘’β€˜π‘‹) + (π‘‘β€˜π‘‹)))
8476, 79, 81, 82, 83syl22anc 838 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) ∧ 𝑑 ∈ (Polyβ€˜π΅)) β†’ ((𝑒 ∘f + 𝑑)β€˜π‘‹) = ((π‘’β€˜π‘‹) + (π‘‘β€˜π‘‹)))
8584eqcomd 2739 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) ∧ 𝑑 ∈ (Polyβ€˜π΅)) β†’ ((π‘’β€˜π‘‹) + (π‘‘β€˜π‘‹)) = ((𝑒 ∘f + 𝑑)β€˜π‘‹))
86 fveq1 6891 . . . . . . . . . . . . . . . 16 (𝑝 = (𝑒 ∘f + 𝑑) β†’ (π‘β€˜π‘‹) = ((𝑒 ∘f + 𝑑)β€˜π‘‹))
8786rspceeqv 3634 . . . . . . . . . . . . . . 15 (((𝑒 ∘f + 𝑑) ∈ (Polyβ€˜π΅) ∧ ((π‘’β€˜π‘‹) + (π‘‘β€˜π‘‹)) = ((𝑒 ∘f + 𝑑)β€˜π‘‹)) β†’ βˆƒπ‘ ∈ (Polyβ€˜π΅)((π‘’β€˜π‘‹) + (π‘‘β€˜π‘‹)) = (π‘β€˜π‘‹))
8873, 85, 87syl2anc 585 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) ∧ 𝑑 ∈ (Polyβ€˜π΅)) β†’ βˆƒπ‘ ∈ (Polyβ€˜π΅)((π‘’β€˜π‘‹) + (π‘‘β€˜π‘‹)) = (π‘β€˜π‘‹))
89 oveq2 7417 . . . . . . . . . . . . . . . 16 (𝑐 = (π‘‘β€˜π‘‹) β†’ ((π‘’β€˜π‘‹) + 𝑐) = ((π‘’β€˜π‘‹) + (π‘‘β€˜π‘‹)))
9089eqeq1d 2735 . . . . . . . . . . . . . . 15 (𝑐 = (π‘‘β€˜π‘‹) β†’ (((π‘’β€˜π‘‹) + 𝑐) = (π‘β€˜π‘‹) ↔ ((π‘’β€˜π‘‹) + (π‘‘β€˜π‘‹)) = (π‘β€˜π‘‹)))
9190rexbidv 3179 . . . . . . . . . . . . . 14 (𝑐 = (π‘‘β€˜π‘‹) β†’ (βˆƒπ‘ ∈ (Polyβ€˜π΅)((π‘’β€˜π‘‹) + 𝑐) = (π‘β€˜π‘‹) ↔ βˆƒπ‘ ∈ (Polyβ€˜π΅)((π‘’β€˜π‘‹) + (π‘‘β€˜π‘‹)) = (π‘β€˜π‘‹)))
9288, 91syl5ibrcom 246 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) ∧ 𝑑 ∈ (Polyβ€˜π΅)) β†’ (𝑐 = (π‘‘β€˜π‘‹) β†’ βˆƒπ‘ ∈ (Polyβ€˜π΅)((π‘’β€˜π‘‹) + 𝑐) = (π‘β€˜π‘‹)))
9392rexlimdva 3156 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) β†’ (βˆƒπ‘‘ ∈ (Polyβ€˜π΅)𝑐 = (π‘‘β€˜π‘‹) β†’ βˆƒπ‘ ∈ (Polyβ€˜π΅)((π‘’β€˜π‘‹) + 𝑐) = (π‘β€˜π‘‹)))
94 oveq1 7416 . . . . . . . . . . . . . . 15 (𝑏 = (π‘’β€˜π‘‹) β†’ (𝑏 + 𝑐) = ((π‘’β€˜π‘‹) + 𝑐))
9594eqeq1d 2735 . . . . . . . . . . . . . 14 (𝑏 = (π‘’β€˜π‘‹) β†’ ((𝑏 + 𝑐) = (π‘β€˜π‘‹) ↔ ((π‘’β€˜π‘‹) + 𝑐) = (π‘β€˜π‘‹)))
9695rexbidv 3179 . . . . . . . . . . . . 13 (𝑏 = (π‘’β€˜π‘‹) β†’ (βˆƒπ‘ ∈ (Polyβ€˜π΅)(𝑏 + 𝑐) = (π‘β€˜π‘‹) ↔ βˆƒπ‘ ∈ (Polyβ€˜π΅)((π‘’β€˜π‘‹) + 𝑐) = (π‘β€˜π‘‹)))
9796imbi2d 341 . . . . . . . . . . . 12 (𝑏 = (π‘’β€˜π‘‹) β†’ ((βˆƒπ‘‘ ∈ (Polyβ€˜π΅)𝑐 = (π‘‘β€˜π‘‹) β†’ βˆƒπ‘ ∈ (Polyβ€˜π΅)(𝑏 + 𝑐) = (π‘β€˜π‘‹)) ↔ (βˆƒπ‘‘ ∈ (Polyβ€˜π΅)𝑐 = (π‘‘β€˜π‘‹) β†’ βˆƒπ‘ ∈ (Polyβ€˜π΅)((π‘’β€˜π‘‹) + 𝑐) = (π‘β€˜π‘‹))))
9893, 97syl5ibrcom 246 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) β†’ (𝑏 = (π‘’β€˜π‘‹) β†’ (βˆƒπ‘‘ ∈ (Polyβ€˜π΅)𝑐 = (π‘‘β€˜π‘‹) β†’ βˆƒπ‘ ∈ (Polyβ€˜π΅)(𝑏 + 𝑐) = (π‘β€˜π‘‹))))
9998rexlimdva 3156 . . . . . . . . . 10 (πœ‘ β†’ (βˆƒπ‘’ ∈ (Polyβ€˜π΅)𝑏 = (π‘’β€˜π‘‹) β†’ (βˆƒπ‘‘ ∈ (Polyβ€˜π΅)𝑐 = (π‘‘β€˜π‘‹) β†’ βˆƒπ‘ ∈ (Polyβ€˜π΅)(𝑏 + 𝑐) = (π‘β€˜π‘‹))))
