MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qaa Structured version   Visualization version   GIF version

Theorem qaa 26302
Description: Every rational number is algebraic. (Contributed by Mario Carneiro, 23-Jul-2014.)
Assertion
Ref Expression
qaa (𝐴 ∈ ℚ → 𝐴 ∈ 𝔸)

Proof of Theorem qaa
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qcn 12987 . 2 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
2 qsscn 12984 . . . . . . 7 ℚ ⊆ ℂ
3 1z 12630 . . . . . . . 8 1 ∈ ℤ
4 zq 12978 . . . . . . . 8 (1 ∈ ℤ → 1 ∈ ℚ)
53, 4ax-mp 5 . . . . . . 7 1 ∈ ℚ
6 plyid 26185 . . . . . . 7 ((ℚ ⊆ ℂ ∧ 1 ∈ ℚ) → Xp ∈ (Poly‘ℚ))
72, 5, 6mp2an 692 . . . . . 6 Xp ∈ (Poly‘ℚ)
87a1i 11 . . . . 5 (𝐴 ∈ ℚ → Xp ∈ (Poly‘ℚ))
9 plyconst 26182 . . . . . 6 ((ℚ ⊆ ℂ ∧ 𝐴 ∈ ℚ) → (ℂ × {𝐴}) ∈ (Poly‘ℚ))
102, 9mpan 690 . . . . 5 (𝐴 ∈ ℚ → (ℂ × {𝐴}) ∈ (Poly‘ℚ))
11 qaddcl 12989 . . . . . 6 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (𝑥 + 𝑦) ∈ ℚ)
1211adantl 481 . . . . 5 ((𝐴 ∈ ℚ ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝑥 + 𝑦) ∈ ℚ)
13 qmulcl 12991 . . . . . 6 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (𝑥 · 𝑦) ∈ ℚ)
1413adantl 481 . . . . 5 ((𝐴 ∈ ℚ ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝑥 · 𝑦) ∈ ℚ)
15 qnegcl 12990 . . . . . . 7 (1 ∈ ℚ → -1 ∈ ℚ)
165, 15ax-mp 5 . . . . . 6 -1 ∈ ℚ
1716a1i 11 . . . . 5 (𝐴 ∈ ℚ → -1 ∈ ℚ)
188, 10, 12, 14, 17plysub 26195 . . . 4 (𝐴 ∈ ℚ → (Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℚ))
19 peano2cn 11415 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ)
201, 19syl 17 . . . . 5 (𝐴 ∈ ℚ → (𝐴 + 1) ∈ ℂ)
21 fnresi 6677 . . . . . . . . . . 11 ( I ↾ ℂ) Fn ℂ
22 df-idp 26165 . . . . . . . . . . . 12 Xp = ( I ↾ ℂ)
2322fneq1i 6645 . . . . . . . . . . 11 (Xp Fn ℂ ↔ ( I ↾ ℂ) Fn ℂ)
2421, 23mpbir 231 . . . . . . . . . 10 Xp Fn ℂ
2524a1i 11 . . . . . . . . 9 (𝐴 ∈ ℚ → Xp Fn ℂ)
26 fnconstg 6776 . . . . . . . . 9 (𝐴 ∈ ℚ → (ℂ × {𝐴}) Fn ℂ)
27 cnex 11218 . . . . . . . . . 10 ℂ ∈ V
2827a1i 11 . . . . . . . . 9 (𝐴 ∈ ℚ → ℂ ∈ V)
29 inidm 4207 . . . . . . . . 9 (ℂ ∩ ℂ) = ℂ
3022fveq1i 6887 . . . . . . . . . . 11 (Xp‘(𝐴 + 1)) = (( I ↾ ℂ)‘(𝐴 + 1))
31 fvresi 7175 . . . . . . . . . . 11 ((𝐴 + 1) ∈ ℂ → (( I ↾ ℂ)‘(𝐴 + 1)) = (𝐴 + 1))
3230, 31eqtrid 2781 . . . . . . . . . 10 ((𝐴 + 1) ∈ ℂ → (Xp‘(𝐴 + 1)) = (𝐴 + 1))
3332adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℚ ∧ (𝐴 + 1) ∈ ℂ) → (Xp‘(𝐴 + 1)) = (𝐴 + 1))
34 fvconst2g 7204 . . . . . . . . 9 ((𝐴 ∈ ℚ ∧ (𝐴 + 1) ∈ ℂ) → ((ℂ × {𝐴})‘(𝐴 + 1)) = 𝐴)
3525, 26, 28, 28, 29, 33, 34ofval 7690 . . . . . . . 8 ((𝐴 ∈ ℚ ∧ (𝐴 + 1) ∈ ℂ) → ((Xpf − (ℂ × {𝐴}))‘(𝐴 + 1)) = ((𝐴 + 1) − 𝐴))
3620, 35mpdan 687 . . . . . . 7 (𝐴 ∈ ℚ → ((Xpf − (ℂ × {𝐴}))‘(𝐴 + 1)) = ((𝐴 + 1) − 𝐴))
37 ax-1cn 11195 . . . . . . . 8 1 ∈ ℂ
38 pncan2 11497 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 𝐴) = 1)
391, 37, 38sylancl 586 . . . . . . 7 (𝐴 ∈ ℚ → ((𝐴 + 1) − 𝐴) = 1)
