MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qaa Structured version   Visualization version   GIF version

Theorem qaa 26237
Description: Every rational number is algebraic. (Contributed by Mario Carneiro, 23-Jul-2014.)
Assertion
Ref Expression
qaa (𝐴 ∈ ℚ → 𝐴 ∈ 𝔸)

Proof of Theorem qaa
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qcn 12928 . 2 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
2 qsscn 12925 . . . . . . 7 ℚ ⊆ ℂ
3 1z 12569 . . . . . . . 8 1 ∈ ℤ
4 zq 12919 . . . . . . . 8 (1 ∈ ℤ → 1 ∈ ℚ)
53, 4ax-mp 5 . . . . . . 7 1 ∈ ℚ
6 plyid 26120 . . . . . . 7 ((ℚ ⊆ ℂ ∧ 1 ∈ ℚ) → Xp ∈ (Poly‘ℚ))
72, 5, 6mp2an 692 . . . . . 6 Xp ∈ (Poly‘ℚ)
87a1i 11 . . . . 5 (𝐴 ∈ ℚ → Xp ∈ (Poly‘ℚ))
9 plyconst 26117 . . . . . 6 ((ℚ ⊆ ℂ ∧ 𝐴 ∈ ℚ) → (ℂ × {𝐴}) ∈ (Poly‘ℚ))
102, 9mpan 690 . . . . 5 (𝐴 ∈ ℚ → (ℂ × {𝐴}) ∈ (Poly‘ℚ))
11 qaddcl 12930 . . . . . 6 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (𝑥 + 𝑦) ∈ ℚ)
1211adantl 481 . . . . 5 ((𝐴 ∈ ℚ ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝑥 + 𝑦) ∈ ℚ)
13 qmulcl 12932 . . . . . 6 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (𝑥 · 𝑦) ∈ ℚ)
1413adantl 481 . . . . 5 ((𝐴 ∈ ℚ ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝑥 · 𝑦) ∈ ℚ)
15 qnegcl 12931 . . . . . . 7 (1 ∈ ℚ → -1 ∈ ℚ)
165, 15ax-mp 5 . . . . . 6 -1 ∈ ℚ
1716a1i 11 . . . . 5 (𝐴 ∈ ℚ → -1 ∈ ℚ)
188, 10, 12, 14, 17plysub 26130 . . . 4 (𝐴 ∈ ℚ → (Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℚ))
19 peano2cn 11352 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ)
201, 19syl 17 . . . . 5 (𝐴 ∈ ℚ → (𝐴 + 1) ∈ ℂ)
21 fnresi 6649 . . . . . . . . . . 11 ( I ↾ ℂ) Fn ℂ
22 df-idp 26100 . . . . . . . . . . . 12 Xp = ( I ↾ ℂ)
2322fneq1i 6617 . . . . . . . . . . 11 (Xp Fn ℂ ↔ ( I ↾ ℂ) Fn ℂ)
2421, 23mpbir 231 . . . . . . . . . 10 Xp Fn ℂ
2524a1i 11 . . . . . . . . 9 (𝐴 ∈ ℚ → Xp Fn ℂ)
26 fnconstg 6750 . . . . . . . . 9 (𝐴 ∈ ℚ → (ℂ × {𝐴}) Fn ℂ)
27 cnex 11155 . . . . . . . . . 10 ℂ ∈ V
2827a1i 11 . . . . . . . . 9 (𝐴 ∈ ℚ → ℂ ∈ V)
29 inidm 4192 . . . . . . . . 9 (ℂ ∩ ℂ) = ℂ
3022fveq1i 6861 . . . . . . . . . . 11 (Xp‘(𝐴 + 1)) = (( I ↾ ℂ)‘(𝐴 + 1))
31 fvresi 7149 . . . . . . . . . . 11 ((𝐴 + 1) ∈ ℂ → (( I ↾ ℂ)‘(𝐴 + 1)) = (𝐴 + 1))
3230, 31eqtrid 2777 . . . . . . . . . 10 ((𝐴 + 1) ∈ ℂ → (Xp‘(𝐴 + 1)) = (𝐴 + 1))
3332adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℚ ∧ (𝐴 + 1) ∈ ℂ) → (Xp‘(𝐴 + 1)) = (𝐴 + 1))
34 fvconst2g 7178 . . . . . . . . 9 ((𝐴 ∈ ℚ ∧ (𝐴 + 1) ∈ ℂ) → ((ℂ × {𝐴})‘(𝐴 + 1)) = 𝐴)
3525, 26, 28, 28, 29, 33, 34ofval 7666 . . . . . . . 8 ((𝐴 ∈ ℚ ∧ (𝐴 + 1) ∈ ℂ) → ((Xpf − (ℂ × {𝐴}))‘(𝐴 + 1)) = ((𝐴 + 1) − 𝐴))
3620, 35mpdan 687 . . . . . . 7 (𝐴 ∈ ℚ → ((Xpf − (ℂ × {𝐴}))‘(𝐴 + 1)) = ((𝐴 + 1) − 𝐴))
37 ax-1cn 11132 . . . . . . . 8 1 ∈ ℂ
38 pncan2 11434 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 𝐴) = 1)
391, 37, 38sylancl 586 . . . . . . 7 (𝐴 ∈ ℚ → ((𝐴 + 1) − 𝐴) = 1)