100993imp 1112 . . . . . . . . 9 ((πœ‘ ∧ βˆƒπ‘’ ∈ (Polyβ€˜π΅)𝑏 = (π‘’β€˜π‘‹) ∧ βˆƒπ‘‘ ∈ (Polyβ€˜π΅)𝑐 = (π‘‘β€˜π‘‹)) β†’ βˆƒπ‘ ∈ (Polyβ€˜π΅)(𝑏 + 𝑐) = (π‘β€˜π‘‹))
10149, 57, 65, 100syl3anb 1162 . . . . . . . 8 ((πœ‘ ∧ 𝑏 ∈ {π‘Ž ∣ βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹)} ∧ 𝑐 ∈ {π‘Ž ∣ βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹)}) β†’ βˆƒπ‘ ∈ (Polyβ€˜π΅)(𝑏 + 𝑐) = (π‘β€˜π‘‹))
102 ovex 7442 . . . . . . . . 9 (𝑏 + 𝑐) ∈ V
103 eqeq1 2737 . . . . . . . . . 10 (π‘Ž = (𝑏 + 𝑐) β†’ (π‘Ž = (π‘β€˜π‘‹) ↔ (𝑏 + 𝑐) = (π‘β€˜π‘‹)))
104103rexbidv 3179 . . . . . . . . 9 (π‘Ž = (𝑏 + 𝑐) β†’ (βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹) ↔ βˆƒπ‘ ∈ (Polyβ€˜π΅)(𝑏 + 𝑐) = (π‘β€˜π‘‹)))
105102, 104elab 3669 . . . . . . . 8 ((𝑏 + 𝑐) ∈ {π‘Ž ∣ βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹)} ↔ βˆƒπ‘ ∈ (Polyβ€˜π΅)(𝑏 + 𝑐) = (π‘β€˜π‘‹))
106101, 105sylibr 233 . . . . . . 7 ((πœ‘ ∧ 𝑏 ∈ {π‘Ž ∣ βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹)} ∧ 𝑐 ∈ {π‘Ž ∣ βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹)}) β†’ (𝑏 + 𝑐) ∈ {π‘Ž ∣ βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹)})
107 ax-1cn 11168 . . . . . . . . . . . . . . . . . 18 1 ∈ β„‚
108 cnfldneg 20971 . . . . . . . . . . . . . . . . . 18 (1 ∈ β„‚ β†’ ((invgβ€˜β„‚fld)β€˜1) = -1)
109107, 108mp1i 13 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ ((invgβ€˜β„‚fld)β€˜1) = -1)
110 cnfld1 20970 . . . . . . . . . . . . . . . . . . . 20 1 = (1rβ€˜β„‚fld)
111110subrg1cl 20327 . . . . . . . . . . . . . . . . . . 19 (𝐡 ∈ (SubRingβ€˜β„‚fld) β†’ 1 ∈ 𝐡)
1127, 111syl 17 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ 1 ∈ 𝐡)
113 eqid 2733 . . . . . . . . . . . . . . . . . . 19 (invgβ€˜β„‚fld) = (invgβ€˜β„‚fld)
114113subginvcl 19015 . . . . . . . . . . . . . . . . . 18 ((𝐡 ∈ (SubGrpβ€˜β„‚fld) ∧ 1 ∈ 𝐡) β†’ ((invgβ€˜β„‚fld)β€˜1) ∈ 𝐡)
11545, 112, 114syl2anc 585 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ ((invgβ€˜β„‚fld)β€˜1) ∈ 𝐡)
116109, 115eqeltrrd 2835 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ -1 ∈ 𝐡)
117 plyconst 25720 . . . . . . . . . . . . . . . 16 ((𝐡 βŠ† β„‚ ∧ -1 ∈ 𝐡) β†’ (β„‚ Γ— {-1}) ∈ (Polyβ€˜π΅))
1189, 116, 117syl2anc 585 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (β„‚ Γ— {-1}) ∈ (Polyβ€˜π΅))
119118adantr 482 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) β†’ (β„‚ Γ— {-1}) ∈ (Polyβ€˜π΅))
120 simpr 486 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) β†’ 𝑒 ∈ (Polyβ€˜π΅))
121 cnfldmul 20950 . . . . . . . . . . . . . . . . . 18 Β· = (.rβ€˜β„‚fld)