4036, 39eqtrd 2769 . . . . . 6 (𝐴 ∈ ℚ → ((Xpf − (ℂ × {𝐴}))‘(𝐴 + 1)) = 1)
41 ax-1ne0 11206 . . . . . . 7 1 ≠ 0
4241a1i 11 . . . . . 6 (𝐴 ∈ ℚ → 1 ≠ 0)
4340, 42eqnetrd 2998 . . . . 5 (𝐴 ∈ ℚ → ((Xpf − (ℂ × {𝐴}))‘(𝐴 + 1)) ≠ 0)
44 ne0p 26183 . . . . 5 (((𝐴 + 1) ∈ ℂ ∧ ((Xpf − (ℂ × {𝐴}))‘(𝐴 + 1)) ≠ 0) → (Xpf − (ℂ × {𝐴})) ≠ 0𝑝)
4520, 43, 44syl2anc 584 . . . 4 (𝐴 ∈ ℚ → (Xpf − (ℂ × {𝐴})) ≠ 0𝑝)
46 eldifsn 4766 . . . 4 ((Xpf − (ℂ × {𝐴})) ∈ ((Poly‘ℚ) ∖ {0𝑝}) ↔ ((Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℚ) ∧ (Xpf − (ℂ × {𝐴})) ≠ 0𝑝))
4718, 45, 46sylanbrc 583 . . 3 (𝐴 ∈ ℚ → (Xpf − (ℂ × {𝐴})) ∈ ((Poly‘ℚ) ∖ {0𝑝}))
4822fveq1i 6887 . . . . . . . 8 (Xp𝐴) = (( I ↾ ℂ)‘𝐴)
49 fvresi 7175 . . . . . . . 8 (𝐴 ∈ ℂ → (( I ↾ ℂ)‘𝐴) = 𝐴)
5048, 49eqtrid 2781 . . . . . . 7 (𝐴 ∈ ℂ → (Xp𝐴) = 𝐴)
5150adantl 481 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℂ) → (Xp𝐴) = 𝐴)
52 fvconst2g 7204 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℂ) → ((ℂ × {𝐴})‘𝐴) = 𝐴)
5325, 26, 28, 28, 29, 51, 52ofval 7690 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℂ) → ((Xpf − (ℂ × {𝐴}))‘𝐴) = (𝐴𝐴))
541, 53mpdan 687 . . . 4 (𝐴 ∈ ℚ → ((Xpf − (ℂ × {𝐴}))‘𝐴) = (𝐴𝐴))
551subidd 11590 . . . 4 (𝐴 ∈ ℚ → (𝐴𝐴) = 0)
5654, 55eqtrd 2769 . . 3 (𝐴 ∈ ℚ → ((Xpf − (ℂ × {𝐴}))‘𝐴) = 0)
57 fveq1 6885 . . . . 5 (𝑓 = (Xpf − (ℂ × {𝐴})) → (𝑓𝐴) = ((Xpf − (ℂ × {𝐴}))‘𝐴))
5857eqeq1d 2736 . . . 4 (𝑓 = (Xpf − (ℂ × {𝐴})) → ((𝑓𝐴) = 0 ↔ ((Xpf − (ℂ × {𝐴}))‘𝐴) = 0))
5958rspcev 3605 . . 3 (((Xpf − (ℂ × {𝐴})) ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ ((Xpf − (ℂ × {𝐴}))‘𝐴) = 0) → ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓𝐴) = 0)
6047, 56, 59syl2anc 584 . 2 (𝐴 ∈ ℚ → ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓𝐴) = 0)
61 elqaa 26301 . 2 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓𝐴) = 0))
621, 60, 61sylanbrc 583 1 (𝐴 ∈ ℚ → 𝐴 ∈ 𝔸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931  wrex 3059  Vcvv 3463  cdif 3928  wss 3931  {csn 4606   I cid 5557   × cxp 5663  cres 5667   Fn wfn 6536  cfv 6541  (class class class)co 7413  f cof 7677  cc 11135  0cc0 11137  1c1 11138   + caddc 11140   · cmul 11142  cmin 11474  -cneg 11475  cz 12596  cq 12972  0𝑝c0p 25641  Polycply 26160  Xpcidp 26161  𝔸caa 26293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-map 8850  df-pm 8851  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-sup 9464  df-inf 9465  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-n0 12510  df-z 12597  df-uz 12861  df-q 12973  df-rp 13017  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-hash 14353  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-clim 15507  df-rlim 15508  df-sum 15706  df-0p 25642  df-ply 26164  df-idp 26165  df-coe 26166  df-dgr 26167  df-aa 26294
This theorem is referenced by:  qssaa  26303
  Copyright terms: Public domain W3C validator