Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  qaa Structured version   Visualization version   GIF version

Theorem qaa 24827
 Description: Every rational number is algebraic. (Contributed by Mario Carneiro, 23-Jul-2014.)
Assertion
Ref Expression
qaa (𝐴 ∈ ℚ → 𝐴 ∈ 𝔸)

Proof of Theorem qaa
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qcn 12355 . 2 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
2 qsscn 12352 . . . . . . 7 ℚ ⊆ ℂ
3 1z 12004 . . . . . . . 8 1 ∈ ℤ
4 zq 12346 . . . . . . . 8 (1 ∈ ℤ → 1 ∈ ℚ)
53, 4ax-mp 5 . . . . . . 7 1 ∈ ℚ
6 plyid 24714 . . . . . . 7 ((ℚ ⊆ ℂ ∧ 1 ∈ ℚ) → Xp ∈ (Poly‘ℚ))
72, 5, 6mp2an 688 . . . . . 6 Xp ∈ (Poly‘ℚ)
87a1i 11 . . . . 5 (𝐴 ∈ ℚ → Xp ∈ (Poly‘ℚ))
9 plyconst 24711 . . . . . 6 ((ℚ ⊆ ℂ ∧ 𝐴 ∈ ℚ) → (ℂ × {𝐴}) ∈ (Poly‘ℚ))
102, 9mpan 686 . . . . 5 (𝐴 ∈ ℚ → (ℂ × {𝐴}) ∈ (Poly‘ℚ))
11 qaddcl 12357 . . . . . 6 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (𝑥 + 𝑦) ∈ ℚ)
1211adantl 482 . . . . 5 ((𝐴 ∈ ℚ ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝑥 + 𝑦) ∈ ℚ)
13 qmulcl 12359 . . . . . 6 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (𝑥 · 𝑦) ∈ ℚ)
1413adantl 482 . . . . 5 ((𝐴 ∈ ℚ ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝑥 · 𝑦) ∈ ℚ)
15 qnegcl 12358 . . . . . . 7 (1 ∈ ℚ → -1 ∈ ℚ)
165, 15ax-mp 5 . . . . . 6 -1 ∈ ℚ
1716a1i 11 . . . . 5 (𝐴 ∈ ℚ → -1 ∈ ℚ)
188, 10, 12, 14, 17plysub 24724 . . . 4 (𝐴 ∈ ℚ → (Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℚ))
19 peano2cn 10804 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ)
201, 19syl 17 . . . . 5 (𝐴 ∈ ℚ → (𝐴 + 1) ∈ ℂ)
21 fnresi 6472 . . . . . . . . . . 11 ( I ↾ ℂ) Fn ℂ
22 df-idp 24694 . . . . . . . . . . . 12 Xp = ( I ↾ ℂ)
2322fneq1i 6446 . . . . . . . . . . 11 (Xp Fn ℂ ↔ ( I ↾ ℂ) Fn ℂ)
2421, 23mpbir 232 . . . . . . . . . 10 Xp Fn ℂ
2524a1i 11 . . . . . . . . 9 (𝐴 ∈ ℚ → Xp Fn ℂ)
26 fnconstg 6563 . . . . . . . . 9 (𝐴 ∈ ℚ → (ℂ × {𝐴}) Fn ℂ)
27 cnex 10610 . . . . . . . . . 10 ℂ ∈ V
2827a1i 11 . . . . . . . . 9 (𝐴 ∈ ℚ → ℂ ∈ V)
29 inidm 4198 . . . . . . . . 9 (ℂ ∩ ℂ) = ℂ
3022fveq1i 6667 . . . . . . . . . . 11 (Xp‘(𝐴 + 1)) = (( I ↾ ℂ)‘(𝐴 + 1))
31 fvresi 6930 . . . . . . . . . . 11 ((𝐴 + 1) ∈ ℂ → (( I ↾ ℂ)‘(𝐴 + 1)) = (𝐴 + 1))
3230, 31syl5eq 2872 . . . . . . . . . 10 ((𝐴 + 1) ∈ ℂ → (Xp‘(𝐴 + 1)) = (𝐴 + 1))
3332adantl 482 . . . . . . . . 9 ((𝐴 ∈ ℚ ∧ (𝐴 + 1) ∈ ℂ) → (Xp‘(𝐴 + 1)) = (𝐴 + 1))
34 fvconst2g 6963 . . . . . . . . 9 ((𝐴 ∈ ℚ ∧ (𝐴 + 1) ∈ ℂ) → ((ℂ × {𝐴})‘(𝐴 + 1)) = 𝐴)
3525, 26, 28, 28, 29, 33, 34ofval 7411 . . . . . . . 8 ((𝐴 ∈ ℚ ∧ (𝐴 + 1) ∈ ℂ) → ((Xpf − (ℂ × {𝐴}))‘(𝐴 + 1)) = ((𝐴 + 1) − 𝐴))
3620, 35mpdan 683 . . . . . . 7 (𝐴 ∈ ℚ → ((Xpf − (ℂ × {𝐴}))‘(𝐴 + 1)) = ((𝐴 + 1) − 𝐴))
37 ax-1cn 10587 . . . . . . . 8 1 ∈ ℂ
38 pncan2 10885 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 𝐴) = 1)
391, 37, 38sylancl 586 . . . . . . 7 (𝐴 ∈ ℚ → ((𝐴 + 1) − 𝐴) = 1)