122121subrgmcl 20331 . . . . . . . . . . . . . . . . 17 ((𝐡 ∈ (SubRingβ€˜β„‚fld) ∧ π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡) β†’ (π‘Ž Β· 𝑏) ∈ 𝐡)
1231223expb 1121 . . . . . . . . . . . . . . . 16 ((𝐡 ∈ (SubRingβ€˜β„‚fld) ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (π‘Ž Β· 𝑏) ∈ 𝐡)
1247, 123sylan 581 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (π‘Ž Β· 𝑏) ∈ 𝐡)
125124adantlr 714 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (π‘Ž Β· 𝑏) ∈ 𝐡)
126119, 120, 71, 125plymul 25732 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) β†’ ((β„‚ Γ— {-1}) ∘f Β· 𝑒) ∈ (Polyβ€˜π΅))
127 ffvelcdm 7084 . . . . . . . . . . . . . . . 16 ((𝑒:β„‚βŸΆβ„‚ ∧ 𝑋 ∈ β„‚) β†’ (π‘’β€˜π‘‹) ∈ β„‚)
12874, 10, 127syl2anr 598 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) β†’ (π‘’β€˜π‘‹) ∈ β„‚)
129 cnfldneg 20971 . . . . . . . . . . . . . . 15 ((π‘’β€˜π‘‹) ∈ β„‚ β†’ ((invgβ€˜β„‚fld)β€˜(π‘’β€˜π‘‹)) = -(π‘’β€˜π‘‹))
130128, 129syl 17 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) β†’ ((invgβ€˜β„‚fld)β€˜(π‘’β€˜π‘‹)) = -(π‘’β€˜π‘‹))
131 negex 11458 . . . . . . . . . . . . . . . . 17 -1 ∈ V
132 fnconstg 6780 . . . . . . . . . . . . . . . . 17 (-1 ∈ V β†’ (β„‚ Γ— {-1}) Fn β„‚)
133131, 132mp1i 13 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) β†’ (β„‚ Γ— {-1}) Fn β„‚)
13475adantl 483 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) β†’ 𝑒 Fn β„‚)
13580a1i 11 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) β†’ β„‚ ∈ V)
13610adantr 482 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) β†’ 𝑋 ∈ β„‚)
137 fnfvof 7687 . . . . . . . . . . . . . . . 16 ((((β„‚ Γ— {-1}) Fn β„‚ ∧ 𝑒 Fn β„‚) ∧ (β„‚ ∈ V ∧ 𝑋 ∈ β„‚)) β†’ (((β„‚ Γ— {-1}) ∘f Β· 𝑒)β€˜π‘‹) = (((β„‚ Γ— {-1})β€˜π‘‹) Β· (π‘’β€˜π‘‹)))
138133, 134, 135, 136, 137syl22anc 838 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) β†’ (((β„‚ Γ— {-1}) ∘f Β· 𝑒)β€˜π‘‹) = (((β„‚ Γ— {-1})β€˜π‘‹) Β· (π‘’β€˜π‘‹)))
139131fvconst2 7205 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ β„‚ β†’ ((β„‚ Γ— {-1})β€˜π‘‹) = -1)
140136, 139syl 17 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) β†’ ((β„‚ Γ— {-1})β€˜π‘‹) = -1)
141140oveq1d 7424 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) β†’ (((β„‚ Γ— {-1})β€˜π‘‹) Β· (π‘’β€˜π‘‹)) = (-1 Β· (π‘’β€˜π‘‹)))
142128mulm1d 11666 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) β†’ (-1 Β· (π‘’β€˜π‘‹)) = -(π‘’β€˜π‘‹))
143138, 141, 1423eqtrd 2777 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) β†’ (((β„‚ Γ— {-1}) ∘f Β· 𝑒)β€˜π‘‹) = -(π‘’β€˜π‘‹))