4036, 39eqtrd 2765 . . . . . 6 (𝐴 ∈ ℚ → ((Xpf − (ℂ × {𝐴}))‘(𝐴 + 1)) = 1)
41 ax-1ne0 11143 . . . . . . 7 1 ≠ 0
4241a1i 11 . . . . . 6 (𝐴 ∈ ℚ → 1 ≠ 0)
4340, 42eqnetrd 2993 . . . . 5 (𝐴 ∈ ℚ → ((Xpf − (ℂ × {𝐴}))‘(𝐴 + 1)) ≠ 0)
44 ne0p 26118 . . . . 5 (((𝐴 + 1) ∈ ℂ ∧ ((Xpf − (ℂ × {𝐴}))‘(𝐴 + 1)) ≠ 0) → (Xpf − (ℂ × {𝐴})) ≠ 0𝑝)
4520, 43, 44syl2anc 584 . . . 4 (𝐴 ∈ ℚ → (Xpf − (ℂ × {𝐴})) ≠ 0𝑝)
46 eldifsn 4752 . . . 4 ((Xpf − (ℂ × {𝐴})) ∈ ((Poly‘ℚ) ∖ {0𝑝}) ↔ ((Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℚ) ∧ (Xpf − (ℂ × {𝐴})) ≠ 0𝑝))
4718, 45, 46sylanbrc 583 . . 3 (𝐴 ∈ ℚ → (Xpf − (ℂ × {𝐴})) ∈ ((Poly‘ℚ) ∖ {0𝑝}))
4822fveq1i 6861 . . . . . . . 8 (Xp𝐴) = (( I ↾ ℂ)‘𝐴)
49 fvresi 7149 . . . . . . . 8 (𝐴 ∈ ℂ → (( I ↾ ℂ)‘𝐴) = 𝐴)
5048, 49eqtrid 2777 . . . . . . 7 (𝐴 ∈ ℂ → (Xp𝐴) = 𝐴)
5150adantl 481 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℂ) → (Xp𝐴) = 𝐴)
52 fvconst2g 7178 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℂ) → ((ℂ × {𝐴})‘𝐴) = 𝐴)
5325, 26, 28, 28, 29, 51, 52ofval 7666 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℂ) → ((Xpf − (ℂ × {𝐴}))‘𝐴) = (𝐴𝐴))
541, 53mpdan 687 . . . 4 (𝐴 ∈ ℚ → ((Xpf − (ℂ × {𝐴}))‘𝐴) = (𝐴𝐴))
551subidd 11527 . . . 4 (𝐴 ∈ ℚ → (𝐴𝐴) = 0)
5654, 55eqtrd 2765 . . 3 (𝐴 ∈ ℚ → ((Xpf − (ℂ × {𝐴}))‘𝐴) = 0)
57 fveq1 6859 . . . . 5 (𝑓 = (Xpf − (ℂ × {𝐴})) → (𝑓𝐴) = ((Xpf − (ℂ × {𝐴}))‘𝐴))
5857eqeq1d 2732 . . . 4 (𝑓 = (Xpf − (ℂ × {𝐴})) → ((𝑓𝐴) = 0 ↔ ((Xpf − (ℂ × {𝐴}))‘𝐴) = 0))
5958rspcev 3591 . . 3 (((Xpf − (ℂ × {𝐴})) ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ ((Xpf − (ℂ × {𝐴}))‘𝐴) = 0) → ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓𝐴) = 0)
6047, 56, 59syl2anc 584 . 2 (𝐴 ∈ ℚ → ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓𝐴) = 0)
61 elqaa 26236 . 2 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓𝐴) = 0))
621, 60, 61sylanbrc 583 1 (𝐴 ∈ ℚ → 𝐴 ∈ 𝔸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wrex 3054  Vcvv 3450  cdif 3913  wss 3916  {csn 4591   I cid 5534   × cxp 5638  cres 5642   Fn wfn 6508  cfv 6513  (class class class)co 7389  f cof 7653  cc 11072  0cc0 11074  1c1 11075   + caddc 11077   · cmul 11079  cmin 11411  -cneg 11412  cz 12535  cq 12913  0𝑝c0p 25576  Polycply 26095  Xpcidp 26096  𝔸caa 26228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-inf2 9600  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-map 8803  df-pm 8804  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-sup 9399  df-inf 9400  df-oi 9469  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-n0 12449  df-z 12536  df-uz 12800  df-q 12914  df-rp 12958  df-fz 13475  df-fzo 13622  df-fl 13760  df-mod 13838  df-seq 13973  df-exp 14033  df-hash 14302  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-clim 15460  df-rlim 15461  df-sum 15659  df-0p 25577  df-ply 26099  df-idp 26100  df-coe 26101  df-dgr 26102  df-aa 26229
This theorem is referenced by:  qssaa  26238
  Copyright terms: Public domain W3C validator