4036, 39eqtrd 2860 . . . . . 6 (𝐴 ∈ ℚ → ((Xpf − (ℂ × {𝐴}))‘(𝐴 + 1)) = 1)
41 ax-1ne0 10598 . . . . . . 7 1 ≠ 0
4241a1i 11 . . . . . 6 (𝐴 ∈ ℚ → 1 ≠ 0)
4340, 42eqnetrd 3087 . . . . 5 (𝐴 ∈ ℚ → ((Xpf − (ℂ × {𝐴}))‘(𝐴 + 1)) ≠ 0)
44 ne0p 24712 . . . . 5 (((𝐴 + 1) ∈ ℂ ∧ ((Xpf − (ℂ × {𝐴}))‘(𝐴 + 1)) ≠ 0) → (Xpf − (ℂ × {𝐴})) ≠ 0𝑝)
4520, 43, 44syl2anc 584 . . . 4 (𝐴 ∈ ℚ → (Xpf − (ℂ × {𝐴})) ≠ 0𝑝)
46 eldifsn 4717 . . . 4 ((Xpf − (ℂ × {𝐴})) ∈ ((Poly‘ℚ) ∖ {0𝑝}) ↔ ((Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℚ) ∧ (Xpf − (ℂ × {𝐴})) ≠ 0𝑝))
4718, 45, 46sylanbrc 583 . . 3 (𝐴 ∈ ℚ → (Xpf − (ℂ × {𝐴})) ∈ ((Poly‘ℚ) ∖ {0𝑝}))
4822fveq1i 6667 . . . . . . . 8 (Xp𝐴) = (( I ↾ ℂ)‘𝐴)
49 fvresi 6930 . . . . . . . 8 (𝐴 ∈ ℂ → (( I ↾ ℂ)‘𝐴) = 𝐴)
5048, 49syl5eq 2872 . . . . . . 7 (𝐴 ∈ ℂ → (Xp𝐴) = 𝐴)
5150adantl 482 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℂ) → (Xp𝐴) = 𝐴)
52 fvconst2g 6963 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℂ) → ((ℂ × {𝐴})‘𝐴) = 𝐴)
5325, 26, 28, 28, 29, 51, 52ofval 7411 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℂ) → ((Xpf − (ℂ × {𝐴}))‘𝐴) = (𝐴𝐴))
541, 53mpdan 683 . . . 4 (𝐴 ∈ ℚ → ((Xpf − (ℂ × {𝐴}))‘𝐴) = (𝐴𝐴))
551subidd 10977 . . . 4 (𝐴 ∈ ℚ → (𝐴𝐴) = 0)
5654, 55eqtrd 2860 . . 3 (𝐴 ∈ ℚ → ((Xpf − (ℂ × {𝐴}))‘𝐴) = 0)
57 fveq1 6665 . . . . 5 (𝑓 = (Xpf − (ℂ × {𝐴})) → (𝑓𝐴) = ((Xpf − (ℂ × {𝐴}))‘𝐴))
5857eqeq1d 2826 . . . 4 (𝑓 = (Xpf − (ℂ × {𝐴})) → ((𝑓𝐴) = 0 ↔ ((Xpf − (ℂ × {𝐴}))‘𝐴) = 0))
5958rspcev 3626 . . 3 (((Xpf − (ℂ × {𝐴})) ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ ((Xpf − (ℂ × {𝐴}))‘𝐴) = 0) → ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓𝐴) = 0)
6047, 56, 59syl2anc 584 . 2 (𝐴 ∈ ℚ → ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓𝐴) = 0)
61 elqaa 24826 . 2 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓𝐴) = 0))
621, 60, 61sylanbrc 583 1 (𝐴 ∈ ℚ → 𝐴 ∈ 𝔸)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 396   = wceq 1530   ∈ wcel 2106   ≠ wne 3020  ∃wrex 3143  Vcvv 3499   ∖ cdif 3936   ⊆ wss 3939  {csn 4563   I cid 5457   × cxp 5551   ↾ cres 5555   Fn wfn 6346  ‘cfv 6351  (class class class)co 7151   ∘f cof 7400  ℂcc 10527  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534   − cmin 10862  -cneg 10863  ℤcz 11973  ℚcq 12340  0𝑝c0p 24185  Polycply 24689  Xpcidp 24690  𝔸caa 24818 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-13 2385  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-map 8401  df-pm 8402  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12383  df-fz 12886  df-fzo 13027  df-fl 13155  df-mod 13231  df-seq 13363  df-exp 13423  df-hash 13684  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-clim 14838  df-rlim 14839  df-sum 15036  df-0p 24186  df-ply 24693  df-idp 24694  df-coe 24695  df-dgr 24696  df-aa 24819 This theorem is referenced by:  qssaa  24828
 Copyright terms: Public domain W3C validator