144130, 143eqtr4d 2776 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) β†’ ((invgβ€˜β„‚fld)β€˜(π‘’β€˜π‘‹)) = (((β„‚ Γ— {-1}) ∘f Β· 𝑒)β€˜π‘‹))
145 fveq1 6891 . . . . . . . . . . . . . 14 (𝑝 = ((β„‚ Γ— {-1}) ∘f Β· 𝑒) β†’ (π‘β€˜π‘‹) = (((β„‚ Γ— {-1}) ∘f Β· 𝑒)β€˜π‘‹))
146145rspceeqv 3634 . . . . . . . . . . . . 13 ((((β„‚ Γ— {-1}) ∘f Β· 𝑒) ∈ (Polyβ€˜π΅) ∧ ((invgβ€˜β„‚fld)β€˜(π‘’β€˜π‘‹)) = (((β„‚ Γ— {-1}) ∘f Β· 𝑒)β€˜π‘‹)) β†’ βˆƒπ‘ ∈ (Polyβ€˜π΅)((invgβ€˜β„‚fld)β€˜(π‘’β€˜π‘‹)) = (π‘β€˜π‘‹))
147126, 144, 146syl2anc 585 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) β†’ βˆƒπ‘ ∈ (Polyβ€˜π΅)((invgβ€˜β„‚fld)β€˜(π‘’β€˜π‘‹)) = (π‘β€˜π‘‹))
148 fveqeq2 6901 . . . . . . . . . . . . 13 (𝑏 = (π‘’β€˜π‘‹) β†’ (((invgβ€˜β„‚fld)β€˜π‘) = (π‘β€˜π‘‹) ↔ ((invgβ€˜β„‚fld)β€˜(π‘’β€˜π‘‹)) = (π‘β€˜π‘‹)))
149148rexbidv 3179 . . . . . . . . . . . 12 (𝑏 = (π‘’β€˜π‘‹) β†’ (βˆƒπ‘ ∈ (Polyβ€˜π΅)((invgβ€˜β„‚fld)β€˜π‘) = (π‘β€˜π‘‹) ↔ βˆƒπ‘ ∈ (Polyβ€˜π΅)((invgβ€˜β„‚fld)β€˜(π‘’β€˜π‘‹)) = (π‘β€˜π‘‹)))
150147, 149syl5ibrcom 246 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) β†’ (𝑏 = (π‘’β€˜π‘‹) β†’ βˆƒπ‘ ∈ (Polyβ€˜π΅)((invgβ€˜β„‚fld)β€˜π‘) = (π‘β€˜π‘‹)))
151150rexlimdva 3156 . . . . . . . . . 10 (πœ‘ β†’ (βˆƒπ‘’ ∈ (Polyβ€˜π΅)𝑏 = (π‘’β€˜π‘‹) β†’ βˆƒπ‘ ∈ (Polyβ€˜π΅)((invgβ€˜β„‚fld)β€˜π‘) = (π‘β€˜π‘‹)))
152151imp 408 . . . . . . . . 9 ((πœ‘ ∧ βˆƒπ‘’ ∈ (Polyβ€˜π΅)𝑏 = (π‘’β€˜π‘‹)) β†’ βˆƒπ‘ ∈ (Polyβ€˜π΅)((invgβ€˜β„‚fld)β€˜π‘) = (π‘β€˜π‘‹))
15357, 152sylan2b 595 . . . . . . . 8 ((πœ‘ ∧ 𝑏 ∈ {π‘Ž ∣ βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹)}) β†’ βˆƒπ‘ ∈ (Polyβ€˜π΅)((invgβ€˜β„‚fld)β€˜π‘) = (π‘β€˜π‘‹))
154 fvex 6905 . . . . . . . . 9 ((invgβ€˜β„‚fld)β€˜π‘) ∈ V
155 eqeq1 2737 . . . . . . . . . 10 (π‘Ž = ((invgβ€˜β„‚fld)β€˜π‘) β†’ (π‘Ž = (π‘β€˜π‘‹) ↔ ((invgβ€˜β„‚fld)β€˜π‘) = (π‘β€˜π‘‹)))
156155rexbidv 3179 . . . . . . . . 9 (π‘Ž = ((invgβ€˜β„‚fld)β€˜π‘) β†’ (βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹) ↔ βˆƒπ‘ ∈ (Polyβ€˜π΅)((invgβ€˜β„‚fld)β€˜π‘) = (π‘β€˜π‘‹)))
157154, 156elab 3669 . . . . . . . 8 (((invgβ€˜β„‚fld)β€˜π‘) ∈ {π‘Ž ∣ βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹)} ↔ βˆƒπ‘ ∈ (Polyβ€˜π΅)((invgβ€˜β„‚fld)β€˜π‘) = (π‘β€˜π‘‹))
158153, 157sylibr 233 . . . . . . 7 ((πœ‘ ∧ 𝑏 ∈ {π‘Ž ∣ βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹)}) β†’ ((invgβ€˜β„‚fld)β€˜π‘) ∈ {π‘Ž ∣ βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹)})
159110a1i 11 . . . . . . 7 (πœ‘ β†’ 1 = (1rβ€˜β„‚fld))
160121a1i 11 . . . . . . 7 (πœ‘ β†’ Β· = (.rβ€˜β„‚fld))
16143, 112sseldd 3984 . . . . . . 7 (πœ‘ β†’ 1 ∈ {π‘Ž ∣ βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹)})
162125adantlr 714 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) ∧ 𝑑 ∈ (Polyβ€˜π΅)) ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (π‘Ž Β· 𝑏) ∈ 𝐡)
16366, 67, 72, 162plymul 25732 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) ∧ 𝑑 ∈ (Polyβ€˜π΅)) β†’ (𝑒 ∘f Β· 𝑑) ∈ (Polyβ€˜π΅))
164 fnfvof 7687 . . . . . . . . . . . . . . . . 17 (((𝑒 Fn β„‚ ∧ 𝑑 Fn β„‚) ∧ (β„‚ ∈ V ∧ 𝑋 ∈ β„‚)) β†’ ((𝑒 ∘f Β· 𝑑)β€˜π‘‹) = ((π‘’β€˜π‘‹) Β· (π‘‘β€˜π‘‹)))
16576, 79, 81, 82, 164syl22anc 838 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) ∧ 𝑑 ∈ (Polyβ€˜π΅)) β†’ ((𝑒 ∘f Β· 𝑑)β€˜π‘‹) = ((π‘’β€˜π‘‹) Β· (π‘‘β€˜π‘‹)))
166165eqcomd 2739 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) ∧ 𝑑 ∈ (Polyβ€˜π΅)) β†’ ((π‘’β€˜π‘‹) Β· (π‘‘β€˜π‘‹)) = ((𝑒 ∘f Β· 𝑑)β€˜π‘‹))
167 fveq1 6891 . . . . . . . . . . . . . . . 16 (𝑝 = (𝑒 ∘f Β· 𝑑) β†’ (π‘β€˜π‘‹) = ((𝑒 ∘f Β· 𝑑)β€˜π‘‹))
168167rspceeqv 3634 . . . . . . . . . . . . . . 15 (((𝑒 ∘f Β· 𝑑) ∈ (Polyβ€˜π΅) ∧ ((π‘’β€˜π‘‹) Β· (π‘‘β€˜π‘‹)) = ((𝑒 ∘f Β· 𝑑)β€˜π‘‹)) β†’ βˆƒπ‘ ∈ (Polyβ€˜π΅)((π‘’β€˜π‘‹) Β· (π‘‘β€˜π‘‹)) = (π‘β€˜π‘‹))
169163, 166, 168syl2anc 585 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) ∧ 𝑑 ∈ (Polyβ€˜π΅)) β†’ βˆƒπ‘ ∈ (Polyβ€˜π΅)((π‘’β€˜π‘‹) Β· (π‘‘β€˜π‘‹)) = (π‘β€˜π‘‹))
170 oveq2 7417 . . . . . . . . . . . . . . . 16 (𝑐 = (π‘‘β€˜π‘‹) β†’ ((π‘’β€˜π‘‹) Β· 𝑐) = ((π‘’β€˜π‘‹) Β· (π‘‘β€˜π‘‹)))
171170eqeq1d 2735 . . . . . . . . . . . . . . 15 (𝑐 = (π‘‘β€˜π‘‹) β†’ (((π‘’β€˜π‘‹) Β· 𝑐) = (π‘β€˜π‘‹) ↔ ((π‘’β€˜π‘‹) Β· (π‘‘β€˜π‘‹)) = (π‘β€˜π‘‹)))
172171rexbidv 3179 . . . . . . . . . . . . . 14 (𝑐 = (π‘‘β€˜π‘‹) β†’ (βˆƒπ‘ ∈ (Polyβ€˜π΅)((π‘’β€˜π‘‹) Β· 𝑐) = (π‘β€˜π‘‹) ↔ βˆƒπ‘ ∈ (Polyβ€˜π΅)((π‘’β€˜π‘‹) Β· (π‘‘β€˜π‘‹)) = (π‘β€˜π‘‹)))
173169, 172syl5ibrcom 246 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) ∧ 𝑑 ∈ (Polyβ€˜π΅)) β†’ (𝑐 = (π‘‘β€˜π‘‹) β†’ βˆƒπ‘ ∈ (Polyβ€˜π΅)((π‘’β€˜π‘‹) Β· 𝑐) = (π‘β€˜π‘‹)))
174173rexlimdva 3156 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) β†’ (βˆƒπ‘‘ ∈ (Polyβ€˜π΅)𝑐 = (π‘‘β€˜π‘‹) β†’ βˆƒπ‘ ∈ (Polyβ€˜π΅)((π‘’β€˜π‘‹) Β· 𝑐) = (π‘β€˜π‘‹)))
175 oveq1 7416 . . . . . . . . . . . . . . 15 (𝑏 = (π‘’β€˜π‘‹) β†’ (𝑏 Β· 𝑐) = ((π‘’β€˜π‘‹) Β· 𝑐))
176175eqeq1d 2735 . . . . . . . . . . . . . 14 (𝑏 = (π‘’β€˜π‘‹) β†’ ((𝑏 Β· 𝑐) = (π‘β€˜π‘‹) ↔ ((π‘’β€˜π‘‹) Β· 𝑐) = (π‘β€˜π‘‹)))
177176rexbidv 3179 . . . . . . . . . . . . 13 (𝑏 = (π‘’β€˜π‘‹) β†’ (βˆƒπ‘ ∈ (Polyβ€˜π΅)(𝑏 Β· 𝑐) = (π‘β€˜π‘‹) ↔ βˆƒπ‘ ∈ (Polyβ€˜π΅)((π‘’β€˜π‘‹) Β· 𝑐) = (π‘β€˜π‘‹)))
178177imbi2d 341 . . . . . . . . . . . 12 (𝑏 = (π‘’β€˜π‘‹) β†’ ((βˆƒπ‘‘ ∈ (Polyβ€˜π΅)𝑐 = (π‘‘β€˜π‘‹) β†’ βˆƒπ‘ ∈ (Polyβ€˜π΅)(𝑏 Β· 𝑐) = (π‘β€˜π‘‹)) ↔ (βˆƒπ‘‘ ∈ (Polyβ€˜π΅)𝑐 = (π‘‘β€˜π‘‹) β†’ βˆƒπ‘ ∈ (Polyβ€˜π΅)((π‘’β€˜π‘‹) Β· 𝑐) = (π‘β€˜π‘‹))))
179174, 178syl5ibrcom 246 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑒 ∈ (Polyβ€˜π΅)) β†’ (𝑏 = (π‘’β€˜π‘‹) β†’ (βˆƒπ‘‘ ∈ (Polyβ€˜π΅)𝑐 = (π‘‘β€˜π‘‹) β†’ βˆƒπ‘ ∈ (Polyβ€˜π΅)(𝑏 Β· 𝑐) = (π‘β€˜π‘‹))))
180179rexlimdva 3156 . . . . . . . . . 10 (πœ‘ β†’ (βˆƒπ‘’ ∈ (Polyβ€˜π΅)𝑏 = (π‘’β€˜π‘‹) β†’ (βˆƒπ‘‘ ∈ (Polyβ€˜π΅)𝑐 = (π‘‘β€˜π‘‹) β†’ βˆƒπ‘ ∈ (Polyβ€˜π΅)(𝑏 Β· 𝑐) = (π‘β€˜π‘‹))))
1811803imp 1112 . . . . . . . . 9 ((πœ‘ ∧ βˆƒπ‘’ ∈ (Polyβ€˜π΅)𝑏 = (π‘’β€˜π‘‹) ∧ βˆƒπ‘‘ ∈ (Polyβ€˜π΅)𝑐 = (π‘‘β€˜π‘‹)) β†’ βˆƒπ‘ ∈ (Polyβ€˜π΅)(𝑏 Β· 𝑐) = (π‘β€˜π‘‹))
18249, 57, 65, 181syl3anb 1162 . . . . . . . 8 ((πœ‘ ∧ 𝑏 ∈ {π‘Ž ∣ βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹)} ∧ 𝑐 ∈ {π‘Ž ∣ βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹)}) β†’ βˆƒπ‘ ∈ (Polyβ€˜π΅)(𝑏 Β· 𝑐) = (π‘β€˜π‘‹))
183 ovex 7442 . . . . . . . . 9 (𝑏 Β· 𝑐) ∈ V
184 eqeq1 2737 . . . . . . . . . 10 (π‘Ž = (𝑏 Β· 𝑐) β†’ (π‘Ž = (π‘β€˜π‘‹) ↔ (𝑏 Β· 𝑐) = (π‘β€˜π‘‹)))
185184rexbidv 3179 . . . . . . . . 9 (π‘Ž = (𝑏 Β· 𝑐) β†’ (βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹) ↔ βˆƒπ‘ ∈ (Polyβ€˜π΅)(𝑏 Β· 𝑐) = (π‘β€˜π‘‹)))
186183, 185elab 3669 . . . . . . . 8 ((𝑏 Β· 𝑐) ∈ {π‘Ž ∣ βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹)} ↔ βˆƒπ‘ ∈ (Polyβ€˜π΅)(𝑏 Β· 𝑐) = (π‘β€˜π‘‹))
187182, 186sylibr 233 . . . . . . 7 ((πœ‘ ∧ 𝑏 ∈ {π‘Ž ∣ βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹)} ∧ 𝑐 ∈ {π‘Ž ∣ βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹)}) β†’ (𝑏 Β· 𝑐) ∈ {π‘Ž ∣ βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹)})
18815, 17, 19, 29, 48, 106, 158, 159, 160, 161, 187, 4issubrgd 20811 . . . . . 6 (πœ‘ β†’ {π‘Ž ∣ βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹)} ∈ (SubRingβ€˜β„‚fld))
189 plyid 25723 . . . . . . . . . . 11 ((𝐡 βŠ† β„‚ ∧ 1 ∈ 𝐡) β†’ Xp ∈ (Polyβ€˜π΅))
1909, 112, 189syl2anc 585 . . . . . . . . . 10 (πœ‘ β†’ Xp ∈ (Polyβ€˜π΅))
191 df-idp 25703 . . . . . . . . . . . 12 Xp = ( I β†Ύ β„‚)
192191fveq1i 6893 . . . . . . . . . . 11 (Xpβ€˜π‘‹) = (( I β†Ύ β„‚)β€˜π‘‹)
193 fvresi 7171 . . . . . . . . . . . 12 (𝑋 ∈ β„‚ β†’ (( I β†Ύ β„‚)β€˜π‘‹) = 𝑋)
19410, 193syl 17 . . . . . . . . . . 11 (πœ‘ β†’ (( I β†Ύ β„‚)β€˜π‘‹) = 𝑋)
195192, 194eqtr2id 2786 . . . . . . . . . 10 (πœ‘ β†’ 𝑋 = (Xpβ€˜π‘‹))
196 fveq1 6891 . . . . . . . . . . 11 (𝑝 = Xp β†’ (π‘β€˜π‘‹) = (Xpβ€˜π‘‹))
197196rspceeqv 3634 . . . . . . . . . 10 ((Xp ∈ (Polyβ€˜π΅) ∧ 𝑋 = (Xpβ€˜π‘‹)) β†’ βˆƒπ‘ ∈ (Polyβ€˜π΅)𝑋 = (π‘β€˜π‘‹))
198190, 195, 197syl2anc 585 . . . . . . . . 9 (πœ‘ β†’ βˆƒπ‘ ∈ (Polyβ€˜π΅)𝑋 = (π‘β€˜π‘‹))
199 eqeq1 2737 . . . . . . . . . 10 (π‘Ž = 𝑋 β†’ (π‘Ž = (π‘β€˜π‘‹) ↔ 𝑋 = (π‘β€˜π‘‹)))
200199rexbidv 3179 . . . . . . . . 9 (π‘Ž = 𝑋 β†’ (βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹) ↔ βˆƒπ‘ ∈ (Polyβ€˜π΅)𝑋 = (π‘β€˜π‘‹)))
20110, 198, 200elabd 3672 . . . . . . . 8 (πœ‘ β†’ 𝑋 ∈ {π‘Ž ∣ βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹)})
202201snssd 4813 . . . . . . 7 (πœ‘ β†’ {𝑋} βŠ† {π‘Ž ∣ βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹)})
20343, 202unssd 4187 . . . . . 6 (πœ‘ β†’ (𝐡 βˆͺ {𝑋}) βŠ† {π‘Ž ∣ βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹)})
2044, 6, 12, 13, 14, 188, 203rgspnmin 41913 . . . . 5 (πœ‘ β†’ ((RingSpanβ€˜β„‚fld)β€˜(𝐡 βˆͺ {𝑋})) βŠ† {π‘Ž ∣ βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹)})
205204sseld 3982 . . . 4 (πœ‘ β†’ (𝑉 ∈ ((RingSpanβ€˜β„‚fld)β€˜(𝐡 βˆͺ {𝑋})) β†’ 𝑉 ∈ {π‘Ž ∣ βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹)}))
206 fvex 6905 . . . . . . 7 (π‘β€˜π‘‹) ∈ V
207 eleq1 2822 . . . . . . 7 (𝑉 = (π‘β€˜π‘‹) β†’ (𝑉 ∈ V ↔ (π‘β€˜π‘‹) ∈ V))
208206, 207mpbiri 258 . . . . . 6 (𝑉 = (π‘β€˜π‘‹) β†’ 𝑉 ∈ V)
209208rexlimivw 3152 . . . . 5 (βˆƒπ‘ ∈ (Polyβ€˜π΅)𝑉 = (π‘β€˜π‘‹) β†’ 𝑉 ∈ V)
210 eqeq1 2737 . . . . . 6 (π‘Ž = 𝑉 β†’ (π‘Ž = (π‘β€˜π‘‹) ↔ 𝑉 = (π‘β€˜π‘‹)))
211210rexbidv 3179 . . . . 5 (π‘Ž = 𝑉 β†’ (βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹) ↔ βˆƒπ‘ ∈ (Polyβ€˜π΅)𝑉 = (π‘β€˜π‘‹)))
212209, 211elab3 3677 . . . 4 (𝑉 ∈ {π‘Ž ∣ βˆƒπ‘ ∈ (Polyβ€˜π΅)π‘Ž = (π‘β€˜π‘‹)} ↔ βˆƒπ‘ ∈ (Polyβ€˜π΅)𝑉 = (π‘β€˜π‘‹))
213205, 212imbitrdi 250 . . 3 (πœ‘ β†’ (𝑉 ∈ ((RingSpanβ€˜β„‚fld)β€˜(𝐡 βˆͺ {𝑋})) β†’ βˆƒπ‘ ∈ (Polyβ€˜π΅)𝑉 = (π‘β€˜π‘‹)))
2144, 6, 12, 13, 14rgspncl 41911 . . . . . . 7 (πœ‘ β†’ ((RingSpanβ€˜β„‚fld)β€˜(𝐡 βˆͺ {𝑋})) ∈ (SubRingβ€˜β„‚fld))
215214adantr 482 . . . . . 6 ((πœ‘ ∧ 𝑝 ∈ (Polyβ€˜π΅)) β†’ ((RingSpanβ€˜β„‚fld)β€˜(𝐡 βˆͺ {𝑋})) ∈ (SubRingβ€˜β„‚fld))
216 simpr 486 . . . . . 6 ((πœ‘ ∧ 𝑝 ∈ (Polyβ€˜π΅)) β†’ 𝑝 ∈ (Polyβ€˜π΅))
2174, 6, 12, 13, 14rgspnssid 41912 . . . . . . . . 9 (πœ‘ β†’ (𝐡 βˆͺ {𝑋}) βŠ† ((RingSpanβ€˜β„‚fld)β€˜(𝐡 βˆͺ {𝑋})))
218217unssbd 4189 . . . . . . . 8 (πœ‘ β†’ {𝑋} βŠ† ((RingSpanβ€˜β„‚fld)β€˜(𝐡 βˆͺ {𝑋})))
219 snidg 4663 . . . . . . . . 9 (𝑋 ∈ β„‚ β†’ 𝑋 ∈ {𝑋})
22010, 219syl 17 . . . . . . . 8 (πœ‘ β†’ 𝑋 ∈ {𝑋})
221218, 220sseldd 3984 . . . . . . 7 (πœ‘ β†’ 𝑋 ∈ ((RingSpanβ€˜β„‚fld)β€˜(𝐡 βˆͺ {𝑋})))
222221adantr 482 . . . . . 6 ((πœ‘ ∧ 𝑝 ∈ (Polyβ€˜π΅)) β†’ 𝑋 ∈ ((RingSpanβ€˜β„‚fld)β€˜(𝐡 βˆͺ {𝑋})))
223217unssad 4188 . . . . . . 7 (πœ‘ β†’ 𝐡 βŠ† ((RingSpanβ€˜β„‚fld)β€˜(𝐡 βˆͺ {𝑋})))
224223adantr 482 . . . . . 6 ((πœ‘ ∧ 𝑝 ∈ (Polyβ€˜π΅)) β†’ 𝐡 βŠ† ((RingSpanβ€˜β„‚fld)β€˜(𝐡 βˆͺ {𝑋})))
225215, 216, 222, 224cnsrplycl 41909 . . . . 5 ((πœ‘ ∧ 𝑝 ∈ (Polyβ€˜π΅)) β†’ (π‘β€˜π‘‹) ∈ ((RingSpanβ€˜β„‚fld)β€˜(𝐡 βˆͺ {𝑋})))
226 eleq1 2822 . . . . 5 (𝑉 = (π‘β€˜π‘‹) β†’ (𝑉 ∈ ((RingSpanβ€˜β„‚fld)β€˜(𝐡 βˆͺ {𝑋})) ↔ (π‘β€˜π‘‹) ∈ ((RingSpanβ€˜β„‚fld)β€˜(𝐡 βˆͺ {𝑋}))))
227225, 226syl5ibrcom 246 . . . 4 ((πœ‘ ∧ 𝑝 ∈ (Polyβ€˜π΅)) β†’ (𝑉 = (π‘β€˜π‘‹) β†’ 𝑉 ∈ ((RingSpanβ€˜β„‚fld)β€˜(𝐡 βˆͺ {𝑋}))))
228227rexlimdva 3156 . . 3 (πœ‘ β†’ (βˆƒπ‘ ∈ (Polyβ€˜π΅)𝑉 = (π‘β€˜π‘‹) β†’ 𝑉 ∈ ((RingSpanβ€˜β„‚fld)β€˜(𝐡 βˆͺ {𝑋}))))
229213, 228impbid 211 . 2 (πœ‘ β†’ (𝑉 ∈ ((RingSpanβ€˜β„‚fld)β€˜(𝐡 βˆͺ {𝑋})) ↔ βˆƒπ‘ ∈ (Polyβ€˜π΅)𝑉 = (π‘β€˜π‘‹)))
2302, 229bitrd 279 1 (πœ‘ β†’ (𝑉 ∈ 𝑆 ↔ βˆƒπ‘ ∈ (Polyβ€˜π΅)𝑉 = (π‘β€˜π‘‹)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  {cab 2710  βˆƒwrex 3071  Vcvv 3475   βˆͺ cun 3947   βŠ† wss 3949  {csn 4629   I cid 5574   Γ— cxp 5675   β†Ύ cres 5679   Fn wfn 6539  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409   ∘f cof 7668  β„‚cc 11108  0cc0 11110  1c1 11111   + caddc 11113   Β· cmul 11115  -cneg 11445  Basecbs 17144   β†Ύs cress 17173  +gcplusg 17197  .rcmulr 17198  0gc0g 17385  invgcminusg 18820  SubGrpcsubg 19000  1rcur 20004  Ringcrg 20056  SubRingcsubrg 20315  RingSpancrgspn 20316  β„‚fldccnfld 20944  Polycply 25698  Xpcidp 25699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188  ax-addf 11189  ax-mulf 11190
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-map 8822  df-pm 8823  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-inf 9438  df-oi 9505  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-uz 12823  df-rp 12975  df-fz 13485  df-fzo 13628  df-fl 13757  df-seq 13967  df-exp 14028  df-hash 14291  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-clim 15432  df-rlim 15433  df-sum 15633  df-struct 17080  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-mulr 17211  df-starv 17212  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-0g 17387  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-grp 18822  df-minusg 18823  df-subg 19003  df-cmn 19650  df-mgp 19988  df-ur 20005  df-ring 20058  df-cring 20059  df-subrg 20317  df-rgspn 20318  df-cnfld 20945  df-0p 25187  df-ply 25702  df-idp 25703  df-coe 25704  df-dgr 25705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator